FORBIDDEN SUBGRAPHS AND HAMILTONIAN PROPERTIES OF GRAPHS

Ronald J. GOULD*
Emory University, Atlanta, GA 30322, USA
Michael S. JACOBSON**
University of Louisville, Louisville, KY 40292, USA

Received 24 November 1980
Revised 14 September 1981 and 21 December 1981
Various sufficient conditions are given, in terms of forbidden subgraphs, that imply a graph is
either homogeneously traceable, hamiltonian or pancyclic.

We consider only finite undirected graphs without loops or multiple edges. Notation or terms not defined here can be found in [1]. Let G be a graph and let $S \subseteq V(G)$. The subgraph $\langle S\rangle$ induced by S is the graph with vertex set S and whose edge set consists of those edges of G incident with two vertices of S. The distance $d(u, v)$ between vertices u and v in a connected graph G is the minimum number of edges in a $u-v$ path. The diameter of a graph G is $\max _{u, v \in V(G)} d(u, v)$. A graph is hamiltonian (traceable) if it has a cycle (path) containing all its vertices. A pancyclic graph of order p contains a cycle of length l for each $l(3 \leqslant l \leqslant p)$. A graph is panconnected if, for each pair u, v of distinct vertices, there is a $u-v$ path of length l for each $l(d(u, v) \leqslant l \leqslant p-1)$. A graph G is homogeneously traceable, if, for each vertex v in G, there exists a hamiltonian path with initial vertex v. Homogeneously traceable nonhamiltonian graphs exist for all orders p, except $3 \leqslant p \leqslant 8$ (see [2]).

The following implications are well-known and the reverse implications fail to hold:

$$
\text { panconnected } \Rightarrow \text { pancyclic } \Rightarrow \text { hamiltonian } \Rightarrow \text { homogeneously traceable. }
$$

Let Z_{i} be that graph obtained by identifying a vertex of K_{3} and an end-vertex of P_{i+1}. Note also that Z_{i+1} is that graph obtained by subdividing a bridge of Z_{i}.

Theorem \mathbf{A} [4]. If G is a 2-connected graph that contains no induced subgraph isomorphic to $K_{1,3}$ or Z_{1}, then G is hamiltonian.

We note that the proof of Theorem A actually shows that either G is a cycle or

[^0]G is pancyclic. We now show that slightly more general conditions yield the same result.

Theorem 1. If G is a 2-connected graph that contains no induced subgraphs isomorphic to $K_{1,3}$ or Z_{2}, then G is a cycle or pancyclic.

Proof. The result is trivial if $|V(G)| \leqslant 4$. So suppose G satisfies the hypothesis, is not a cycle, and has order at least 5. Let $C: v_{0} v_{1} \cdots v_{k-1} v_{0}(k \geqslant 2)$ be an arbitrary cycle of length k. We show that if $V(G) \neq V(C)$, then a $(k+1)$-cycle can be found.

Since G is not a cycle and contains no induced $K_{1,3}$, then it must contain a 3 -cycle. Since G is not connected there exists $x_{0} \in V(G)-V(C)$ such that x_{0} is adjacent to a vertex of C. Without loss of generality we may assume x_{0} is adjacent to v_{1} (or else relabel C). There is no induced $K_{1,3}$ in G so the edge $v_{0} v_{2}$ is in G or a ($k+1$)-cycle would be produced. Since G is 2 -connected, there exists an $x_{0}-v_{2}$ path P, not containing v_{1}. Consider the subpath $P^{\prime}: x_{0} x_{1} \cdots x_{i} v_{j}$ where v_{j} is the first vertex of C on P.

Case 1. Suppose $v_{i}=v_{2}$ (or by symmetry $v_{j}=v_{0}$). The graph $\left\langle\left\{v_{0}, v_{1}, v_{2}, x_{0}, x_{1}\right\}\right\rangle \cong Z_{2}$ unless one of the edges $x_{1} v_{0}, x_{1} v_{1}$ or $x_{1} v_{2}$ is present. Consider $x_{1} v_{2}$ (and note a similar argument holds for $x_{1} v_{0}$). If $v_{k-1}=v_{2}$, then $x_{0} x_{1} v_{2} v_{1} x_{0}$ is a cycle of length 4. If $v_{k-1} \neq v_{2}$, then $\left\langle\left\{v_{1}, v_{2}, v_{3}, x_{1}\right\}\right\rangle$ implies that $v_{1} v_{3} \in E(G)$. If $v_{k-1}=v_{3}$, then $v_{0} v_{1} x_{0} x_{1} v_{2} v_{0}$ is a 5 -cycle. If $v_{k-1} \neq v_{3}$, we consider $\left\langle\left\{v_{0}, v_{1}, v_{3}, x_{0}\right\}\right\rangle$. If $x_{0} v_{3}$ is an edge of G, then $v_{0} v_{2} x_{1} x_{0} v_{3} v_{4} \cdots v_{k-1} v_{0}$ is a $(k+1)$-cycle. Hence we see that $v_{0} v_{3}$ is an edge of G. The graph $\left\langle\left\{v_{0}, v_{2}, v_{3}, x_{1} x_{0}\right\}\right\rangle \cong Z_{2}$ unless one of the edges $x_{0} v_{3}, x_{1} v_{0}$ or $x_{1} v_{3}$ is in G. But the inclusion of any of these edges produces a ($k+1$)-cycle.

If $x_{1} v_{1} \in E(G)$, we may consider the path $P^{\prime \prime}: x_{1} x_{2} \cdots x_{1} v_{2}$ and repeat the above argument. Eventually, either the previous possibility results or a ($k+1$)-cycle is formed.

Case 2 . Suppose $3 \leqslant j \leqslant k-1$. Since G contains no induced Z_{2}, it is easily seen that for some $i(0 \leqslant i \leqslant l), v_{1} x_{i}$ and $x_{i} v_{j}$ are edges of G. Observe that $v_{2} \neq v_{i-1}$ and $v_{k-1} \neq v_{j}$ or a $(k+1)$-cycle can be found. Further, $v_{j-1} v_{i+1} \in E(G)$ since G contains no induced $K_{1,3}$.

Consider $\left\langle\left\{v_{0}, v_{1}, v_{2}, x_{i}, v_{j}\right\}\right\rangle$. It follows that either $v_{j} v_{0} \in E(G)$ in which case

$$
v_{0} v_{k-1} \cdots v_{j+1} v_{i-1} \cdots v_{1} x_{i} v_{j} v_{0}
$$

is a ($k+1$)-cycle or $v_{j} v_{2} \in E(G)$, and

$$
v_{0} v_{k-1} \cdots v_{j+1} v_{j-1} \cdots v_{2} v_{j} x_{i} v_{1} v_{0}
$$

is a ($k+1$)-cycle. Thus $v_{j} v_{1} \in E(G)$ and $\left\langle\left\{v_{1}, x_{i}, v_{j}, v_{2}, v_{3}\right\}\right\rangle \cong Z_{2}$ unless at least one of $x_{i} v_{2}, x_{i} v_{3}, v_{j} v_{2}, v_{i} v_{3}$ or $v_{1} v_{3}$ is an edge of G. The first three yield immediate $(k+1)$-cycles. If $v_{i} v_{3} \in E(G)$, then

$$
v_{0} v_{k-1} \cdots v_{j+1} v_{j-1} \cdots v_{3} v_{j} x_{i} v_{1} v_{2} v_{0}
$$

is a $(k+1)$-cycle.

Finally, if $v_{1} v_{3} \in E(G)$, then $\left\langle\left\{v_{0}, v_{1}, v_{2}, v_{j}, v_{j-1}\right\}\right\rangle \cong Z_{2}$ unless one of $v_{0} v_{j}, v_{2} v_{j}$, $v_{0} v_{j-1}, v_{2} v_{j-1}$ or $v_{1} v_{j-1}$ is in G. But each edge produces a $(k+1)$-cycle and the result follows.

Remark 1. We note that the hypothesis of Theorem 1 does not imply that the graph is panconnected. Consider $K_{n}(n \geqslant 3)$ with vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let G be that graph obtained by subdividing the edge $x_{1} x_{2}$ and name the new vertex x. This graph does not contain an induced $K_{1,3}$ or Z_{2} yet there is no $x-x_{1}$ path of length 2.

Furthermore, we cannot omit either of the induced subgraphs from the hypothesis. Fig. 1 (a) shows a nonhamiltonian graph with no induced Z_{2}. It is constructed by taking two copies of $C_{2 n+1}(n>1)$ and joining corresponding vertices in each copy by a path of length 2 . Fig. 1(b) shows a nonhamiltonian graph with no induced $K_{1,3}$. It is constructed by taking two copies of $K_{2 n+1}(n>1)$ and joining corresponding vertices in each copy by an edge and a path of length 2.

Fig. 1.

The following was shown in [3].
Theorem B. If G is a 2-connected graph that contains no induced subgraph isomorphic to $K_{1,3}$ or F (see Fig. 2(a)), then G is hamiltonian.

We note that the conditions of this theorem are not enough to imply that the graph be pancyclic; for example the graph of Fig. 2(b) is 2-connected, contains no induced subgraph isomorphic to $K_{1,3}$ or F and is not pancyclic. However it is easily shown that the hypothesis of Theorem 1 implies the hypothesis of Theorem B. The proof is routine and not included.

Proposition 2. If G is 2-connected and contains no induced subgraph isomorphic to $K_{1,3}$ or Z_{2}, then G contains no induced subgraphs isomorphic to F.

Fig. 2.

The graph in Fig. 1(b) shows that Z_{2} cannot be replaced by Z_{3} in Theorem 1. In Theorem 3 we modify the set of forbidden subgraphs to include Z_{3}, but the conclusion is weaker than that of Theorem 1 . Let B be that graph obtained by identifying a vertex in two distinct copies of K_{3}.

Theorem 3. If G is a 2-connected graph that contains no induced subgraph isomorphic to $K_{1,3}, B$, or Z_{3}, then G is hamiltonian.

Proof. Suppose G satisfies the hypothesis and is not hamiltonian. Choose a cycle $C: v_{0} v_{1} \cdots v_{k} v_{0}(k>2)$ of maximum length in G. Let $x_{0} \in V(G)-V(C)$ such that x_{0} is adjacent to a vertex of C. Without loss of generality suppose x_{0} is adjacent to v_{1}. Since $K_{1,3}$ is not an induced subgraph of $G, v_{0} v_{2} \in E(G)$ or a longer cycle would be present. Since G is 2 -connected, there must exist an $x_{0}-v_{2}$ path P that does not contain v_{1}. Suppose v_{j} is the first vertex of P on C. It is clear that $v_{j-1} v_{j+1} \in E(G)$ and that $j \neq 0,2,3,4, k-1$, or k, for otherwise C would not be of maximum length. Since G contains no induced Z_{3}, we can find a $v_{1}-v_{j}$ path P^{\prime}, that is a subpath of P, and is disjoint from $V(C)-\left\{v_{1}, v_{j}\right\}$. Further, the length of P^{\prime} is at most 3.

Suppose the length of P^{\prime} is 3 , that is, suppose P^{\prime} is the path $v_{1} x_{0} x_{1} v_{j}$. By considering $\left\langle\left\{v_{0}, v_{1}, v_{2}, x_{0}, x_{1}, v_{j}\right\}\right\rangle$, one can readily establish that $v_{1} v_{j}$ is an edge of G. The subgraph $\left\langle\left\{v_{1}, v_{2}, x_{0}, v_{j}\right\}\right\rangle \cong K_{1,3}$ unless $v_{2} v_{j}$ is an edge of G. But now the cycle

$$
v_{0} v_{1} x_{0} x_{1} v_{j} v_{2} v_{3} \cdots v_{j-1} v_{j+1} v_{k} v_{0}
$$

has length longer than C which is a contradiction.
Therefore we may assume that the length of P^{\prime} is 2 , that is, suppose P^{\prime} is the path $v_{1} x_{0} v_{j}$. We first consider the graph $\left\langle\left\{v_{0}, v_{1}, v_{2}, x_{0}, v_{j}, v_{j+1}\right\}\right\rangle$. We need only consider whether $v_{0} v_{j}, v_{1} v_{j}, v_{2} v_{j}, v_{0} v_{j+1}, v_{1} v_{j+1}$ or $v_{2} v_{j+1}$ are edges of G. If any one of $v_{0} v_{j}, v_{2} v_{j}, v_{1} v_{j+1}$, or $v_{2} v_{j+1}$ is an edge of G, a cycle longer than C is immediately produced. If $v_{1} v_{j} \in E(G)$, then $\left\langle\left\{v_{0}, v_{1}, v_{2}, x_{0}, v_{j}\right\}\right\rangle \cong B$, unless G contains an edge previously considered. Thus $v_{0} v_{j+1}$ is an edge of G and we next consider $\left\langle\left\{v_{0}, v_{j}, v_{j+1}, v_{i+2}\right\}\right\rangle$. If $v_{i} v_{j+2}$ is an edge of G, then either $\left\langle\left\{v_{j-1}, x_{0}, v_{j}, v_{j+2}\right\}\right\rangle \cong K_{1,3}$ or a longer cycle exists. The edge $v_{0} v_{j}$ has already been handled; hence we conclude that $v_{0} v_{i+2}$ is an edge of G. Now the graph $\left\langle\left\{v_{0}, v_{j+2}, v_{j+1}, v_{j}, v_{i-1}\right\}\right\rangle \cong B$
unless an edge already analyzed exists in G. Thus, all cases produce a cycle longer than C, and hence we conclude that G is hamiltonian

Remark 2. The hypothesis of Theorem 3 does not imply that of Theorem B (see Fig. 3).

We also note that the hypothesis of Theorem 3 does not imply the graph is pancyclic (see Fig. 2(b)).

Fig. 3. A graph with no induced $K_{1,3}, \boldsymbol{Z}_{3}$ or \boldsymbol{B} that contains an induced \boldsymbol{F}.

Theorem C [5]. If G is a 2 -connected graph of diameter at most 2 that contains no induced subgraph isomorphic to $K_{1,3}$, then G is hamiltonian.

We note that 2 -connected nontraceable graphs of diameter 3 with no induced $K_{1,3}$ can be found (see Fig. 4). However, we may modify the set of forbidden subgraphs to produce homogeneously traceable graphs of diameter at most 3 .

Fig. 4. A graph with diameter 3 and no induced $K_{1,3}$ that is not traceable.

Theorem 4. If G is a 2 -connected graph of diameter at most 3 and G contains no induced subgraph isomorphic to $K_{1,3}$ or B, then G is homogeneously traceable.

Proof. By Theorem C we need only consider graphs of diameter 3 . So suppose G satisfies the hypothesis of the Theorem but is not homogeneously traceable. Thus there exists a vertex v_{0} that is not the initial vertex of a hamiltonian path in G. Let $P: v_{0} v_{1} \cdots v_{n}$ be a longest path with initial vertex v_{0}. Thus there exists $x \in$ $V(G)-V(P)$ such that x is adjacent to a vertex v_{i} of P. Furthermore, we may assume $i<n$ or a longer path would be evident and we may assume $0<i$ or else v_{0} would be a cutvertex. Observe that $v_{i-1} v_{i+1} \in E(G)$. Hence $i<n-1$. Since $2 \leqslant d\left(x, v_{n}\right)<3$ we consider two cases.

Case 1 . Suppose $d\left(x, v_{n}\right)=2$. Since v_{n} must be adjacent only to vertices of P, the vertex intermediate to x and v_{n} on the distance path must lie on P. If $x v_{0} v_{n}$ is the path of length 2 , then $\left\langle\left\{x, v_{0}, v_{1}, v_{n}\right\}\right\rangle \not \equiv K_{1,3}$ implies that $v_{1} v_{n}$ is an edge of G. It follows that the path $v_{0} x v_{i} v_{i+1} \cdots v_{n} v_{1} v_{2} \cdots v_{i-1}$ is longer than P and has initial vertex v_{0}. Thus we may assume $x v_{i} v_{n}(0<i<n)$ is the distance path, or we would merely change our choice of v_{i} above. Now $v_{0} v_{1} \cdots v_{i-1} v_{i+1} v_{i+2} \cdots v_{n} v_{i} x$ is a path longer than P.

Case 2. Suppose $d\left(x, v_{n}\right)=3$. Let $x v_{i} v_{j} v_{n}$ be the $x-v_{n}$ distance path. Clearly $v_{i}, v_{j} \in P$.

Subcase 2a. Suppose $j=0$. Since $\left\langle\left\{v_{0}, v_{1}, v_{i}, v_{n}\right\}\right\rangle \neq K_{1,3}$ at least one of $v_{1} v_{i}$, $v_{i} v_{n}$ or $v_{1} v_{n}$ is an edge of G. Except for $v_{1} v_{n}$ longer paths are easily established. So suppose $v_{1} v_{n} \in E(G)$ and consider $\left\langle\left\{v_{0}, v_{i}, v_{i+1}, x\right\}\right\rangle$. The edges $x v_{i+1}$ and $x v_{0}$ yield longer paths easily; while if $v_{0} v_{i+1} \in E(G)$ the path $v_{0} v_{i+1} v_{i+2} \cdots v_{n} v_{1} v_{2} \cdots v_{i-1} v_{i} x$ is a longer path.

Subcase 2b. Suppose $0<j<i-1$. By considering $\left\langle\left\{v_{j}, v_{j+1}, v_{i}, v_{n}\right\}\right\rangle$ and $\left\langle\left\{v_{j}, v_{j-1}, v_{i}, v_{n}\right\}\right\rangle$ we must have $v_{i} v_{j-1}$ and $v_{j+1} v_{n}$ as edges of G. Since $\left\langle\left\{v_{j}, v_{i-1}, v_{i}, v_{j+1}, v_{n}\right\rangle\right\rangle \not \equiv B$ at least one of $v_{i-1} v_{j \neq 1}, v_{j-1} v_{n}, v_{i} v_{j+1}$ and $v_{i} v_{n}$ is an edge of G. However, a longer path results in each case.

Subcase 2 c . Suppose $j=i-1$. The path $v_{0} v_{1} \cdots v_{i-1} v_{n} v_{n-1} \cdots v_{i} x$ is a longer path.

Subcase 2d. Suppose $j=i+1 \neq n-1 \quad(j=n-1$ is Subcase 2f). Since $\left\langle\left\{v_{i}, v_{i+1}, v_{i+2}, v_{n}\right\}\right\rangle \not \equiv K_{1,3}$ we can conclude that $v_{n} v_{i+2} \in E(G)$. But since $\left\langle\left\{v_{i-1}, v_{i}, v_{i+1}, v_{i+2}, v_{n}\right\}\right\rangle \not \equiv B$ at least one of $v_{i-1} v_{i+2}, v_{i-1} v_{n}, v_{i} v_{i+2}$ or $v_{i} v_{n}$ is in G. Again a longer path is easily established in each case.

Subcase 2 e . Suppose $i+1<j<n-1$. The argument for this case is analogous to that of Subcase 2b.

Subcase 2f. Suppose $j=n-1$. With this being the final possibility we may assume for each longest path P of length n with initial vertex v_{0} and final vertex v_{n} and any vertex x not on P, that $d\left(x, v_{n}\right)=3$ and $x v_{i} v_{n-1} v_{n}$ is a distance path where $1 \leqslant i \leqslant n-2$. Since G is 2 -connected v_{n} is adjacent to some vertex of P, say v_{k}. Clearly $k \neq i-1$ or i. If $0<k<i-1$ and since $\left\langle\left\{v_{k}, v_{n}, v_{k+1}, v_{k-1}\right\}\right\rangle \neq K_{1,3}$, then $v_{n} v_{k-1}, v_{n} v_{k+1}$ or $v_{k-1} v_{k+1}$ is in G. Longer paths are immediate for the first two; so
suppose $v_{k+1} v_{k-1}$ is an edge of G. Then

$$
Q: v_{0} v_{1} \cdots v_{k-1} v_{k+1} \cdots v_{n} v_{k}
$$

is a longest path with initial vertex v_{0}. Further, $x \notin V(Q)$ so the distance from x to v_{n} is 2 . But this contradicts the fact that $d\left(x, v_{n}\right)=3$.
A similar argument applies when $i<k<n-1$.
Hence we may additionally assume that the last vertex of every longest path with initial vertex v_{0} is adjacent to v_{0}. Consider

$$
Q: v_{0} v_{1} \cdots v_{i-1} v_{i+1} \cdots v_{n-1} v_{i} x .
$$

Now Q is a longest path with initial vertex v_{0} and end vertex x so that $x v_{0} \in E(G)$. Then $\left\langle\left\{v_{0}, x, v_{1}, v_{n}\right\}\right\rangle \cong K_{1,3}$ unless one of $x v_{1}, x v_{n}$ or $v_{1} v_{n}$ is an edge of G. In any case a new path longer than Q (or P) is apparent.

Since homogeneously traceable nonhamiltonian graphs have no vertices adjacent to two or more vertices of degree 2 , the following is immediate.

Corollary 5. If G is a 2 -connected graph of diameter at most 3 that contains no induced subgraph isomorphic to $K_{1,3}$ or B and G contains a vertex adjacent to exactly two vertices of degree 2 , then G is hamiltonian.

Remark 3. The supposition that the diameter be 3 or less in Theorem 4 cannot be weakened. The family of graphs shown in Fig. 5 is constructed by taking a copy of $K_{m}(m \geqslant 3)$ and a copy of $K_{n}(n \geqslant 3)$ and joining vertices with the paths shown. These graphs are not homogeneously traceable as x is not the initial vertex of a hamiltonian path. However, these graphs have diameter 4 and contain no induced $K_{1,3}$ or B.

Fig. 5.
We also note that 2 -connectedness is necessary in Theorems 1,3 and 4 . The graph F of Fig. 2(a) contains none of the forbidden subgraphs of Theorems 1, 3 and 4, but is not traceable.

Conclusion

We feel that 'forbidden subgraphs' offer an interesting approach to 'hamiltonian' problems. We would like to point out some possible directions.

The graph $K_{1,3}$ plays a major role in the results of this paper as well as those in [3-7]. Can results be found that do not use $K_{1,3}$? Perhaps $K_{1, n}(n>3)$ can be of some help.

In [7], Oberly and Sumner and [6] Kanetkar and Rao combine forbidden subgraphs with local connectivity. Can forbidden subgraphs be combined with other degree restrictions to yield new results?

A simple alteration to Fig. 1(b) shows that the diameter restriction of Theorem 4 cannot be dropped. Can a reasonable set of forbidden subgraphs be found that eliminates the need for this restriction?

Acknowledgement

The authors would like to thank the referees for their suggestions, which considerably aided in the clarity of the exposition.

References

[1] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs and Digraphs (Prindle, Weber \& Schmidt, Boston, 1979).
[2] G. Chartrand, R.J. Gould and S.F. Kapoor, On homogeneously traceable nonhamiltonian graphs, Ann. New York Acad. Sci. 319 (1979) 130-135.
[3] D. Duffus, R.J. Gould and M.S. Jacobson, Forbidden subgraphs and the hamiltonian theme, Proc. 4th Int. Conf. on the Theory and Applications of Graphs, Kalamazoo, 1980 (Wiley, New York, 1981) 297-316.
[4] S. Goodman and S. Hedetniemi, Sufficient conditions for a graph to be hamiltonian, J. Combin. Theory (B) 16 (1974) 175-180.
[5] R.J. Gould, Traceability in graphs, Doctoral Thesis, Western Michigan University, 1979.
[6] S.V. Kanetkar and P.R. Rao, Connected, locally 2-connected, $\boldsymbol{K}_{1,3}$-free graphs are panconnected, J. Graph Theory, to äppear.
[7] D. Oberly and D. Sumner, Every connected locally connected nontrivial graph with no induced claw is hamiltonian, J. Graph Theory 3 (1979) 351-356.

[^0]: * Research supported by a grant from Emory University.
 ** Research supported by a grant from the University of Louisville.

