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Abstract

A classical result of Hajnal and Szemerédi, when translated to a complementary form, states that with

sufficient minimum degree, a graph will contain disjoint large cliques. We conjecture a generalization of this

result from cliques to cycles with many chords and prove this conjecture in several cases.

1 Introduction

A major branch of extremal graph theory involves finding disjoint subgraphs. In particular, much work has been
focused on finding disjoint cycles in graphs. Trivially, one may observe that if δ(G) ≥ 2, there is a cycle in the
graph G. In order to find more than one cycle using a minimum degree condition, one must appeal to the following
classical result of Corrádi and Hajnal.

Theorem 1 (Corrádi and Hajnal, 1963 [3]) If δ(G) ≥ 2t and |V (G)| ≥ 3t, then G contains t vertex disjoint
cycles.

In the case where |V (G)| = 3t, this guarantees a triangle factor: the vertices of G can be covered with disjoint
triangles. Since triangles are cliques, a natural question is whether similar minimum degree conditions guarantee
the existence of a Kk+1 factor for k ≥ 3. The celebrated theorem of Hajnal and Szemerédi answers this:

Theorem 2 (Hajnal and Szemerédi, 1970 [4]) Given integers s, k ≥ 1 and a graph G of order s(k + 1) with
δ(G) ≥ sk, there exist s vertex disjoint copies of Kk+1 in G.

Both the Hajnal-Szemerédi theorem and the Corrádi-Hajnal theorem guaranteeingKk+1 factors have seen several
generalizations and strengthenings, notably the Seymour conjecture (proved for sufficiently large graphs by Komlós,
Sárkőzy, and Szemerédi using the regularity lemma in [5]) which states that if δ(G) ≥ k

k+1n then G contains the
kth power of a Hamiltonian cycle.

The Corrádi-Hajnal theorem, however, has one feature that the Hajnal-Szemerédi theorem does not. It guar-
antees structure in the graph whenever δ(G) ≥ 2t even if |V (G)| ≫ 3t. It does not guarantee the existence of
triangles (indeed, if |V (G)| > 4t, then there need not be any triangles in the graph at all), but does none the less
guarantee the existence of disjoint cycles. Cycles, here, can be seen as loose triangles and it is this loose structure
that is guaranteed even when triangles are not. The Hajnal-Szemerédi theorem says nothing about sparse graphs,
however, and the fundamental problem seems to be the notion of a loose clique. In this paper, we propose such a
notion. A clique can also be viewed as a cycle with many chords. In particular, Kk+1 is an f(k)-chorded cycles,

where f(k) = (k+1)(k−2)
2 . (Note that we take this to be f(k), as opposed to f(k + 1) as Kk+1 is k-regular). If the

cycle is longer, still with f(k) chords, this can be thought of as a “loose” clique in the sense that all the chords are
present but the subgraph is not as confined as the clique.

It is trivial that if δ(G) ≥ 2 then G contains a cycle (and hence loose triangle), but it is less clear that if δ(G) ≥ k
that G contains a f(k)-chorded cycle (and hence a loose Kk+1). Addressing such a question, Ali and Staton have
the following result.

Theorem 3 (Ali and Staton, 1999 [1]) If δ(G) ≥ k, then G contains a cycle with at least
⌈

k(k−2)
2

⌉

chords.
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This is slightly weaker than what we would like, but we show (Theorem 5) that indeed an f(k)-chorded cycle
is guaranteed if δ(G) ≥ k. In light of these results, the following conjecture provides a natural extension and
amalgamation.

Conjecture 1 Given integers s, k ≥ 1 and a graph G of order n ≥ s(k + 1) with δ(G) ≥ sk, there exist s vertex
disjoint cycles in G, each with at least f(k) chords.

Note that Theorem 2 would be the special case of Conjecture 1 when n = s(k+1). Our main result shows that
Conjecture 1 holds when s, k and n are sufficiently large.

Theorem 4 There exist s0 and k0 so that if s ≥ s0 and k ≥ k0, then there exists an n0 = n0(s, k) so that if G has
minimum degree at least sk and |G| > n0, then G contains s vertex disjoint f(k)-chorded cycles.

It is worth noting that Conjecture 1 can be both strengthened of weakened in several ways. As (largely) a
weakening, one might ask only for subdivisions or minors. It is actually worth noting that the relationship between
f(k)-chorded cycles and subdivisions is not quite clear - asking for chorded cycles requires that the paths between
cycle vertices are of length 1, but more freedom is allowed in their placement. An interesting strengthening would
be to require that the proper number of chords be crossing. The complete graph Kk+1 has

(

k+1
4

)

pairs of crossing
chords, and so it is natural to add such a requirement to Conjecture 1. In this direction, all we know is that it is
easy to show that if δ(G) ≥ 3, then G contains a cycle with a pair of crossing chords. An analogue for δ(G) ≥ k (in
analogy to Theorem 5) is still unknown.

In this work, we present several partial results toward a proof of Conjecture 1. In Section 2, we present some
cases where the conjecture holds including the case when s = 1 and when the graph is triangle-free. In Section 3, we
provide a result for finding one multiply chorded cycle using an average degree condition in place of the minimum
degree. Section 4 contains a lemma involving 3-regular graphs and one concerning cycles with many chords which
will be used in Section 5. The average degree result from Section 3 is also used as a lemma in Section 5, where we
prove Theorem 4.

All notation is either defined when used or can be found in [2].

2 Preliminary Cases

Our first result of this section shows that Conjecture 1 holds easily for the case when s = 1.

Theorem 5 If δ(G) ≥ k for some positive integer k, then G contains a cycle C with at least f(k) = (k−2)(k+1)
2

chords.

Proof: Consider a maximum length path and, over all such paths, let P have the property that the furthest
neighbor of an end vertex v1 is as far along P from that end as possible. Label the vertices of P as v1v2 . . . vℓ . . .
where vℓ is the furthest neighbor from v1. Given a predecessor vi of a neighbor of v1, say vℓ−1 for example, we call
P ′ = vivi−1 . . . v1vi+1P a restart of P . Call a vertex vj of P a start vertex if vj is a predecessor of a neighbor of a
start vertex after any number of restarts. Certainly all predecessors of neighbors of v1 are start vertices.

By the assumption of P having the property that vℓ is furthest from v1, there is no edge from any start vertex
to a vertex vm where m > ℓ. Thus, if we let a be the number of start vertices, the cycle v1v2 . . . vℓv1 has at least
a(k−2)

2 chords. Certainly a ≥ k but if a ≥ k + 1, this is already the desired cycle so we may assume a = k. It is
easy to verify that having exactly k start vertices implies that every start vertex is adjacent to vℓ, meaning that we
actually get at least

2(k − 2) + (k − 2)(k − 3)

2
+ k − 2 =

(k − 2)(k + 1)

2

chords as desired. 2

Our next result provides a solution to Conjecture 1 in the class of triangle-free graphs.

Theorem 6 If G is triangle-free and δ(G) ≥ sk then there exist s disjoint cycles in G each with at least (k+1)(k−2)
2

chords.
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Proof: This proof is by induction on s. The case where s = 1 follows from Theorem 5, so suppose s ≥ 2. By

induction, there exists a set of s− 1 disjoint cycles, each with at least (k+1)(k−2)
2 chords which avoids any set of at

most k vertices. Let C be such a set of cycles with the additional assumptions that:

1. the sum of the lengths of cycles in C is as small as possible,

2. subject to 1, the number of chords in each cycle is as large as possible.

Let H be the set of vertices in G\V (C ) and let v ∈ H be a vertex of minimum degree within G[H ]. If dH(v) ≥ k,
then by Theorem 5, there exists another cycle as desired within H so we may assume dH(v) ≤ k − 1. This means
that dC (v) ≥ (s − 1)k + 1 so v must have at least k + 1 edges to a single cycle C ∈ C . Let x1, . . . , xk+1 be k + 1
such neighbors in order on C.

We now show that we may replace a segment of C with v, thereby making the cycle shorter while preserving

the desired number of chords. Suppose C has g(k) ≥ (k+1)(k−2)
2 chords. Consider the set of all pairs of consecutive

segments between neighbors of v on C. One such pair must have at most the average number of end-vertices of
chords which means that, without loss of generality, the segment of C strictly between xi and xi+2 (denoted by

C(xi)) contains at most 2g(k)
k+1 end-vertices of chords. Note that we may replace the segment C(xi) for v, thereby

removing at most 2g(k)
k+1 chords and adding at least k − 2 and making the cycle shorter. This is a contradiction if

g(k)− 2g(k)

k + 1
+ k − 2 ≥ (k + 1)(k − 2)

2
. (1)

Thus, we observe that

g(k) ≥ (k + 1)(k − 2)

2

=
(k + 1)(k − 2)(k − 1)

2(k − 1)

=
(k + 1)(k2 − 3k + 2)

2(k − 1)

=
(k + 1)(k2 − k − 2− 2k + 4)

2(k − 1)

=
(k + 1)[(k + 1)(k − 2)− 2k + 4]

2(k − 1)

=
(k+1)(k−2)−2k+4

2
k−1
k+1

=
(k+1)(k−2)

2 − k + 2

1− 2
k+1

.

This implies (1 − 2
k+1 )g(k) ≥

(k+1)(k−2)
2 − k + 2, thereby confirming (1) and completing the proof. 2

3 Average Degree

Theorem 7 Let α denote the positive root of

g(x) = 2x(x− 2)− (d+ 1)(d− 2).

Let k =

⌈

√

d(d−1)
2

⌉

denote the largest integer strictly less than α. Then:

a. If G has average degree at least 2k, then G contains a (d+1)(d−2)
2 -chorded cycle.

b. There exist graphs with average degree 2k − o(1) with no (d+1)(d−2)
2 chorded cycles.
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Proof: The sharpness example for (b) is the complete bipartite graph Kn,k with k ≤ n, which has nk edges, and
thus average degree

2nk

n+ k
= 2k − o(1).

Since any cycle in Kn,k can contain at most k vertices from each part, there is no cycle with more than k(k − 2)

chords. This is less than (d+1)(d−2)
2 since k < α.

We now prove (a) by induction on n. If n = k + 1, then G = Kk+1 and the result follows.
Let P be a longest path in G where P = v1, v2, . . . , vℓ with v1 adjacent to vi1 , . . . , vij . Of all such longest paths,

choose the one such that ij is as large as possible. Consider the cycle C = {v1, v2, . . . , vij}. If C contains at least
(d−2)(d+1)

2 chords, we are done. Thus, we may assume that C has fewer that (d−2)(d+1)
2 chords.

Let S be the set of all vertices v in C such that there exists a re-ordering of P starting with v which hits all
vertices in C before any vertices in P \ C. The key property of S is the following.

Claim 1 Suppose v ∈ S, then all neighbors of S are in C.

Proof of Claim 1: All neighbors of v must be on P by the maximality of P . If one neighbor is not in C, then
the rearrangement of P starting with v will contradict the maximality of ij in the definition of P . 2

Clearly v1 ∈ S, but we have the following.

Claim 2 If u ∈ S, let u = u1, u2, . . . , uℓ denote the rearrangement of P starting with u so that the vertices of C
are {u1, . . . , uik}. Suppose us is a neighbor of u, then us−1 ∈ S.

Proof of Claim 2: Note that by Claim 1, s ≤ ik. Then the path

us−1, us−2, . . . , u1, us, us+1, . . . , uℓ

gives the desired rearrangement. 2

An immediate consequence is that |S| ≥ maxv∈S deg(v).

Claim 3 The degree of any vertex in G is at least k + 1.

Proof of Claim 3: Suppose deg(v) ≤ k. Then

2|E(G \ v)| ≥ 2kn− 2k = 2k(n− 1).

Thus, the average degree of G \ v is at least 2k so the result holds by our inductive hypothesis. 2

For k = 1, 2, 3 or 4, we have d = 2, 3, 4 or 5 respectively so the minimum degree is at least d. Then the desired
result follows by Theorem 5. Thus, we may assume d ≥ 6 and k ≥ 5.

Since the minimum degree is at least k+1, we get |S| ≥ k+1 and each vertex has degree at least k+1. In fact,
more is true.

Lemma 1 |S| ≥ k + 3.

Since it is rather long, we postpone the proof of Lemma 1 until after completing the proof of Theorem 7.

Let C denote the set of chords of C with at least one end in S. Then |C| < (d−2)(d+1)
2 by assumption. Consider

removing S from the graph. Since all edges from vertices in S are to C, the only edges removed are the chords in
C and the cycle edges incident to the vertices in S, of which there are at most 2|S|. Therefore the number of edges
in G \ S is at least

2|E(G \ S)| ≥ 2kn− 2|C| − 4|S|
≥ 2kn− (d+ 1)(d− 2) + 2− 4|S|

= 2k

(

n− (d+ 1)(d− 2)

2k
+

1

k
− 2|S|

k

)

= 2k

(

n− α(α− 2)− 1

k
− 2|S|

k

)

.
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The average degree is at least 2k so long as

|S|
(

1− 2

k

)

≥ α(α − 2)− 1

k

|S|(k − 2) ≥ α(α − 2)− 1. (2)

Since |S| ≥ k + 3, we have

|S|(k − 2) ≥ (k + 3)(k − 2) ≥ (α+ 2)(α− 3) = α2 − α− 6 (3)

Thus (2) automatically holds as long as α ≥ 5. Since α = 1 +
√

d(d−1)
2 , the result holds for d ≥ 7. We can easily

check the last few cases (which still hold, due to the inequality in (3) being strict in these cases). If d = 6, then
k = 4, and (k + 3)(k − 2) = 14 = α(α− 2)− 1. This completes the proof, modulo the proof of Lemma 1. 2

We now prove Lemma 1.

Proof of Lemma 1: Recall that we are under the induction assumption from Theorem 7. This means δ(G) ≥ k+1
and |S| ≥ k+1. Let C = {v1, . . . , vij} where vi1 , . . . , vij denote the neighbors of v1. Note that S contains vis−1 for
all s ∈ {1, . . . , j}.

Suppose first that |S| = k + 1. Then S = {vis−1} for all s ∈ {1, . . . , j = k + 1}, that is, S is exactly the set of
vertices preceding the neighbors of v1. Furthermore, all vertices in S have degree exactly k + 1.

Claim 4 G[S] is acyclic.

Proof of Claim 4: If there is a cycle C′ consisting of vertices in S, then there are at most |C′|(k+1)−|C′| = |C′|k
distinct edges incident to C′ and hence, the removal of vertices in C′ results in a smaller graph with average degree
at least 2k. We may then apply induction on n, completing the proof of the claim. 2

Suppose va ∼ vb (meaning va and vb share an edge) with a > 1, b > a+ 1 and va, vb ∈ S. Then, since v1 ∼ va+1

and v1 ∼ vb+1, we know va+1 and vb−1 are in S. This implies that v1 ∼ vb and {v1, va+1, va, vb} is a 4-cycle in
S, contradicting Claim 4. If v1 ∼ vb with vb ∈ S and b > 2, then v1 ∼ vb+1, vb−1 ∈ S and v2 ∈ S under the
rearrangement v2, . . . , vb, v1, vb+1, . . . , vℓ. The fact that vb−1 ∈ S implies v2 ∼ vb but then there is a 3-cycle in S
on v1, v2, vb, again contradicting Claim 4. Finally note that if v2 ∈ S, then vb ∼ v1 for all vertices vb ∈ S since v1
is the successor of v2 in the rearrangement vb, vb−1, . . . , v2, v1, vb+1, . . . , vℓ.

Therefore, for any va, vb ∈ S we have that va 6∼ vb. This implies that there are at least

(k + 1)(k + 1)− 2(k + 1) = (k − 1)(k + 1) ≥ (α− 2)(α) =
(d+ 1)(d− 2)

2

chords in C, as desired. Thus, we may assume |S| ≥ k + 2.
Suppose |S| = k+2. Note that we may assume v1 has maximum degree among the vertices va−1 where va ∼ v1.

Hence, either deg(v1) = k + 1 and there is one vertex of S that is not a predecessor of a neighbor of v1, or
deg(v1) = k + 2 and all vertices in S are predecessors of neighbors of v1.

If S is incident to fewer than k(k + 2) distinct edges then we are done as removing S will leave a graph with
average degree at least 2k. Thus, S is incident to at least k(k+2)+1 = (k+1)2 distinct edges. On the other hand, if

there are at least (k+1)(k−1) distinct edges incident to S but not on C, we are done as (k+1)(k−1) > (d+1)(d−2)
2 .

Since there are at most 2(k + 2) edges incident to S used in C, this implies that

(k + 1)2 ≤ number of distinct edges incident to S ≤ (k + 1)2 + 2, (4)

or else we are done. Indeed, if there are fewer than 2(k+ 1) distinct edges on C incident to S, we are already done
as (4) would yield a contradiction. Thus, we get the following fact.

Fact 1 There is at most one edge of C between two vertices of S.

On the other hand, since there are at least (k + 1)(k + 2) edges incident to S (with repeats), there must be at
least k − 1 edges repeated, namely edges joining vertices in S.
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Suppose va ∼ vb with va, vb ∈ S, b > a+ 1 and va+1, vb+1 ∼ v1. Then, as before, va+1, vb−1 ∈ S. However, this
implies that the edges vava+1 and vb−1vb are both edges of C between vertices of S, contradicting Fact 1.

Suppose va, va+1 ∈ S with va+1, va+2 ∼ v1 and a > 1. Then we have v2 ∈ S by considering the path
v2, v3, . . . , va+1, v1, va+2, va+3 . . . , vℓ. This means v1 ∼ v2 and va ∼ va+1 are two edges of C between vertices
of S, contradicting Fact 1.

If d(v1) = k + 2, then all vertices in S are predecessors of neighbors of v1. Then since there must be at least
k − 1 edges repeated but at most one of them can be from a pair of vertices in S at distance 1 on the cycle, there
must be an edge joining some pair va, vb ∈ S with b > a+ 1. This case was considered above.

If d(v1) = k + 1, then there is a unique vertex vp which is not a predecessor of a neighbor of v1. If there are no
edges between vp and any other vertex in S, the repeated edges must be between vertices who are predecessors of
v1 and we can easily find the desired cycle as in the previous case.

Finally, we may assume at least k − 2 ≥ 2 repeated edges are of the form va ∼ vp for va a predecessor of a
neighbor of v1. If there exists a va ∼ vp with a < p and a vb ∼ vp with b > p then vp−1, vp, vp+1 ∈ S and hence,
there are two edges of C between vertices of S. Thus, we may assume that va ∼ vp and vb ∼ vp with b > a > p or
b < a < p. We then obtain the desired result as follows. Consider the rearrangement of P starting with vp. The
predecessors of va and vb in this ordering are in S. One of these may be vp, but one is vq with q 6= p. This gives
an adjacency of the form vq ∼ va or vq ∼ vb for some a 6= q or b 6= q, both of which are predecessors of neighbors
of v1 (since vp was the only vertex in S which is not a predecessor of a neighbor of v1). This is a situation we have
already ruled out and so the proof is complete. 2

Note that this result immediately implies this simplified corollary which we will use in proofs later.

Corollary 8 If the average degree of G is at least
√
2k+2 then G contains a cycle with at least (k+1)(k−2)

2 chords.

4 Helpful Lemmas

Our next lemma is very useful for bounding the number of edges inside a cycle.

Lemma 2 Suppose C is a cycle on n vertices with 3c+ 3 chords. Then there is a subgraph C′ which is a cycle on
fewer than n vertices which contains at least c chords.

Proof: Suppose C is as stated and let e = uv be a shortest chord of C. The removal of {u, v} from e leaves 2
paths P1 and P2. Suppose |P1| ≤ |P2|. Since e was chosen to be the shortest chord, we get that the cycle P1 ∪ e
contains no chords.

First note that there must be many edges from P1 to P2 since otherwise P2 ∪ e provides the desired cycle C′.
In particular, P2 ∪ e must have at most 3c−1

3 chords, so there must be at least 6c+10
3 ≥ 3 edges from P1 to P2.

Let w be the vertex of P1 which is closest to u (along C) such that w has an edge to a vertex x ∈ P2 where x is
not adjacent to either u or v along C. Note that such a vertex w exists since there are at least 3 edges between P1

and P2. Furthermore, let K be the set of edges from P1[w, v) to P2 and note that |K| > 6c+7
3 .

Finally, we claim that either wP1vP2xw or wP1vuP1xw is the desired cycle C′. Since these cycles both contain
P1[w, v) and together they cover P2, one of these cycles contains about half the edges of K as chords. More

specifically, one of these cycles contains at least |K|−1
2 chords. Furthermore, both of these cycles are strictly shorter

than C. Thus, there exists the desired cycle C′ with at least |K|−1
2 > c chords. 2

In the proof of our next result, we will apply the following classical result of Erdős and Szekeres.

Theorem 9 (Erdős and Szekeres) Any sequence of n integers contains either an increasing subsequence of
length

√
n or a decreasing subsequence of length

√
n.

Although the following lemma is restricted to 3-regular graphs, the result can be applied in many situations as
long as certain conditions hold which provide for a 3-regular subgraph.

Lemma 3 Let G be a 3-regular graph of order n containing an induced cycle C where G \C forms an independent

set. Then for any t, if n ≥ 8t3(t+2)2

3 , there exists a cycle C′ in G with at least t chords.
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Proof: Certainly since |C| ≥ 3 and G \ C contains no edges, there must be a cycle in G containing at least 1
chord. Thus, let t ≥ 2. For each vertex u ∈ C, there is a unique vertex v ∈ G \ C with uv ∈ E(G). The vertex v
also has two other neighbors w, x ∈ C so we will call these two vertices acquaintances of u. We now prove a useful
claim.

Claim 5 There exists a segment A ⊆ C of order t2(t+ 2)2 in which every vertex has both acquaintances in C \A.

Proof: Suppose not. Then every segment of order t2(t+ 2)2 contains a vertex with an acquaintance in the same

segment because otherwise a simple counting argument yields a contradiction. Since n ≥ 8t3(t+2)2

3 , we see that
|C| = 3n/4 ≥ 2t3(t + 2). Thus, there exist 2t disjoint segments of C, each of order t2(t + 2)2 and each containing
a vertex with an acquaintance of that vertex. Choose one such segment A and let u ∈ A be a vertex with an
acquaintance v ∈ A which is closest (along A). Let u′ be the neighbor of u in G \ C. There is also another
acquaintance w of u which may be in another segment, say B. We define a new cycle CA by removing the segment
strictly between u and v from C and using the path uu′v to patch the cycle. This cycle contains at least one
chord, namely, the edge u′w. In CA \ (A ∪ B), there is yet another segment A′ containing a vertex and one of its
acquaintances. Using the same argument, we may repeat this whole process t times to produce the desired cycle
C′. 2Claim 5

Let A be a segment of C as guaranteed by Claim 5. Orient C in the clockwise direction and label the vertices
according to their distance from A in this direction and let λ(v) be the label of v. For each vertex u ∈ A, let
vu be the first, in this orientation, acquaintance of u. Let γ(vu) be the label of the other acquaintance of u. Let
w1, w2, . . . , wt4 be vertices of C such that wi = vu for some u ∈ A in order such that λ(wi) < λ(wi+1) for all i. By
Theorem 9, there is either an increasing subsequence or a decreasing subsequence of the sequence γ(wi) which has
length at least

√

t2(t+ 2)2 = t(t+ 2).
Let v1, v2, . . . , vt2 be the subsequence of w1, w2, . . . , wt4 corresponding to the subsequence guaranteed above and

let xi be the neighbor of vi in G \ C for all i. Furthermore, let yi denote the acquaintance of vi which is not in A

and let ui be the acquaintance of vi which is in A for all i. Let
−→
C and

←−
C denote the cycle C in the clockwise or

counterclockwise direction respectively.
First, suppose the subsequence implied by Theorem 9 is decreasing. Now either the cycle defined by C′

1 =

v1x1y1
←−
C y2x2v2

−→
Cv3x3y3 · · ·xt2ut2

−→
Cv1 or C′

2 = y1x1v1
−→
C v2x2y2

←−
Cy3x3v3 · · ·xt2ut2

←−
C y1 is the desired cycle depend-

ing on how many vertices ui are clockwise versus counterclockwise from ut2 on C. One of these two cycles will

contain at least t(t+2)
2 ≥ t chords since t ≥ 2.

Next, assume the subsequence implied by Theorem 9 is increasing. First, suppose that, for some i, there are at
least t+ 1 vertices vj in between vi and yi on C. Then one of

C′
1 = vixiyi

−→
Cyi+1xi+1vi+1

−→
Cvi+2xi+2yi+2 · · · yi+t

−→
Cvi

or
C′

1 = vixiyi
−→
Cyi+1xi+1vi+1

−→
Cvi+2xi+2yi+2 · · · yi+t+1

−→
Cvi

is a cycle and furthermore, the desired cycle.
Finally, suppose that there are at most t vertices vj in between vi and yi on C for all i. Let vi1 be the

first vertex of our subsequence which is beyond y1 on C. Similarly let vij be the first vertex of the subsequence
which is beyond yij−1

for all 1 ≤ j ≤ t. Since there are at least t(t + 2) such vertices and we lost at most t in
between along with the ends vij of these segments, such vertices must all exist for all 1 ≤ j ≤ t. Then the cycle

C′ = v1x1y1
−→
Cvi1xi1yi1 · · · yit

−→
Cv1 is the desired cycle, completing the proof. 2

Using this lemma, we get a very useful corollary.

Corollary 10 Let G = C ∪ H where C is a cycle and each vertex of H has at least 3 neighbors on C with all
of these neighborhoods pairwise disjoint. If |H | ≥ 2(f(k))5, then there exists an f(k)-chorded cycle C′ in G with
|C′| < |C|.

Proof: With |H | ≥ 2(f(k))5, there must be at least 6(f(k))5 vertices in the cycle. Consider a set D of (f(k))5

vertices of H and contract all segments of C between neighbors of vertices in D to form a new cycle CD. Note
that |D ∪ CD| = 4(f(k))5 < |C|. By Lemma 3, there exists an f(k)-chorded cycle C′ in D ∪ CD. By construction,
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|C′| < |C| as desired. 2

The next two results concern the number of edges between cycles. Lemma 4 will be used in the proof of Lemma 5.

Lemma 4 Suppose P and Q are disjoint paths with at least 6f(k) + 2 edges between them. Then there exists an
f(k) chorded cycle between them.

Proof: Order the vertices of P = {p1, . . . , pn} and Q = {q1, . . . , qm}. Let p denote the first vertex on P with
an edge to Q and let q denote a neighbor of p on Q. Then there exist at least 3f(k) + 1 edges from p, . . . pn to
either q1, . . . , q or q, . . . , qm. Without loss of generality assume there are at least 3f(k) + 1 edges from p, . . . , pn to
q1, . . . , q.

Let q′ denote the first vertex of Q with an edge to P and p′ denote one of it’s neighbors. Also let p′′ denote the
last vertex of P with an edge to q1, . . . , q and q′′ denote a neighbor of p′′ in q1, . . . , q. Then we claim that one of the
three cycles p, . . . , p′′, q′′, . . . , q, p or p, . . . , p′, q′, . . . , q, p or p′ . . . p′′, q′′, . . . , q′, p′ must contain at least f(k) chords.
Otherwise there would be at most f(k)−1 chords in each cycle which, along with the three edges themselves, makes
a total of at most 3f(k) edges from p, . . . , p′′ to q′, . . . , q, a contradiction completing the proof. 2

Lemma 5 Suppose C1 and C2 are two f(k)-chorded cycles in a minimal cycle set with e(C1, C2) ≥ 28f(k) + 20.
Then there exists a single vertex in one of these cycles (say C1) with at least e(C1, C2)− (12f(k) + 3) edges to C2.

Proof: Without loss of generality, assume the vertex v of largest degree M to the opposite cycle lies in C1. For a
contradiction, suppose M < e(C1, C2)− (12f(k) + 3).

Claim 6 We may assume M < 2f(k) + 6.

Proof: Without loss of generality, suppose 2f(k) + 6 ≤ M < e(C1, C2) − (12f(k) + 3). Then there are at least
12f(k) + 4 edges between C1 and C2 that are not incident to v. Let x1, x2 ∈ C2 ∩ N(v) with at least f(k) + 2
neighbors of v between x1 and x2 in each direction on C2. This means that at least one of x+

1 C2x2 or x+
2 C2x1

(suppose x+
1 C2x2) must be incident to at least 6f(k) + 2 edges from C1 \ {v}. Applying Lemma 4 on C1 \ {v} and

x+
1 C2x2, we see there is an f(k)-chorded cycle as a subgraph. Then the chorded cycle formed by the segment of C2

between edges from v in the interval x+
2 C2x

−
1 must have at least f(k) chords. Since these two f(k)-chorded cycles

both avoid x1, this pair must be smaller than |C1 ∪ C2|, contradicting the minimality of the cycle set. 2

Label the vertices of C1 in order with x1, x2, . . . , xm1
and the vertices of C2 in order with y1, y2, . . . , ym2

. Let
xi be the first vertex of C1 such that x2C1xi has at least 2(6f(k) + 2) edges to C2. Since M < 2f(k) + 6, we see
that x2C1xi has at most 14f(k) + 10 edges to C2. With at least 28f(k) + 20 edges between C1 and C2 and at
most 2f(k) + 6 of these edges incident to x1, this means there are at least 12f(k)+ 4 edges from xi+1C1xm1

to C2.
Similarly let yj be the first vertex of C2 such that y1C2yj has at least 12f(k) + 4 edges to C1 \ x1 and note that
yj+1C2ym2

also has at least 12f(k) + 4 edges to C1.
Under these restrictions, there must either be at least 6f(k)+ 2 edges between x2C1xi and y1C2yj and between

xi+1C1xm1
and yj+1C2ym2

or at least 6f(k)+2 edges between x2C1xi and yj+1C2ym2
and between xi+1C1xm1

and
y1C2yj . In either case, we may apply Lemma 4 between both pairs to find two f(k)-chorded cycles. Since these
cycles avoid x1, this pair must be smaller than |C1 ∪ C2|, a contradiction. 2

From this result, we get the following as a corollary.

Corollary 11 Suppose C1, C2, . . . , Ct are a minimal collection of cycles each with at least f(k)-chords. Then there
are at most

(

t
2

)

(28f(k) + 20) + (t− 1)
∑ |Ci| edges in total between the cycles.

Proof: Let C1, C2, . . . , Ct be a minimal collection of f(k)-chorded cycles. By Lemma 5, if a pair of these cycles
has at least 28f(k)+ 20 edges between them, then there must exist a single vertex with degree at least 16f(k)+ 17
from one of these cycles to the other. Thus, it suffices to show that there are at most t − 1 such vertices of high
degree so suppose there are at least t such vertices.

Define an auxiliary graph G′ on vertices v1, . . . , vt where the vertex vi represents the cycle Ci. For each vertex
of high degree in Ci, choose a single cycle Cj to which this vertex has at least 16f(k) + 17 edges and add the edge
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vivj . Since there are at least t such vertices of high degree, there must exist a cycle in G′. By construction, the
cycles Ci involved in this cycle of G′ would easily allow us to construct a replacement set of cycles C′

i using fewer
vertices, contradicting the minimality of the set C1, . . . , Ct. 2

Our next lemma concerns the number of edges into the cycles from a vertex outside the collection of cycles.

Lemma 6 Let C = {C1, C2, . . . , Ct} be a minimal collection of f(k)-chorded cycles and let v ∈ G \ V (C ). Then

dC (v) ≤ min{t(2
√

2f(k) + 3), t(f(k) + 3)}.

Proof: If dCi
(v) ≥ f(k) + 4 for some cycle Ci, we can easily create a cycle smaller than Ci using only v and its

edges to C avoiding at least two vertices of C. This means that dC (v) ≤ t(f(k) + 3).
Thus, suppose dC (v) > t(2

√

2f(k) + 3). Then there exists a cycle Ci ∈ C with dCi
(v) ≥ 2

√

2f(k) + 4. Label
the neighbors of v on Ci with x1, x2, . . . , xℓ in order around Ci. Since there are at least f(k) chords of Ci, there
must be at least

2f(k)− 3
2f(k)

2
√

2f(k)
+ 4 > 2f(k)− 2

√

2f(k)

endvertices of chords in xj+3Cixj for some j. Replacing the segment xjCixj+3 with the segment xjvxj+3 makes a
smaller cycle still with at least f(k) chords, contradicting the minimality of the system C . 2

5 Proof of Theorem 4

Let C = {C1, C2, . . . , Ct} be a minimal set of t disjoint f(k)-chorded cycles in G where t is as large as possible. If
t ≥ s, this is the desired set of cycles so suppose t < s. Let H = G \ V (C ). We first show that |H | is large.

Claim 7
|H | ≥ n

√

f(k)
.

Proof: By Lemma 2, there are at most 3f(k) + 2 chords in each cycle so a total of t(3f(k) + 2) +
∑ |Ci| edges

within cycles. By Corollary 11, there are at most
(

t
2

)

(28f(k)+20)+(t−1)
∑ |Ci| edges between the cycles. Adding

these two together, there are at most

t(3f(k) + 2) +
∑

|Ci|+
(

t

2

)

(28f(k) + 20) + (t− 1)
∑

|Ci|

edges within C . With minimum degree sk, there must be at least

sk
∑

|Ci| − 2

[

t(3f(k) + 2) +
∑

|Ci|+
(

t

2

)

(28f(k) + 20) + (t− 1)
∑

|Ci|
]

= (sk − 2t)
∑

|Ci| − 2

[

t(3f(k) + 2) +

(

t

2

)

(28f(k) + 20)

]

≥ s(k − 2)
∑

|Ci| − 30s2f(k)

edges leaving C going to H . Since k ≥ 6, Lemma 6 implies that each vertex of H can accept at most t(2
√

2f(k)+3)
of these edges from C . This means that

|H | ≥ s(k − 2)
∑ |Ci| − 30s2f(k)

s(2
√

2f(k) + 3)

≥ 4(n− |H |)− 30sf(k)

(2
√

2f(k) + 3)
.

Solving for |H |, we get

|H | ≥ 4n− 30sf(k)

2
√

2f(k) + 7
≥ 3n

2
√

2f(k)
>

n
√

f(k)
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for n ≥ 26sf(k). 2Claim 7

By Theorem 7, since H contains no f(k)-chorded cycle, we know the average degree within H is at most
√
2k

so by Markov’s Inequality and Claim 7, there must be at least

(1 − 1√
2
)|H | >

√
2− 1

√

2f(k)
n

vertices in H with degree at least (s− 2)k into C .

Let d be the smallest integer such that Kd,d contains an f(k)-chorded cycle. Thus, d < k√
2
+ 2.

Claim 8 If there are at least (d − 1)(10(f(k))5)d vertices in H, each with at least d + 1 edges to a cycle C, then
|C| ≤ 2d.

Proof: Let H ′ ⊆ H be the vertices of H each with at least d+1 edges to C. Let A be a maximum set of vertices
in H ′ each with 3 distinct neighbors on C (all the corresponding sets of 3 neighbors are pairwise disjoint). By
Corollary 10, we see that |A| < 2(f(k))5. Now let B be a maximum set of vertices in H ′ \A with 2 new neighbors
each (pairwise disjoint sets and also disjoint from the previous sets of neighbors). By an argument similar to that
applied in Lemma 3 and Corollary 10, we can also see that |B| < 2(f(k))5.

With |A ∪ B| ≤ 4(f(k))5, we see that the union of the distinct neighborhoods of these vertices in C, call this
union C′, has order at most |C′| ≤ 10(f(k))5. This means that all vertices of H ′ must have at least d edges to C′.
Since |H ′| ≥ (d− 1)(10(f(k))5)d, the pigeon hole principle implies that there is a set of d vertices in H ′ which share
the same d neighbors in C′, inducing a Kd,d. Thus, if |C| > 2d, it can be replaced by a spanning cycle of this Kd,d

contradicting the minimality of the cycle system. 2Claim 8

With at least
√
2−1√
2f(k)

n vertices in H each sending at least (s − 2)k edges to C and at most s − 1 cycles in

C , there must be at least one cycle, say C1, with at least (d − 1)(10(f(k))5)d vertices in H , each having at least
(s−2)k
s−1 ≥ d+ 1 edges to C1 as long as n ≥ sk8k. By Claim 8, |C1| ≤ 2d.

Now there are still at least
√
2−1√
2f(k)

n vertices in H each sending at least (s − 2)k − |C1| edges to C \ C1 and at

most s − 2 cycles remaining in C \ C1. Thus, there must be another cycle, say C2, with many vertices of H each
having at least

(s− 2)k − |C1|
s− 2

≥ (s− 2)k − 2d

s− 2
≥ d+ 1

edges to C2 as long as n ≥ s2k8k. This implies |C2| ≤ 2d as well.

This process can be repeated to make ℓ cycles small as long as

(s− 2)k − ℓ2d

s− (ℓ+ 1)
≥ d+ 1. (5)

With s ≥ s0 and k ≥ k0, this holds for ℓ ≤ 3 so we may assume C1, C2 and C3 each have at most 2d vertices. By
assumption, there are many vertices in H each with at least

(s− 2)k

s− 1
+

(s− 2)k − 2d

s− 2
+

(s− 2)k − 4d

s− 3
≥ 4d (6)

edges to C1 ∪C2 ∪C3 since s ≥ s0 and k ≥ k0. By the pigeon hole principle, there must exist a set of 4d vertices in
H which are all adjacent to the same set of at least 4d vertices in C1 ∪ C2 ∪ C3 as long as n ≥ s3n8k. This allows
us to build 4 copies of Kd,d containing 4 disjoint f(k)-chorded cycles in place of C1, C2 and C3, contradicting the
maximality of t and completing the proof. 2

A choice of s0 = 29 and k0 = 1000 allows such a conclusion for (5) and (6). In fact, one could actually choose
s0 = 17 and k0 = 2600 to satisfy (5) with ℓ = 4. This adds an extra term to (6) allowing it to work with this choice
of s0 = 17 and k0 = 2600. In general, we would need n ≥ sℓk8k.
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