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Abstract This article is intended as a survey, updating earlier surveys in the area.
For completeness of the presentation of both particular questions and the general area,
it also contains some material on closely related topics such as traceable, pancyclic
and Hamiltonian connected graphs.
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1 Introduction

A graph G is Hamiltonian if it contains a cycle that spans the vertex set. The Hamil-
tonian problem is generally considered to be determining conditions under which a
graph contains a spanning cycle. Named for Sir William Rowan Hamilton (and his
Icosian game), this problem traces its origins to the 1850s. Today, however, the con-
stant stream of results in this area continues to supply us with new and interesting
theorems and still further questions.

To many, including myself, any path or cycle problem is really a part of this general
area and it is difficult to separate many of these ideas. Thus, although I will concentrate
on spanning cycles (the classic Hamiltonian problem), some other related results,
both stronger (pancyclic and Hamiltonian connected) and weaker (traceable), will
be presented in order to provide you with a better picture of the overall theory and
problems as they exist today.

In doing this I shall generally restrict my attention to work done since 2003 when
[102] appeared. This earlier article references a number of older or more specialized
surveys and readers brand new to this area should begin in my first survey article [101],
which appeared in 1991. I will also restrict my attention to graphs and hypergraphs.
For digraphs, see [139].
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Throughout this article we consider finite simple graphs G = (V, E), unless oth-
erwise indicated. We reserve n to denote the order (|V |) and q the size (|E |) of G. We
use δ(G) and �(G) for the minimum and maximum degrees of G respectively, and
let N (x) and N (S) denote the neighborhood of the vertex x and set S, respectively.
Further, let c(G) denote the circumference of G, that is, the length of a longest cycle,
and the girth g(G), that is the length of a shortest cycle. Let

σk(G) = min {degx1 + · · · + degxk | x1, . . . , xk are independent in G}.
Graphs satisfying lower bounds on σk with k = 2 will often be called Ore-type graphs,
while if k = 1, Dirac-type graphs. If G contains no induced subgraph isomorphic to
any graph in the set F = {H1, . . . , Hk}, we say G is F-free, or H1-free if F contains
only H1. The graph G[S] is the graph induced by the set S in G. We denote the distance
between vertices u and v by dist (u, v). Let α(G) denote the (vertex) independence
number of G, that is, the maximum number of vertices that are mutually nonadjacent.
Let β(G) denote the edge independence number of G.

Also, recall a graph is t-tough (t > 0) if for every vertex cut S, the number of
components of G − S is at most |S|/t . For terms not defined here see [104].

2 Generalizing the Classics

The founding results of Dirac [55] and Ore [171] established interest in Hamiltonian
graphs. In fact, results based on minimum degree have come to be called Dirac-type
results and those based on σ2 have come to be called Ore-type results. It is both natural
and exciting that new results that generalize their classic work continue to be found.
In this section we will consider some of these new results.

Recall that a subdivision of a graph H is a graph obtained from H by subdividing
some subset of the edges of H . We call such a graph an H -subdivision. In [14] the
following was obtained.

Theorem 1 [14]

1. Let H be a graph contained in the graph G such that every component of H is
either a nontrivial tree or unicyclic. Let t be the number of tree components of H.
If G has order n and δ(G) ≥ n−t

2 , then G contains a spanning subdivision of H.
2. Let H be any graph of order n with k components, each of which is either a tree

or a cycle. Let G be any graph with order at least n and with δ(G) ≥ n − k. Then
G contains a subdivision of H where only the cycles are subdivided.

Continuing along these lines in [176], a similar result was found.

Theorem 2 [176] Let G be a graph of order n with δ(G) ≥ n/2. Let H be a subgraph
of G with each component of H being either a cycle or a cycle with a single chorded.
Then G contains a spanning subgraph isomorphic to a subdivision of H in which the
chords of cycles are not subdivided.

Generalizing these ideas, given a graph H (possibly a multigraph), we say a graph
G is H -linked if every injective map f : V (H) → V (G) can be extended to an H
subdivision. This idea generalizes the well-known concept of k-linked graphs.
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Subsequently, minimum degree thresholds were determined for a graph G to be
H -linked that are dependent upon the graph H itself. Let

b(H) = max
A∪B∪C=V (H)

|E(A,B)|≥1

|E(A, B)| + |C |.

If H is connected, it is not difficult to see that b(H) is precisely the maximum number
of edges in a bipartite subgraph of H . Ferrara et al. [84] proved the following result.

Theorem 3 [84] For any connected multigraph H, possibly containing loops, if G
is a graph of sufficiently large order n with δ(G) ≥ � 1

2 (n + b(H) − 2)�, then G is
H-linked. Furthermore, every injection f : V (H) → V (G) can be extended to an
H-subdivision in which each edge-path has at most two intermediate vertices.

The values of n required for the proof of Theorem 3 are quite large, in the vicinity
of 2|E(H)|. Independently, Kostochka and Yu [130] obtained a similar result for con-
nected, loopless multigraphs H with minimum degree at least two; however, their
result required much smaller values of n.

Theorem 4 [130] Let H be a loopless connected multigraph of order k with δ(H) ≥ 2.
If G is a graph of order n ≥ 7.5k with δ(G) ≥ ⌈ 1

2 (n + b(H) − 2)
⌉

, then G is
H-linked.

The stronger aspects of Theorems 3 and 4 were subsequently combined by Gould
et al. [106]. We say a multigraph is uneven if it does not contain even cycles. Let u(H)

denote the number of uneven components of H .

Theorem 5 [106] Let H be a multigraph of size �, possibly containing loops, and let
k1 = k1(H) = � + u(H). If G is a graph of order n ≥ 9.5(k1 + 1) with δ(G) ≥⌈ 1

2 (n + b(H) − 2)
⌉

, then G is H-linked. Furthermore, every injection f : V (H) →
V (G) can be extended to an H-subdivision with at most 5k1 + 2 vertices.

Note that � 1
2 (n + b(H) − 2)� is the minimum degree threshold for a graph G to be

b(H)-connected, which is necessary for the H -linked property. Also note that since
H can be a disconnected graph, using H as kK2 gives k-linked results.

Recently, Ferrara et al. [82] gave sharp σ2 conditions that assure a graph G is
H -linked for general H . Note that for arbitrary H , this σ2 threshold for H -linkedness
is not necessarily twice the minimum degree given in Theorem 5. Results of Faudree
et al. [68] on k-ordered graphs demonstrate that this is not the case for H = Ck , when
n is sufficiently large.

Let a(H) = max A∪B=V (H)

|E(A,B)|≥1
(|E(A, B)| + |B| − �B(A)), where �B(A) is the

maximum degree of a vertex in B relative to the set A.

Theorem 6 [82] Let H be a graph and G be a graph of order n > 20|E(H)|. If

σ2(G) ≥ n + a(H) − 2

then G is H linked. This result is sharp.
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These results, when combined with the following extension theorem, generalize a
great many (Hamiltonian) cycle and path results. Given a multigraph H and a graph
G, we say that G is H -extendable if whenever there exists an H -subdivision, on less
than |G| distinct vertices of G, then there exists a spanning H -subdivision with the
same ground set, that is, the same set of vertices playing the role of V (H) in G. Here
h0(H) is the cardinality of the set of isolated vertices in H and h1(H) the cardinality
of the set of vertices of degree 1 in H .

Theorem 7 [107] If H is a multigraph and G is a simple max {α(H), β(H) + 1}-
connected graph of order n > 11|E(H)| + 7(|H | − h1(H)) such that

σ2(G) ≥ n + |E(H)| − |H | + h1(H) + 2h0(H),

then G is H-extendable.

Using H as a loop, Theorem 5 and this result yields Ore’s Theorem [171] as a trivial
corollary, while using H = Ck yields a k-ordered Hamiltonian result (see [68]) or a
Dirac-type k-ordered result (see [128]) using Theorem 3 and Theorem 7. A number
of other well-known results also become simple corollaries.

We say a graph G is pan-H -linked if every H -subdivision is 1-extendable, that is,
with the same ground set as H , there is a subdivision H∗ where |V (H∗)| = |V (H)|+1.
In [86], for certain H a Dirac-type condition on a sufficiently large G is obtained so
that G is pan-H -linked.

Another classic result that is still generating new work is that of Chvátal and Erdös
[50].

Theorem 8 [50] A κ-connected graph G is

1. Traceable if α(G) ≤ κ(G) + 1.
2. Hamiltonian if α(G) ≤ κ(G).
3. 1-Hamiltonian, 1-edge Hamiltonian and Hamiltonian connected if α(G) < κ(G).

Ainouche et al. [6] showed that condition (2) can be significantly reduced if G is
K1,3-free (i.e. claw-free).

Theorem 9 [6] A k-connected claw-free graph G (k ≥ 2) is Hamiltonian if α(G2) ≤
k.

The condition of being claw-free is needed as is shown by G = K2,3. Let J (a, b) =
{u ∈ N (a) ∩ N (b) | N [u] ⊆ N [a] ∪ N [b]}. We say a graph is quasi claw-free if
J (x, y) �= ∅ for every pair of vertices at distance 2. Ainouche extended the last result
to the class of quasi claw-free graphs. This led to the definition of a partially square
graph G∗. The partially square graph G∗ of a given graph G = (V, E), is the graph
G∗ = (V, E ∪ {uv | dist (u, v) = 2, J (u, v) �= ∅}.
Theorem 10 [7] Let G be a k-connected graph, and G∗ its partially square graph.

1. If α(G∗) ≤ k, (k ≥ 2) then G is Hamiltonian.
2. If α(G∗) ≤ k + 1, (k ≥ 1) then G is traceable.
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3. If α(G∗) < k, (k ≥ 3) then G is 1-Hamiltonian and 1-edge-Hamiltonian.
4. If G is a (k+1)-connected graph with k ≥ 2 and α(G∗) ≤ k, then G is Hamiltonian

connected.

This left the case when κ(G) = 3 open. Ainouche and Lapiquonne [8] completed
this case.

Theorem 11 [8] A k-connected graph (k ≥ 3) G of order n is Hamiltonian connected
if α(G∗) < k.

As a result they obtain the following corollary.

Corollary 12 A k-connected (k ≥ 3)quasi claw-free (or claw-free)graph G is Hamil-
tonian connected if α(G2) < k.

Here, R(a, b) stands for the standard graph Ramsey number.

Theorem 13 [88] Let G be a k-connected graph with independence number α such
that

k > α + (α + 1) R(α + 1, α + 1)

Then G is pancyclic.

Let G be a connected graph of order n ≥ 3 with degree sequence d1 = δ ≤ d2 ≤
. . . ≤ dn . The graph G belongs to the class D(n, θ) if θ ≥ 1 is the smallest integer for
which dθ ≥ n/2. Let Y = {x ∈ V (G) | deg x < n/2}. Let X = {x ∈ V (G) | deg x ≥
n/2}. Clearly, V (G) = X ∪ Y . Let H∗ denote the following 1-tough, nonHamiltonian
graph:

H∗ = ((Kn−4 ∪ K 3) + K1) ∪ {yi xi | i = 1, 2, 3}, (yi , xi ) ∈ Y × X.

Let the set of dominating vertices of G be denoted 
.

Theorem 14 [4] Let G ∈ D(n, θ), θ ≤ δ + 2 be a 2-connected graph of order n ≥ 3.
Then G is nonHamiltonian if and only if θ − δ ∈ {1, 2} and

1. either H = H∗
2. or ω(H − 
) > |
|.

Ainouche also [4] generalized a number of results with the following theorem.

Theorem 15 [4] Let G be any 2-connected graph in D(n, θ), 1 ≤ θ ≤ δ + 2. Then
G is [3, c(G)]-pancyclic with c(G) ≥ min {n, n + δ − θ}, Hamiltonian bipartite or
isomorphic to the complete bipartite graph K n+1

2 , n−1
2

.

Ainouche [4] also gave conditions under which G ∈ D(n, θ) would be nonHamil-
tonian.

A 2-connected graph G of order n belongs to class B(n, θ), θ > 0 if 3(n − θ) ≥
2(deg(x) + deg(y) + deg(z)) > 3(n − 1 − θ) holds for all independent triples of
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vertices {x, y, z}. In [5], Ainouche gives a full characterization of graphs in B(n, θ),
θ ≤ 2, in terms of their dual closure. Ainouche and Schiermeyer [9] showed, for many
degree sum or neighborhood union conditions on 3 independent vertices sufficient to
imply a graph is Hamiltonian, that these conditions also show the 0-dual closure is
complete.

Recall that the lexicographic product of two graphs G and H is the graph G ◦ H
with vertex set V (G) × V (H) and where vertices (u, x) and (v, y) are adjacent in the
G ◦ H if and only if u = v and x and y are adjacent in H or u and v are adjacent in G.
Also recall that G is weakly pancyclic if it contains a cycle of each length from g(G)

to c(G).

Theorem 16 [120]

1. If G and H are graphs with nonempty edge sets then G ◦ H is weakly pancyclic.
2. If G is 4-tough, |V (G)| ≥ 2 and moreover, the edge set of H is nonempty, then

G ◦ H is pancyclic.
3. If H has order at least 2 and has no edges and G is bipartite with nonempty edge

set, then G ◦ H contains cycles of all even lengths from 4 up to the circumference
of the product.

3 Forbidden Subgraphs

Given a family of graphs F , we say a graph G is F-free if G contains no induced
subgraph isomorphic to a graph in F . The graphs of F are called forbidden subgraphs.

The overriding question in this area has been, given a k-connected (2 ≤ k ≤ 4)

graph G, find the smallest nontrivial families F of connected graphs, such that G
being F-free implies G has some Hamiltonian type property. When κ(G) ≤ 3, it is
known that no single graph (except the trivial case of P3) will suffice as F .

Such questions have been studied for G being traceable, Hamiltonian, pancyclic and
Hamiltonian connected. A great deal has been determined, but some very interesting
questions remain open.

The crowning conjecture in this area is due to Matthews and Sumner [161].

Conjecture 1 [161] Every 4-connected K1,3-free graph is Hamiltonian.

This simple to state conjecture is equivalent to a surprisingly large number of
other conjectures (see [34]), including the following well-known conjecture due to
Thomassen [201].

Conjecture 2 [201] Every 4-connected line graph is Hamiltonian.

Another recently found equivalent form is due to Ryjáček and Vrána [184].

Conjecture 3 Every 4-connected claw-free graph is Hamiltonian connected.

The strongest result to date was recently proven by Kaiser and Vrána [121].

Theorem 17 [121] Every 5-connected line graph with minimum degree at least 6 is
Hamiltonian.
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Further, this result can be strengthened in two directions. It extends to claw-free
graphs by a standard application of results in [183] and it remains valid if Hamiltonian
is replaced by Hamiltonian connected.

Other recent developments in this area include the following special case results.
Let the hourglass be two disjoint triangles with one vertex from each identified. Let
T be a chain of three triangles, i.e. the graph obtained by identifying a vertex of one
triangle with a vertex of degree 2 in an hourglass. The following result generalizes a
claw and hourglass-free result from [32].

Theorem 18 [173] Every 4-connected {K1,3, T }-free graph is Hamiltonian.

Theorem 19 [143] Every 4-connected line graph of a quasi-claw-free graph is Hamil-
tonian.

We also have the following.

Theorem 20 [131]

1. Every 4-connected line graph of a claw-free graph is Hamiltonian connected.
2. Every 4-connected hourglass-free line graph is Hamiltonian connected.

This was extended as follows.

Theorem 21 [153] Every 4-connected {claw, (P6)
2, hourglass }-free graph is Hamil-

tonian connected.

The core of a graph G, denoted G0, is obtained by deleting all vertices of degree 1
and contracting exactly one edge xy or yz for each path xyz in G with degG y = 2.
An almost claw-free graph G has the centers of all claws as an independent set and
the neighborhoods of each of the centers of each claw contain 2 vertices adjacent to
other neighbors of that center. Theorem 20 was also extended as follows:

Theorem 22 [141] Let G be a connected graph with |E(G)| ≥ 4. If every 3-edge-cut
of the core G0 has at least one edge lying in a cycle of length at most 3 in G0, and if
κ(L(G)) ≥ 3, then L(G) is Hamiltonian connected.

Corollary 23 [141]

1. Let G be a graph with |V (G)| ≥ 4. Suppose that L(G) is hourglass-free in which
every 3-cut of L(G) is not an independent set. If κ(L(G)) ≥ 3, then L(G) is
Hamiltonian connected.

2. Every 4-connected line graph of an almost claw-free graph is Hamiltonian con-
nected.

In attempting to build towards a solution to the Matthews–Sumner Conjecture and
for the completeness of the general theory, it is natural to consider the 3-connected
case. Here a number of new results have appeared.

A graph G is said to be distance claw-free if for each vertex v ∈ V (G), the
independence number of the subgraph of G induced by the set of vertices at distance
i from v is at most 2 for each i ≥ 0.

123



8 Graphs and Combinatorics (2014) 30:1–46

Theorem 24 [152] Every 3-connected distance claw-free graph is Hamiltonian con-
nected.

Theorem 25 [151] Every 3-connected quasi-claw-free graph G of order n with
δ(G) ≥ (n + 5)/5 is Hamiltonian.

Theorem 26 [150] Every 3-connected claw-free graph with minimum degree δ and
order at most 6δ − 7 is Hamiltonian.

Theorem 27 [155] Every 3-connected claw-free graph with minimum degree δ and
order n ≤ 5δ − 8 is Hamiltonian connected.

Srong evidence of forbidden pairs for 3-connected graphs was given in the next
two results.

Theorem 28 [157] Every 3-connected claw and P11-free graph is Hamiltonian. Fur-
ther, this result is sharp in the sense that P11 cannot be replaced by P12.

A slightly weaker result is:

Theorem 29 [144] Every 3-connected claw and Z8-free graph is Hamiltonian. (Here
Z8 is the graph obtained by identifying the end vertex if a P9 with one vertex of a
triangle.)

Let V ∗ = {v ∈ V (G) | deg v = 6}.
Theorem 30 [117] If G is a 6-connected line graph and if |V ∗| ≤ 29 or G[V ∗]
contains at most 5 vertex disjoint K4’s, then G is Hamiltonian connected. Hence,
every 8-connected claw-free graph is Hamiltonian connected.

Answering a conjecture of Kuipers and Veldman (see [140]), the following was
shown in [142].

Theorem 31 [142] If G is a 3-connected claw-free graph of order n ≥ 196 and
minimum degree δ(G) ≥ (n + 5)/10, then either G is Hamiltonian or δ(G) = (n +
5)/10 and the closure of G is isomorphic to the line graph of the graph obtained from
the Petersen graph by adding pendent edges to its vertices.

For the 2-connected situation, all possible forbidden pairs were shown for all graphs
by Bedrosian [20] and for all sufficiently large graphs by Faudree and Gould [70]. Thus,
different questions were asked. In particular, forbidden triples were considered and it
was asked: do all such forbidden triples contain a claw?

Brousek [36] characterized all triples of connected nontrivial graphs C, X, Y where
C is the claw, such that every 2-connected C XY -free graph G is Hamiltonian. In [72]
the triples that do not include the claw were determined for all graphs. Forbidden
triples for sufficiently large graphs were studied in [73]. In [71], forbidden triples of
graphs, no one of which is a generalized claw (K1,s, s ≥ 4.) were characterized. It
is clear from these works that considering sets of 4 or more forbidden graphs is not
useful, as the number of such sets would grow unmanageably large.
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The second major open question is to determine the set of forbidden pairs F , such
that every 3-connected F-free graph is Hamiltonian connected.

Shepherd [191] showed the first significant result. A net is a triangle with three
additional vertices, where each additional vertex is adjacent to a distinct vertex of the
triangle.

Theorem 32 [191] If G is a 3-connected claw and net-free graph, then G is Hamil-
tonian connected.

The graph L1 is formed from two disjoint triangles joined by an edge.

Theorem 33 [33] If G is a 3-connected claw-free and L1-free graph, then G is Hamil-
tonian connected.

In an effort to build a minimal nontrivial forbidden family for Hamiltonian con-
nected graphs, properties of the graph paired with the claw (known to be one of the two
graphs) were investigated. Beginning with [70] and continuing with [46] and [33], the
collection of properties evolved to the following: (here N (i, j, k) is the generalized
net, a triangle with paths of length i, j and k respectively, attached to distinct vertices
of the triangle, and Lk is two distinct triangles joined by a path with k edges.)

1. Pk with k ≤ 9.
2. N (i, j, k) with some restrictions on how large i, j, k can be.
3. Lk (k �= 2).
4. Lk (k �= 2) with tree components attached to either of the triangles.

Item (4) has been shown to not be in the family (see [25]). For item (3), the values
of k are known to be odd and at most 5. Several results on item (2) have appeared in
this survey. It is known that i + j + k ≤ 7 see [25]. For item (1), in [69] it was shown
that P8 works. This was improved recently to:

Theorem 34 [25] If G is a claw-free and P9-free 3-connected graph, then G is Hamil-
tonian connected.

Pancyclicity of 3-connected graphs with forbidden pairs was characterized in [105].

Theorem 35 [105] If X and Y are connected graphs of order at least 3 with
X, Y �= P3 and Y �= K1,3, then a 3-connected XY -free graph G is pan-
cyclic if and only if X = K1,3 and Y is a subgraph of a member of the family
{P7, L1, N (4, 0, 0), N (3, 1, 0), N (2, 2, 0), N (2, 1, 1)}.

It is interesting that the family contains a path and generalized nets, where the path
is only one longer than in the 2-connected Hamiltonian case, and the generalized nets
here all have i + j + k = 4 while those in the 2-connected Hamiltonian case have
i + j + k = 3. The only new graph here is L1 which was defined earlier.

A graph G is said to be pancyclic mod k if for all natural numbers s, it has a cycle
whose length is congruent to s mod k.

Theorem 36 [202] A 2-connected K1,4-free graph G such that δ(G) ≥ k + 1 is
pancyclic mod k.
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A graph G on n ≥ 3 vertices is called claw-heavy if every induced claw of G has a
pair of nonadjacent vertices with degree sum at least n. Recall that H is the hourglass.

Theorem 37 [42] Let G be a 2-connected graph on n ≥ 3 vertices. If G is claw-
heavy and moreover, P7-free and N (2, 2, 0)-free, or P7-free and H-free, then G is
Hamiltonian.

Theorem 38 [96] Let G be a 2-connected claw-heavy graph on n ≥ 3 vertices. If
each induced M = K1,3 + e has an end vertex x satisfying deg x ≥ (n − 2)/3 or a
pair of vertices y and z satisfying deg y + deg z ≥ n, then G is Hamiltonian.

4 Multiple Hamiltonian Cycles

The hunt for more than one Hamiltonian cycle has a long and interesting history.
An early result due to Nash-Williams [166] proved the fundamental result that the
conditions of Dirac’s Theorem (δ(G) ≥ n/2) actually guaranteed the existence of
many edge disjoint Hamiltonian cycles, in fact, at least �5n/224� of them. Nash-
Williams asked if this number could be improved and this has been a question of interest
ever since. Nash-Williams [166] gave an example of a graph on n = 4m vertices with
minimum degree 2m having at most �(n + 4)/8� edge disjoint Hamiltonian cycles.
Here is a similar example given in [48].

Let A be an empty graph on 2m vertices, B a graph consisting of m + 1 disjoint
edges and let G be the graph obtained from the disjoint union of A and B along with
all edges between the two sets. Thus, G is a graph on 4m + 2 vertices with minimum
degree 2m +1. Further, observe that any Hamiltonian cycle in G must use at least two
edges from B and thus, G has at most �(m + 1)/2� edge disjoint Hamiltonian cycles.
This was shown by Christofides et al. [48] to be asymptotically best possible.

Theorem 39 [48] For every α > 0, there is an integer n0 so that every graph on
n ≥ n0 vertices of minimum degree at least (1/2 + α)n contains at least n/8 edge
disjoint Hamiltonian cycles.

Nash-Williams [166] noted that the construction given above depends on the graph
being non-regular. He conjectured [166] the following, which is best possible, and
was also conjectured independently by Jackson [118].

Conjecture 4 Let G be a d-regular graph on at most 2d vertices. Then G contains
�n/2� edge disjoint Hamiltonian cycles.

Note: At the time of submission, D. Osthus (and a group of others) has announced
a solution of the conjecture, although no paper was yet available.

For complete graphs the conjecture is true by the famed construction of Walecki
(see e.g [11]). However, the best result concerning this conjecture was due to Jackson
[118] who showed that a d-regular graph on 14 ≤ n ≤ 2d + 1 vertices contains
�(3d − n + 1)/6� edge disjoint Hamiltonian cycles. Recently in [48] the following
approximate version of the Conjecture was shown.
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Theorem 40 [48] For every α > 0 there is an integer n0 so that every d-regular graph
on n ≥ n0 vertices with d ≥ (1/2 + α)n contains at least (d − αn)/2 edge disjoint
Hamiltonian cycles.

They further showed:

Theorem 41 [48] There exists α0 > 0 so that for every 0 < α ≤ α0 there is an integer
n0 for which every graph on n ≥ n0 vertices with minimum degree δ ≥ (1/2 + α)n
and maximum degree � ≤ δ + α2n/5 contains at least (δ − αn)/2 edge disjoint
Hamiltonian cycles.

Finally, they provided a result that approximately describes how the number of edge
disjoint Hamiltonian cycles in G gradually approaches δ(G)/2 as δ(G) approaches
n − 1.

Theorem 42 [48]

1. For all positive integers δ, n with n/2 < δ < n, there is a graph G on n vertices
with minimum degree δ such that G contains at most

δ + 2 + √
n(2δ − n)

4

edge disjoint Hamiltonian cycles.
2. For every α > 0, there is a positive integer n0 so that every graph on n ≥ n0

vertices of minimum degree δ ≥ (1/2 + α)n contains at least

δ − αn + √
n(2δ − n)

4

edge disjoint Hamiltonian cycles.

The proofs use the Regularity Lemma, so the values of n are accordingly large.
A similar result was obtained by Hartke and Seacrest [113] that does not rely on the
Regularity Lemma.

Theorem 43 [113] If G is a graph with n vertices and minimum degree δ ≥ n/2 +
5n3/4 ln n, then G contains at least

δ + √
2δn − n2

2
− 5n7/8 ln n

edge disjoint Hamiltonian cycles.

The above questions and results extend naturally to graphs with even larger mini-
mum degree (see [136]). This question becomes:

Question 1 [136] How many edge disjoint Hamiltonian cycles can one guarantee in
a graph on n vertices with minimum degree δ, n/2 ≤ δ ≤ n − 1?
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As pointed out in [136] a natural bound is provided as follows: Let regeven(G) be
the largest degree of an even regular spanning subgraph of G. Then let

regeven(n, δ) := min{regeven(G) | |G| = n, δ(G) = δ}.

Clearly, we cannot expect more than regeven(n, δ)/2 edge disjoint Hamiltonian cycles
in a graph of order n and minimum degree δ. In fact, in [136] Kühn et al. conjecture
the bound can be obtained.

Conjecture 5 [136] Suppose G is a graph on n vertices with minimum degree δ ≥ n/2.
Then G contains at least regeven(n, δ)/2 edge disjoint Hamiltonian cycles.

They are able to nearly show their conjecture with the following:

Theorem 44 [136] For every ε > 0, there exists an integer n0 = n0(ε) such that
every graph G on n ≥ n0 vertices with δ(G) ≥ (1/2 + ε)n contains at least
regeven(n, δ(G))/2 edge disjoint Hamiltonian cycles.

Later, Csaba, Kühn, Lo, Osthus and Treglown (see [136]) proved the conjecture for
large n by solving the case when δ is allowed to be close to n/2.

If we are not concerned about edge disjoint cycles, the number of possible
Hamiltonian cycles grows much larger. Let G be a graph of order n and mini-
mum degree δ(G) ≥ n/2. The number of Hamiltonian cycles in G = K�n/2�,�n/2�
is �n/2�!(�n/2� − 1)! and adding a vertex vn for odd n raises this number to
(n − 1)�n/2�!(�n/2� − 1)!. Let h(n, δ) denote the number of Hamiltonian cycles
in a graph of order n with the specified minimum degree δ. Using the Regularity
Lemma, the following was shown in [188] for δ = �n/2�:

Theorem 45 [188] There is a constant c > 0 such that for n sufficiently large

(cn)n ≤ h(n, �n/2�) ≤ (n − 1)�n/2�!(�n/2� − 1)!.

This was followed by:

Theorem 46 [170] If G is a graph on n vertices and C
(n

2

)
edges where 3/4 < C ≤ 1,

then G contains at least (C1n)C2n Hamiltonian cycles, where the constants C1, C2
depend upon C.

For an edge weighting x : E → R+ let h(x) = e xelog(1/xe). Let e � v denote
that the edge e is incident to vertex v. Call an edge weighting proper if e�v xe = 1
for each v ∈ V (G) (such an x is sometimes called a perfect fractional matching). Let
h(G) be the maximum of h(x) over proper edge weightings of x . Finally, let �(G)

denote the number of Hamiltonian cycles in G. Motivated by the last result, and using
the above definitions, Cuckler and Kahn [52] showed the following:

Theorem 47 [52] For any n vertex graph with minimum degree δ ≥ n/2,

1. �(G) ≥ n!
(2+o(1))n .

2. �(G) ≥ exp2[2h(G) − n log2 e − o(n)].
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3. h(G) ≥ (n/2)log d, so that the minimum number of Hamiltonian cycles in G
exceeds ( d

e+o(1)
)n.

Turning to bipartite graphs, let σ 2
2 (G) denote the minimum degree sum of a pair of

nonadjacent vertices from different partite sets. Using this, the following was shown,
extending earlier work of Moon and Moser [163].

Theorem 48 [83] If G = (X, Y ) is a balanced bipartite graph of order 2n, with
n ≥ 128k2 such that σ 2

2 (G) ≥ n+2k−1, then G contains k edge disjoint Hamiltonian
cycles.

Given an abelian group G and S ⊂ V (G), the Cayley graph C AY (G; S) may
be thought of as the graph whose vertices are the elements of the group G with g
adjacent to h if and only if h = gs for some s ∈ S. The folklore conjecture that all
finite Cayley graphs are Hamiltonian has received a great deal of attention over the
years, but remains an open problem. Witte and Gallian [209] wrote a survey in 1984.
The amount of information here deserves its own survey. I shall limit myself to the
following problem.

Alspach [10] gave the following conjecture concerning Cayley graphs.

Conjecture 6 [10] Every connected Cayley graph on an abelian group has a Hamil-
tonian decomposition (where a single 1-factor is allowed when the degree is odd).

The conjecture is settled affirmatively when the Cayley graph is regular of degree
is 5 or less. For regular Cayley graphs of degree 6, when the group is odd, there is also
a Hamiltonian decomposition (see [207]) into three Hamiltonian cycles. Some other
partial results exist for degree 6 and little is known for degree 7 or higher.

Let F(q) denote the finite field of order q where q is prime and q ≡ 1(mod 4).
The Paley graph P(q) is a Cayley graph with S the set of quadratic residues in F(q).

Theorem 49 [12] All Paley graphs are Hamiltonian decomposable.

Finally, in the area of graph products, the following results were shown. The tensor
product (sometimes called the direct product) of graphs G and H is the graph G ⊗ H
with vertex set V (G)×V (H) and edge set {(u, x)(v, y) |uv ∈ E(G) and xy ∈ E(H)}.
Theorem 50 [17] If r, s ≥ 3, then Kr ⊗ Ks has a Hamiltonian cycle decomposition.

Strengthening this result, it is shown in [160] that the tensor product of two reg-
ular complete multipartite graphs is Hamiltonian decomposable. Thus, the previous
theorem is a corollary of this result. Earlier, in [159] it was shown that for m ≥ 3 the
tensor product of Kr,r with Km is Hamiltonian decomposable.

In 1988, Bermond [23] conjectured that if a graph G is Hamiltonian decompos-
able, then its line graph L(G) is Hamiltonian decomposable. Pike [174] consider this
conjecture and showed the following:

Theorem 51 [174] Every bipartite Hamiltonian decomposable graph G with connec-
tivity κ(G) = 2 has a Hamiltonian decomposable line graph.
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It has long been known that Kn has a Hamiltonian decomposition when n is odd, and
when n is even the Hamiltonian decomposition leaves a 1-factor. In [147] they take the
next natural step and show that for any 2-factor U of Kn (n even), there exists a 3-factor
T of Kn such that E(U ) ⊂ E(T ) and Kn − E(T ) admits a Hamiltonian decomposi-
tion. Following in this line, the question of Hamiltonian decompositions in complete
multipartite graphs with certain leaves was also considered in [148], [178], and [38].

The classic work of Thomason [200] showed that the number of pairs of Hamil-
tonian cycles in a graph, with a pair of such cycles, is even and at least four. He further
showed that the number of Hamiltonian cycles containing any two edges was also
even. Skupien [192] considered such questions including pairs of Hamiltonian cycles
(traceable pairs) and showed the following:

Theorem 52 [192]

1. For each integer n ≥ 3, there is a n-vertex 4-regular multigraph Mn with exactly
four Hamiltonian cycles.

2. For each integer n ≥ 3, there is an n-vertex multigraph Nn which has exactly two
traceable pairs.

3. Each multigraph M �= C2 has an even number of traceable pairs.
4. For each n ≥ 5, there is a simple n-vertex graph with exactly four traceable pairs

in which endvertices of the paths make up a 3-element set.
5. For each integer n ≥ 9, there is a simple graph on n vertices which has precisely

16 Hamiltonian pairs.

5 Distributing Vertices on the Cycle

In this section we examine a series of results designed to control the placement of a set
of vertices on a Hamiltonian cycle so that certain distances are maintained between
these vertices. We begin with an interesting result from Kaneko and Yoshimoto [122]
which started this line of investigation.

Theorem 53 [122] Let G be a graph of order n with δ(G) ≥ n/2, and let d be a
positive integer such that d ≤ n/4. Then, for any vertex subset A with |A| ≤ n/2d,
there is a Hamiltonian cycle C such that distC (u, v) ≥ d for any u, v ∈ A.

This result is sharp as can be seen from the graph 2K n
2 −1 + K2. When all vertices

of A are placed in one of the copies of K n
2 −1, then the bound becomes clear. Sárkozy

and Selkow [189] showed more could be said.

Theorem 54 [189] There are ω, n0 > 0 such that if G is a graph with δ(G) ≥ n/2
on n ≥ n0 vertices, d is an arbitrary integer with 3 ≤ d ≤ ωn/2 and S is an arbitrary
subset of V (G) with 2 ≤ |S| = k ≤ ωn/2, then for every sequence of integers with
3 ≤ di ≤ d, and 1 ≤ i ≤ k − 1, there is a Hamiltonian cycle C of G and an ordering
of the vertices of S, a1, a2, . . . , ak such that the vertices of S are encountered in this
order on C and we have

|distC (ai , ai+1) − di | ≤ 1,

for all but one 1 ≤ i ≤ k − 1.
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The limiting factor in Theorem 53 is connectivity. Thus, it was natural to ask if
more connectivity would allow better distribution of the vertices. In fact, much more
can be said.

Theorem 55 [77] Let t ≥ 3 be an integer and let 0 < ε < 1/(2t). For n ≥ 7t6 ×
1010/ε6, let G be a graph of order n having δ(G) ≥ n/2 and κ(G) ≥ 2�t/2�. For
every X = {x1, x2, . . . , xt } ⊂ V (G), there exists a Hamiltonian cycle H in G such
that distH (xi , x j ) ≥ (1/t − ε)n for all 1 ≤ i < j ≤ t . Furthermore, the minimum
degree and connectivity conditions are sharp.

Actually, the vertices can be distributed pretty much as we wish.

Theorem 56 [77] Let t ≥ 3 be an integer and let ε, γ1, γ2, . . . , γt be positive real
numbers having

∑t
i=1 γi = 1 and 0 < ε < min{γ 2

i /2}. For n ≥ 7t12 × 1010/ε6,
let G be a graph of order n having δ(G) ≥ (n + t − 1)/2 or δ(G) ≥ n/2 and
κ(G) ≥ 3t/2. For every X = {x1, x2, . . . , xt } ⊂ V (G), there exists a Hamiltonian
cycle H containing the vertices of X in order such that

(γi − ε)n ≤ distH (xi , xi+1) ≤ (γi + ε)n

for all 1 ≤ i ≤ t . Furthermore, the minimum degree and connectivity conditions are
sharp.

Very recently the question of exact placement for small sets of vertices was inves-
tigated. The following conjecture of Enomoto [65] is the spark for this work.

Conjecture 7 If G is a graph of order n ≥ 3 and δ(G) ≥ n/2+1, then for any pair of
vertices x, y in G, there is a Hamiltonian cycle C of G such that distC (x, y) = �n/2�.

The following result of Faudree et al. [80] deals with a pair of vertices at a precise
distance on a Hamiltonian cycle.

Theorem 57 [80] Let k ≥ 2 be a fixed positive integer. If G is a graph of order n ≥ 6k
and δ(G) ≥ (n + 2)/2, then for any vertices x and y, G has a Hamiltonian cycle C
such that distC (x, y) = k.

This was generalized in [78].

Theorem 58 [78] Given a set of k − 1 integers {p1, p2, . . . , pk−1} and a fixed set
of k vertices {x1, x2, . . . , xk} in a graph G of sufficiently large order n with δ(G) ≥
(n + 2k − 2)/2, then there is a Hamiltonian cycle C such that distC (xi , xi+1) = pi

for 1 ≤ i ≤ k − 1.

6 Placing Elements on Cycles

Besides finding ways to distribute elements on cycles at certain distances, the last two
decades have seen a great many developments concerning placing various collections
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of elements on cycles, whether it be on a Hamiltonian cycle or on some special collec-
tions of cycles. The elements placed could be a specific set of vertices, edges, paths or
some combination of these elements. There are many such results now. The interested
reader should see [103] for a more general survey. I will concentrate on only a few
recent results here.

Recall, a subset X ⊆ V (G) is called cyclable if there is a cycle in G containing all
the vertices of X . This clearly generalizes the idea of a Hamiltonian cycle. For earlier
results of this type see [103].

By considering a generalized Fan-type [66] degree condition (as the distance
between u and v may not be two), Sakai [186] improved on an earlier result due
to Egawa et al. [62].

Theorem 59 [186] Let k, d be integers with d ≥ k ≥ 3. Let G be a k-connected graph
of order at least 2d and let X ⊆ V (G) with |X | ≤ k. If max {deg u, deg v} ≥ d for
any nonadjacent distinct vertices u, v of G, then G is X-cyclable and the cycle has
length at least 2d.

An alternate connectedness measure is toughness and, of course, there are results
relating toughness with cycles containing prescribed vertices. In [154], the following
Fan-type result was given.

Theorem 60 If G is a 1-tough graph of order n and X ⊆ V (G) such that σ3(G) ≥ n
and, for all x, y ∈ X, dist (x, y) = 2 implies max {deg x, deg y} ≥ n−4

2 , then G is
X-cyclable.

In discussions with Saito (personnel communication) the following (probably very
difficult) problem emerged.

Problem 1 For each real number r , 0 < r ≤ 1, does there exist a function f (r) so
that any �rn� vertices of an f (r)-tough graph lie on a common cycle?

Clearly, when r = 1, this is the well-known toughness problem of Chvátal [49]
for Hamiltonian graphs. It is also natural to wonder about an edge analogue to this
problem.

The use of forbidden subgraphs is a well established tool in the study of cycles.
But, until recently, little had been done in this area concerning our topic. Recently,
Fujisawa et al. [94] found a generalization of the results in [61] on {claw, net}-free
graphs. To understand the work in [94] we need the following definitions.

Let G be a graph and S ⊆ V (G). An induced subgraph F is called an S-claw if F
satisfies the following properties:

1. F consists of three paths P1, P2, P3 such that they have only one common vertex
x and V (F) = V (P1) ∪ V (P2) ∪ V (P3).

2. For any i ∈ {1, 2, 3}, the end vertex of Pi which is not x is contained in S.
3. For any i ∈ {1, 2, 3}, the internal vertices of Pi are contained in V (G) − S.
4. E(F) = E(P1) ∪ E(P2) ∪ E(P3).

Similarly, an induced subgraph F ′ ⊆ G is called an S-net if F ′ satisfies the following
properties:

123



Graphs and Combinatorics (2014) 30:1–46 17

1. F ′ contains a triangle T with V (T ) = {x1, x2, x3}.
2. There exist three vertex disjoint paths P1, P2, P3 such that xi is an end vertex of

Pi and V (F ′) = V (P1) ∪ V (P2) ∪ V (P3).
3. For any i ∈ {1, 2, 3}, the end vertex of Pi which is not xi is contained in S.
4. For any i ∈ {1, 2, 3}, the internal vertices of Pi are contained in V (G) − S.
5. E(F) = E(P1) ∪ E(P2) ∪ E(P3) ∪ E(T ).

Under these definitions, it is clear that a {V (G)-claw, V (G)-net }-free graph is a
{claw, net}-free graph.

Theorem 61 [94] Let G be an {S-claw, S-net }-free graph, S ⊆ V (G).

1. If G is connected, then G contains a path P such that S ⊆ V (P).
2. If G is 2-connected, then G contains a cycle C such that S ⊆ V (C).

It is natural to wonder if other forbidden subgraph results can also be extended
in this manner. The above authors have some results in this direction, in particular,
involving P6. Also, can an edge version also be found by considering the end edges
of S-claws (defined in a similar manner) and S-nets, where now S is a set of disjoint
edges?

A closure type approach has also been used to find cycles containing specific ele-
ments. We say a vertex x is ∗-eligible if

1. x is not the center of a claw,
2. G[N (x)] is not a complete graph,
3. there is a tree T such that,

(a) N (x) ⊆ V (T ) ⊆ N 2(x),
(b) for any s ∈ S(T ) = {s ∈ V (T ) | degT (s) ≥ 2}, the set N (s) − N [x] induces

a clique (possibly empty),
(c) V (T ) − S(T ) ⊆ N (x).

The local completion of G at x , denoted G∗
x , is the graph obtained from G by adding

to G[N (x)] all missing edges.
Now, let H ⊆ V (G) be an arbitrary set of vertices and let cl∗H (G) be the graph

obtained from G by recursively performing the local completion at the ∗-eligible
vertices in H (this is clearly a local specialization of the standard closure of claw-free
graphs). Using the above, Čada et al. [40] obtained the following stability result and
subsequent theorem.

Theorem 62 Let G be a graph, S ⊆ V (G), S �= ∅, and let k be an integer, 1 ≤ k ≤ |S|.
Let H ⊆ V (G) be an arbitrary set of vertices. Then G contains a cycle C with
|V (C) ∩ S| ≥ k if and only if cl∗H (G) contains a cycle C ′ with |V (C ′) ∩ S| ≥ k.
Hence, for H, S ⊆ V (G), S is cyclable in G if and only if S is cyclable in cl∗H (G).

Theorem 63 Let G be a 2-connected graph of order n ≥ 33 and let S ⊆ V (G),
S �= ∅ be such that

1. no vertex in S ∪ N (S) is a claw center,
2. σ3(G) ≥ n − 2.

Then, S is cyclable in G.

123



18 Graphs and Combinatorics (2014) 30:1–46

Fig. 1 The sharpness example
for Theorem 64

Classic density is a common attack for cycle problems and placing elements on
cycles is no exception. One of the oldest results of this kind is due to Pósa [175] (for
minimum degree), and it was extended to σ2 by Kronk [135]. Here a (k, t, s)-linear
forest is a forest with exactly k edges, t total paths, with s of the paths being single
vertices. When the number of single vertex paths in F is not critical, we will denote
F simply as a (k, t)-linear forest. Further, a graph G is (k, t)-Hamiltonian if for each
(k, t)-linear forest F of G, there is a Hamiltonian cycle of G containing the linear
forest F .

Theorem 64 [135,175] Let 0 ≤ t ≤ k be integers and G a graph of order n. If
σ2(G) ≥ n + k, then for any (k, t, 0)-linear forest F, there is a Hamiltonian cycle of
G that contains the linear forest F. Also, the σ2 bound is sharp with respect to general
n and general (k, t, 0)-linear forests.

Sugiyama [194] generalized this result in the following:

Theorem 65 Let G be a graph on n ≥ 5 vertices and S a set of m ≥ 0 edges inducing
a linear forest in G. If σ2(G) ≥ n + m, then for every t = 0, 1, 2, . . . , m there is a
Hamiltonian cycle Ct in G such that |E(Ct ) ∩ S| = t .

The graph of Fig. 1 shows that Theorem 64 is sharp in some sense. The forest F is
a single path of length k in the Kk+1. However, for forests other than a single path, it
may not be sharp as was shown in [76].

Theorem 66 [76] Let G be a graph of order n. Let k, t and n be positive integers with
2 ≤ k + t ≤ n and let F be a (k, t)-linear forest. If

1. σ2(G) ≥ n + k when F = Pk+1 ∪ (t − 1)K1, and
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2. σ2(G) ≥ n + k − ε(k, n) otherwise,

then G is (k, t)-Hamiltonian, where ε(n, k) = 1 if 2|(n−k) and ε(n, k) = 0 otherwise.
Furthermore, the condition on σ2 is sharp.

In this result, the sharpness of part 2 is demonstrated by the graph obtained from
the join of F and the complete bipartite graph H = K(n−k+1+ε)/2,(n−k−2t−1−ε)/2. The
bipartite graph has path cover number in excess of t and hence with the unbalanced
nature of H , there is no Hamiltonian cycle containing the forest F .

In the following, let σk(S, G) denote the minimum degree sum, in G, of k inde-
pendent vertices of the vertex subset S. Let α(S, G) be the number of vertices of a
maximum independent set in G[S]. Also, let δ(S, G) be the minimum degree, in G,
of the vertices in S. In [112] 3-connected graphs were studied.

Theorem 67 Let G be a 3-connected graph of order n and S a subset of V (G).

1. If σ4(S, G) ≥ n + 2α(S, G) − 2, then S is cyclable.
2. If σ4(S, G) ≥ n + 2δ(S, G) and deg v ≥ n/2 for every v ∈ S − (N (w) ∪ {w}),

where w ∈ S and deg w = δ(S, G), then S is cyclable in G.
3. If σ2(S, G) ≥ n/2 + δ(S, G), then S is cyclable.

Standard edge density conditions have also been used to place edges on cycles. If
F is a 1-factor of G and there exists a Hamiltonian cycle in G containing all edges of
F , then we say G is F-Hamiltonian. An early result of this type is due to Häggkvist
[110].

Theorem 68 Let G be a graph, |V (G)| = n ≥ 4, n even. If σ2(G) ≥ n + 1, then for
any 1-factor F, G is F-Hamiltonian.

A classic result due to Las Vergnas [146] made the natural transition to bipartite
graphs.

Theorem 69 Let G = (A ∪ B, E) be a bipartite with |A| = |B| = n ≥ 2. If for each
pair u, v of nonadjacent vertices with u ∈ A and v ∈ B we have deg u+deg v > n+1,
then for any 1-factor F of G, G is F-Hamiltonian.

Yang [210] provided a true edge density result as well. Suppose K6 has vertex set
{y1, . . . , y6}. Let S1 = K6 minus the edges {y1 y2, y1 y4, y2 y3, y3 y4}. It is easy to see
that if F is the matching {y1 y3, y2 y4, y5 y6}, then S1 is not F-Hamiltonian.

Theorem 70 Let G be a graph on n vertices (n ≥ 4, n even). If δ(G) ≥ 2 and
|E(G)| ≥ (n−1)(n−2)

2 + 1, then for any 1-factor F of G, G is F-Hamiltonian if and
only if G �∼= S1.

Yang [210] also provided a bipartite version of the above result.
An extension of the idea of cyclable sets is the following. A graph G is said to be

S-pancyclable if for every integer l, 3 ≤ l ≤ |S|, there is a cycle in G that contains
exactly l vertices of S. An Ore-type result in this direction is the following:
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Theorem 71 [81] If G is a graph of order n and σ2(G) ≥ n, then either G is S-
pancyclable or else n is even, S = V (G) and G = Kn/2,n/2, or |S| = 4, G[S] = K2,2
and the structure of G is well characterized.

In [1] bipartite graphs were considered.

Theorem 72 Let G be a 2-connected balanced bipartite graph of order 2n and bipar-
tition (X, Y ). Let S be a subset of X of cardinality at least 3. Then if the degree sum
of every pair of nonadjacent vertices x ∈ S and y ∈ Y is at least n + 3, then G is
S-pancyclable.

It is also natural to expect that a closure property would apply to problems of this
general type. Again in [40] this was considered. Of course, their first interest was in
the stability of S-cyclability and S-pancyclability.

Theorem 73 Let G be a graph of order n, let S ⊆ V (G), S �= ∅, and let k be an
integer, 1 ≤ k ≤ |S|. Let u, v ∈ V (G) be such that uv /∈ E(G) and deg u+deg v ≥ n.
Then G contains a cycle C with |V (C) ∩ S| ≥ k if and only if G ′ = G + uv contains
a cycle C ′ with |V (C ′) ∩ S| ≥ k.

Now the k-closure of G is that graph obtained from G by recursively joining pairs
of nonadjacent vertices x, y satisfying deg x + deg y ≥ k until no such pair remains.
We denoted the resulting graph Ck(G).

Theorem 74 [40] Let G be a graph of order n, let S ⊆ V (G), |S| ≥ 3, and let
u, v ∈ V (G) be such that uv /∈ E(G) and

deg u + deg v ≥ n + |S| − 3.

Then S is pancyclable in G if and only if S is pancyclable in G + uv. Hence, S is
pancyclable in G if and only if S is pancyclable in Cn+|S|−3(G).

In [40], they then localize the closure as follows. For S ⊆ V (G) and any integer
k, define the (k, S)-closure of G denoted C S

k (G), as the graph obtained by recursively
adding all missing edges uv with deg u + deg v ≥ k, u, v ∈ S. The closure C S

k (G) is
uniquely determined and if G is large while S is small, it is somewhat easier to handle.
For S ⊂ V (G), we say the S-length of a cycle in G is the number of vertices of S that
the cycle contains. Then the S-circumference of G is the maximum S-length.

Theorem 75 [40] Let G be a graph of order n and let S ⊆ V (G), |S| ≥ 3. Then

1. the S-circumference of G equals the circumference of C S
n (G),

2. S is cyclable in G if and only if S is cyclable in C S
n (G),

3. S is pancyclable in G if and only if S is pancyclable in C S
n+|S|−3(G).

Next we consider another old property. A graph G of order n is said to be vertex
pancyclic if for any vertex x , there is a cycle in G of length � containing x , for each
�, 3 ≤ � ≤ n. Bondy [30] initiated the study of pancyclic and vertex pancyclic graphs
and he showed that if δ(G) ≥ (n + 1)/2, then G is vertex pancyclic. Many results
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concerning pancyclic graphs are based upon edge density conditions. We shall not
address them here. The interested reader should see [101] and [102].

Instead, we wish to consider the next natural question: What about sets of more
than one vertex?

Clearly, we cannot place k vertices on a 3-cycle when k > 3. Thus, we must adjust
our idea of what pancyclic means. Recently, two approaches to this question appeared.
The first approach we consider is due to Goddard [100].

Definition 1 For k ≥ 2 we say G is k-vertex pancyclic if every set S of k vertices is in
a cycle of every possible length. Further, G is set-pancyclic if G is k-vertex pancyclic
for all k ≥ 2.

Now by “possible length”, Goddard means at least k + the path cover number of
G[S], where the path cover number of G[S] is the least number of paths that cover
all the vertices of G[S]. This is easily seen to be a reasonable range, since if G[S]
has path cover number t , then at least t new vertices will be needed to link the paths
(containing our k vertices) into a cycle. Goddard [100] was able to show the following.

Theorem 76 If G has order n and δ(G) ≥ (n + 1)/2, then G is set pancyclic.

At essentially the same time a second approach was developed in [79]. To understand
this result, we need to develop some notation.

Definition 2 Let k ≥ 0, s ≥ 0, and t ≥ 1 be fixed integers with s ≤ t and G a graph
of order n. For an integer m with k + t ≤ m ≤ n, a graph G is (k, t, s, m)-pancyclic
if for each (k, t, s)-linear forest F , there is a cycle Cr of length r in G containing F
for each m ≤ r ≤ n.

With this, the following was shown in [79] (as well as the corresponding δ result).
Note, these conditions were shown to be sharp.

Theorem 77 Let 1 ≤ t ≤ m ≤ n be integers, and G be a graph of order n. The graph
G is (0, t, t, m)-pancyclic if σ2(G) satisfies any of the following conditions:

1. σ2(G) ≥ n if m = n,

2. σ2(G) ≥ �(4n + 1)/3� if t = 1 and m = 3,

3. σ2(G) ≥ 2n − 3 if t = 2 or 3 and m = 3,

4. σ2(G) ≥ 2n − m if t = 3 and m = 4 or 5,
5. σ2(G) ≥ 2n − 2�(m − 1)/2� − 1 if 4 ≤ t ≤ m < 2t, n > m,

6. σ2(G) ≥ n + 1 if t ≥ 1, m ≥ max{4, 2t}, n > m.

Also, all of the conditions on σ2(G) are sharp.

In yet another direction, the idea of placing vertices in a particular order was intro-
duced in [169]. A graph is k-ordered (Hamiltonian) if for every ordered sequence
of k vertices there is a (Hamiltonian) cycle in the graph that encounters the vertices
of the sequence in the given order. Early Dirac and Ore-type results for k-ordered
Hamiltonian graphs were given in [128] and [68] and the Ore result was extended in
[75].

A slight improvement in the minimum degree condition is possible when consid-
ering graphs with larger connectivity.
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Theorem 78 [47] Let G be a graph on n vertices with minimum degree δ(G) ≥
n/2. Let k ≤ n/176 be an integer. If G is 3�k/2�-connected, then G is k-ordered
Hamiltonian.

The connectivity bound is best possible, as illustrated by the following graph G.
Let L , M, R be complete graphs with |R| = �k/2�, |M | = 2�k/2� − 1, |L| =
n − |M | − |R|. Let G ′ be the union of these three graphs, adding all possible edges
containing vertices of M . Let xi ∈ L if i is odd, and let xi ∈ R otherwise. Add all
edges xi x j whenever |i − j | �∈ {0, 1, k − 1}, and the resulting graph is G. The degree
sum condition is satisfied and G is (�3k/2� − 1)-connected. But there is no cycle
containing the xi in the proper order, since such a cycle would contain 2�k/2� paths
through M .

Order properties can be applied to more than vertex sets. For k ≥ 0 and 0 ≤ s ≤ t
fixed integers, a graph G of order n is (k, t, s)-ordered Hamiltonian if there is a
Hamiltonian cycle C that contains any linear forest with k edges, t paths and with s
of the paths being single vertices and respecting the order of the paths. The graph is
strongly (k, t, s)-ordered if both the order of the paths and an orientation of the paths
is respected.

Theorem 79 [45] If 0 ≤ s ≤ t ≤ k are fixed integers, and G is a graph of order
n ≥ max {178t + k, 8t2 + k} with

1. σ2(G) ≥ n + k − 3 if s = 0, t ≥ 3,

2. σ2(G) ≥ n + k + s − 4 if 0 < 2s ≤ t, t ≥ 3,

3. σ2(G) ≥ n + k + (t − 9)/2 if 2s > t ≥ 3,

4. σ2(G) ≥ n + k − 2 if s ≤ 1, t = 2,

5. σ2(G) ≥ n + k − 1 if s = 0, t = 1,

6. σ2(G) ≥ n if s = t ≤ 2,

then G is strongly (k, t, s)-ordered Hamiltonian.

The sharpness of this result for case (1) is shown by the following graph. Let G
consist of three complete graphs: A = K n−k+2

2
, K = Kk−2, B = K n−k+2

2
. Add all

edges between A and K and all edges between K and B. The degree sum condition
is just missed and G is not (k, t, 0)-ordered. The ordered linear forest F is placed so
that x1, the first vertex of the first path, is in A and yk , the last vertex of the last path, is
in B and k − 2 intermediate vertices of F are placed in K (recall F has k + t vertices
and t ≥ 3 here). Similar graphs exist for the other cases.

The situation for minimum degree was considered by Faudree and Faudree [67].

Theorem 80 Let k ≥ 1 and 0 ≤ s < t be integers, and G a graph of sufficiently large
order n. The graph G is strongly (k, t, s)-ordered Hamiltonian if δ(G) satisfies any of
the following conditions:

1. δ(G) ≥ (n + k + t − 3)/2 when t ≥ 3,

2. δ(G) ≥ (n + k)/2 when t ≤ 2.

Also, all the conditions on δ(G) are sharp.
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Faudree and Faudree [67] also considered the not strong case, where the bounds
are slightly different.

Theorem 81 Let k ≥ 1 and 0 ≤ s ≤ t be integers and G a graph of sufficiently large
order n. The graph G is (k, t, s)-ordered Hamiltonian if σ2(G) satisfies any of the
following conditions:

1. σ2(G) ≥ n + k + t − 5 when s = 0 and t ≥ 5,

2. σ2(G) ≥ n + k + t − 4 when s = 0 and t = 4,

3. σ2(G) ≥ n + k + t + s − 6 when 0 < 2s ≤ t, s ≥ 3, and t ≥ 6,

4. σ2(G) ≥ n + k + t − 3 when 0 < 2s ≤ t, s = 1, 2, t ≥ 3 or s = 0, t = 3,

5. σ2(G) ≥ n + k + (3t − 9)/2 − �4(1 − s/t)� when 3 ≤ t < 2s and (s, t) �= (3, 5)

or (2, 3),

6. σ2(G) ≥ n + k + t − 3 when s = 3 and t = 5 or s = 2 and t = 3,

7. σ2(G) ≥ n + k when t ≤ 2.

Also, all of the conditions on σ2(G) are sharp.

Their corresponding minimum degree result is the following:

Theorem 82 Let k ≥ 1 and 0 ≤ s ≤ t be integers and G a graph of sufficiently
large order n. The graph G is (k, t, s)-ordered Hamiltonian if δ(G) satisfies any of
the following conditions:

1. δ(G) ≥ (n + k + t − 5)/2 when s = 0 and t ≥ 5,

2. δ(G) ≥ (n + k + t − 4)/2 when s = 1 and t ≥ 4 or s = 0 and t = 4,

3. δ(G) ≥ (n + k + t − 3)/2 when 1 < s < t and t ≥ 3 or s = 0, 1 and t = 3.

4. δ(G) ≥ (n + k)/2 when t ≤ 2.

Also, all of the conditions on δ(G) are sharp.

This work was extended to the generalized pancyclic case in [79]. Here a graph is
(k, t, s, m)-pancyclic if for any (k, t, s)-linear forest F and each integer r, m ≤ r ≤ n,
there is a cycle of length r containing F . If the paths of F are required to appear in a
specific order we say the graph is (k, t, s, m)-pancyclic ordered.

Theorem 83 Let 4 ≤ t ≤ m ≤ n be positive integers and let G be a graph of order
n. Then G is (0, t, t, m)-pancyclic ordered if σ2(G) satisfies any of the following
conditions:

1. σ2(G) ≥ 2n − 3 when t ≤ m < �3t/2�,
2. σ2(G) ≥ 2n − 4 when �3t/2� ≤ m < �(5t − 2)/3�,
3. σ2(G) ≥ 2n − 5 when �(5t − 2)/3� ≤ m < 2t,
4. σ2(G) ≥ n + 4t − m − 6 when 2t ≤ m ≤ (5t − 3)/2,

5. σ2(G) ≥ n + (3t − 9)/2 when m > (5t − 3)/2.

Also, all of the conditions on σ2(G) are sharp.

Minimum degree conditions vary here and are found in [74].

Theorem 84 [74] Let 4 ≤ t ≤ m ≤ n be positive integers, and let G be a graph
of sufficiently large order n. The graph G is (0, t, t, m)-pancyclic ordered if δ(G)

satisfies any of the following conditions (where εn = n − 2�n/2�):
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1. δ(G) = n − 1 when t ≤ m < �3t/2�,
2. δ(G) ≥ n − 2 when �3t/2� ≤ m < 2t,
3. δ(G) ≥ n/2 + 2, when m = 10 or 11, t = 5 and n even.

4. δ(G) ≥ n/2 + 7/2, when m = 12, t = 6 and n odd.

5. δ(G) ≥ �n/2�+�t/2�+ p when m = 3t −2p−6−εn for −1 < p ≤ (t −6−εn)/2
6. δ(G) ≥ �n/2� + �t/2� − 1 when m ≥ max{2t, 3t − 4 − εn}, unless m = 11,

t = 5 and n even.

The idea of placing elements on cycles was reversed in [85]. Here the idea of
F-avoiding Hamiltonian graphs is introduced. Let G be a graph with subgraph H .
If G contains a Hamiltonian cycle C such that E(C) ∩ E(H) is empty, then C is
an H -avoiding Hamiltonian cycle. For any graph F , if G contains an H -avoiding
Hamiltonian cycle for every subgraph H of G that is isomorphic to F , then G is
F-avoiding Hamiltonian. In particular, the following was shown:

Theorem 85 [85]

1. Let k ≥ 0 be an integer and let G be a graph on n ≥ 2k + 3 vertices with
σ2(G) ≥ n + 2k − 1. If F is a graph with maximum degree at most k, then G is
F-avoiding Hamiltonian, or there is some subgraph H of G that is isomorphic to
F and either G − E(H) is a butterfly, or K n−1

2 , n+1
2

⊆ G − E(H) ⊆ K n−1
2

+ K̄ n+1
2

.

2. If G has order n ≥ 3 and |F | ≤ n/2 and maximum degree k, then σ2(G) ≥ n + k
ensures that G is F-avoiding Hamiltonian.

3. If the bound on F from (2) is removed, then σ2(G) ≥ n + 2k is required for G to
be F-avoiding Hamiltonian.

4. If δ(G) ≥ n/2 and E1 is a set of edges with |E1| ≤ n−3
4 , then G contains a

Hamiltonian cycle that avoids E1.

7 Spectral Attacks

Spectral theory has been used to determine many interesting results about graphs.
Thus, it is no surprise that it can be applied to Hamiltonian questions as well. This
new approach has seen some fine work recently.

In order to proceed, we specify notation. Let A(G) be the adjacency matrix of the
graph G, let D(G) be the degree matrix of G, i.e., the matrix with the degrees of
the vertices down the main diagonal and zeros elsewhere, let the Laplacian of G be
L(G) = D(G) − A(G), and let Q(G) = D(G) + A(G).

We extend our concept of a graph by allowing free edges, which are edges with only
one end vertex. In this case the degree of a vertex counts both the ordinary and free
edges incident with the vertex. However, the free edges do not appear in the adjacency
matrix.

The subdivision graph of G, denoted S(G), is the graph obtained from G by sub-
dividing each edge of G. Let C2n,l denote the cycle C2n with l free edges added to
every second vertex of C2n .

The eigenvalues of a graph are the eigenvalues of the adjacency matrix of that
graph, unless otherwise stated. For a graph G we denote the eigenvalues of G as
λ1(G) ≤ λ2(G) ≤ . . . ≤ λn(G).
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Theorem 86 [162] Let G be a k-regular graph of order n. If G is not Hamiltonian,
then for i = 1, 2, . . . , n, λi (L(S(G)) ≤ λi (L(C2n,k−2)).

In 1995, van den Heuvel [205] consider necessary conditions for Hamiltonian cycles
using the Laplacian and the matrix Q(G) defined above.

Theorem 87 [205] Let G be a graph of order n and size m. If G is Hamiltonian, then
for i = 1, 2, . . . , n, λi (L(Cn)) ≤ λi (L(G)) and λi (Q(Cn)) ≤ λi (Q(G)). In addition,
if m < 2n, then for i = m − n + 1, . . . , n we have

λi−m+n(L(G)) ≤ λi (L(Cn)) ≤ λi (Q(G))

and

λi−m+n(Q(G)) > λi (Q(Cn)) ≤ λi (L(G)).

Krivelevich and Sudokov [134] used the second largest (in absolute value) eigen-
value.

Theorem 88 [134] If the second largest absolute value of an eigenvalue λ of the
adjacency matrix of a d-regular graph satisfies

λ ≤ c
(log log n)2

log n (log log log n)
d

for a constant c and n sufficiently large, then G is Hamiltonian.

Butler and Chung [39] showed that if the nontrivial eigenvalues of the Laplacian
are sufficiently close to the average degree, then the graph is Hamiltonian. The proof
is algorithmic of complexity ncln n .

Theorem 89 [39] Let G be a graph of order n and average degree d and 0 = λ1 ≤
λ2 ≤ . . . ≤ λn be the eigenvalues of the Laplacian of G. If there is a constant c so
that

|d − λi | ≤ c
(log log n)2

log n (log log log n)
d,

for i �= 1 and n sufficiently large, then G is Hamiltonian.

Fiedler and Nikiforov [87] used the largest eigenvalue (spectral radius) of the adja-
cency matrix to determine if the graph contains a spanning path or cycle.

Theorem 90 [87] Let G be a graph of order n and let μ(G) be the largest eigenvalue
of the adjacency matrix of G. Then,

1. If μ(G) ≥ n − 2, then G is traceable unless G is the disjoint union of Kn−1 and a
vertex.

2. If μ(G) > n − 2, then G is Hamiltonian unless G is Kn−1 with a pendent edge.
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3. If μ(Ḡ) ≤ √
n − 1, then G is traceable unless G is the disjoint union of Kn−1 and

a vertex.
4. If μ(Ḡ) ≤ √

n − 2, then G is Hamiltonian unless G is Kn−1 with a pendent edge.

In [190] the authors study singular graphs (in which the zero eigenvalue belongs
to the spectrum of the adjacency matrix), core graphs (the eigenvector corresponding
to the zero eigenvalue has no zero entries) and (κ, τ )-regular sets. A (κ, τ )-regular
set is a subset of vertices inducing a κ-regular subgraph such that every vertex not
in the subset has τ neighbors in it. In particular, they show that if zero is a main
eigenvalue (whose corresponding eigenvector is not orthogonal to the all 1’s vector)
of the subdivision of a graph G, then G is not Hamiltonian.

Knowing the graph has certain properties, such as being Hamiltonian can be of
value as well.

Theorem 91 [212] The spectral radius of a Hamiltonian planar graph of order n ≥ 4
is at most 2 +√

3n − 11 and the spectral radius of outerplanar graphs of order n ≥ 6
is at most 2

√
2 + √

n − 5.

Finally, Krivelevich [132] considered the number of Hamiltonian cycles. Here an
(n, d, λ)-graph is one that is d-regular on n vertices, all of whose nontrivial eigenvalues
are at most λ.

Theorem 92 [132] If G is an (n, d, λ)-graph and the following conditions are satis-
fied:

1. d
λ

≤ (log n)1+ε for some constant ε > 0;
2. log d log d

λ
>> log n,

then the number of Hamiltonian cycles in G is n! ( d
n )n (1 + o(1))n.

8 Hypergraphs

For many years there was little activity on Hamiltonian cycles in hypergraphs. This
was probably due to the weakly structured form of cycle that was in use. A Hamiltonian
cycle was a cyclic ordering of the vertices (v1, v2, . . . , vn) such that for i = 1, 2, . . . , n,
there exist distinct edges Ei such that {vi , vi+1} ⊂ Ei . Under this definition, the
following Dirac-type result was shown. By a k-uniform hypergraph (or k-graph for
short) we mean a hypergraph with each of its edges containing k vertices.

Theorem 93 [24] Let H be a k-uniform hypergraph on n ≥ k + 1 vertices. If deg
v ≥ (n−2

k−1

) + k − 1, for every vertex v in H, then H contains a Hamiltonian cycle.

In 1978, Bermond [22] showed the existence of a Hamiltonian decomposition of K 3
n

(the complete 3-uniform hypergraph on n vertices) for n ≡ 2 mod 3 and n ≡ 4 mod 6.
In 1994, Verrall [206] provided a decomposition of K 3

n for n ≡ 1 mod 6 and when
n ≡ 0 mod 3 for the hypergraph K 3

n − I where I is a 1-factor, thus completing the
problem.

123



Graphs and Combinatorics (2014) 30:1–46 27

However, in 1999, Katona and Kierstead [124] gave a more structured definition
of a cycle in a hypergraph, which eventually led to the following idea. In a k-uniform
hypergraph H = (V, E), of order n, suppose that 1 ≤ � ≤ k − 1. An �-overlapping
Hamiltonian cycle C is a collection of edges of H such that for some cyclic ordering
of the vertices of H , every edge of C consists of k consecutive vertices of the ordering
and for every pair of edges Ei , Ei+1 in C , we have that |Ei ∩ Ei+1| = �. Thus, in an
�-overlapping Hamiltonian cycle, the sets Ei \ Ei+1 partition V into sets of size k −�.
Hence, there are n/(k − �) edges in an �-overlapping Hamiltonian cycle. Further, the
two extreme cases are when � = k − 1 and we say the cycle is tight and when � = 1
where we say the cycle is loose. Further, let δk−1(H) be the minimum number of edges
containing a fixed set of k − 1 vertices, taken over all such sets.

In [124], Katona and Kierstead showed that in a k-uniform hypergraph H , if
δk−1(H) ≥ (1 − 1/2k)n − k + 4 − 5/2k, then H will contain a tight Hamiltonian
cycle. They also suggested that δk−1 ≥ n−k+2

2 should suffice. Rödl et al. [179,180]
nearly showed that their suggestion was correct, showing that for γ > 0 and k ≥ 3
and n sufficiently large, δk−1(H) ≥ n/2 +γ n implies H contains a tight Hamiltonian
cycle. They later strengthened their result for the k = 3 case.

Theorem 94 [181]

1. Let H be a 3-uniform hypergraph on n vertices, where n is sufficiently large. If
δ2(H) ≥ � n

2 �, then H has a tight Hamiltonian cycle. Moreover, for every n there
exists an order n 3-uniform hypergraph Hn such that δ2(Hn) = � n

2 � − 1 and Hn

does not have a Hamiltonian cycle.
2. If δ2(H) ≥ n/2 − 1, then H has a Hamiltonian path, and moreover, for every n

there exists an order n 3-uniform hypergraph Jn such that δ2(Jn) = �n/2�−2 and
Jn does not have a Hamiltonian path.

Turning to loose Hamiltonian cycles, Kühn and Osthus [137] provided the following
Dirac-type bound.

Theorem 95 [137] For every γ > 0 there exists an n0 such that every 3-uniform
hypergraph H of even order n ≥ n0 with δ2(H) ≥ (1/4 + γ )n contains a loose
Hamiltonian cycle.

They also showed that this result was best possible up to the error term γ n. They
further conjectured that δk−1(H) ≥ ( 1

2(k−1)
+ o(1))n would imply the existence of a

loose Hamiltonian cycle in a k-uniform hypergraph. This conjecture was verified for
�-cycles with � < k/2 by Hán and Schacht [111].

Theorem 96 [111] For all integers k ≥ 3 and 1 ≤ � < k/2 and every γ > 0 there
exists an n0 such that every k-uniform hypergraph H of order n where (k − �)|n and
with δk−1(H) ≥ (1/2(k − �) + γ )n contains a Hamiltonian �-cycle.

For the case � = 1, this bound was also proven in [127] using the hypergraph
Blow-up lemma developed by Keevash [126]. The work in [111] used an absorption
technique developed by Rödl et al. [179–181].

A hypergraph H is called k-edge Hamiltonian if by a removal of any k edges, a
Hamiltonian hypergraph is obtained. Frankl and Katona [90] considered the problem
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of determining the minimum number of edges in a k-edge Hamiltonian r -uniform
hypergraph of order n. They showed the following:

Theorem 97 [90]

1. There is a 1-edge Hamiltonian 3-uniform hypergraph on n vertices and size at least
11n/6 + o(n).

2. Every 1-edge Hamiltonian 3-uniform hypergraph on n ≥ 5 vertices has at least
14n/9 edges.

3. There is a 2-edge Hamiltonian 3-uniform hypergraph of order n and size at least
13n/4 + o(n).

4. The size of any k-edge Hamiltonian 3-uniform hypergraph of order n is at least
S(k)/n, where S(k) is the minimum size of a graph which contains a path of order
4 after deletion of any k edges.

5. There is a 1-edge Hamiltonian r-uniform hypergraph of order n and size 4r−1
2r n +

o(n).
6. The size of any 1-edge Hamiltonian -uniform hypergraph on n ≥ 6 vertices is at

least 3n/2.

Now let H (k)
n,p denote the random k-uniform hypergraph of order n where each

k-tuple is an edge with probability p. In 2010, Frieze [91] showed that there is an
absolute constant K > 0 such that if p ≥ K Log n

n2 , then

lim Pr(H (3)
n,p contains a loose Hamiltonian cycle) = 1.

n→∞
4|n

This was extended by Dudek and Frieze [57] to k-uniform hypergraphs. They showed
that if k ≥ 3 and if pnk−1/ log n tends to infinity together with n, and 2(k − 1)|n,
then H contains a loose Hamiltonian cycle asymptotically almost surely (a.a.s.). This
was subsequently improved in [59] to the divisibility condition (k − 1)|n, which is
best possible. Loose Hamiltonian cycles were also the goal in [127] who showed the
following theorem.

Theorem 98 [127] For all k ≥ 3 and any ν > 0, there exists n0 so that if n > n0,
then any k-uniform hypergraph with

δk−1 >

(
1

2(k − 1)
+ ν

)
n

contains a loose Hamilton cycle.

Dudek and Frieze [58] continued their study by showing a sharp threshold of e/n
for the existence of tight Hamiltonian cycles in random k-uniform hypergraphs, for all
k ≥ 4. Thus, if p ≥ (1 + ε)e/n, then a.a.s. H (k)

n,p contains a tight Hamiltonian cycle.
When k = 3, they showed that 1/n is an asymptotic threshold.

Asymptotic thresholds for the existence of �-overlapping Hamiltonian cycles for
2 ≤ � ≤ k − 2 were also shown. Table 1 below summarizes these results.
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Table 1 Hamiltonicity thresholds

� k Order of magnitude of p Divisibility requirements

� = 1 k = 3 log n
n2 [91][59] 2|n

� = 1 k ≥ 4 ω(n)
log n
nk−1 [57][59] (k − 1)|n

� = 2 k ≥ 3 ω(n) 1
nk−2 [58] (k − 2)|n

k > � ≥ 3 1
nk−� [58] (k − �)|n

� = k − 1 ≥ 3 e/n is the sharp threshold [58] no requirement

Interesting work on the extremal number for a Hamiltonian cycle has also been
done. By an �-tight Hamiltonian cycle in a k-graph H we mean a spanning sub-k-graph
whose vertices can be cyclically ordered in such a way that the edges are segments of
that ordering and every two consecutive edges intersect in exactly � vertices. Here we
denote an �-tight Hamiltonian cycle in a k-graph H on n vertices by C (k,�)

n , Katona
and Kierstead [124] were the first to study the appearance of a C (k,k−1)

n in k-graphs,
i.e., to bound the extremal number ex(n, C (k,k−1)

n ). They showed that for all integers
k and n with k ≥ 2 and n ≥ 2k − 1,

ex(n, C (k,k−1)
n ) ≥

(
n − 1

k

)
+

(
n − 2

k − 2

)
.

Tuza [204] improved the lower bound for general k and tight Hamiltonian cycles to

ex(n, C (k,k−1)
n ) ≥

(
n − 1

k

)
+

(
n − 1

k − 2

)

if a Steiner system S(k − 2, 2k − 3, n − 1) exists.
Glebov et al. [99] further strengthened the bound. An �-tight k-uniform t-path,

denoted by P(k,l)
t is a k-graph on t vertices, (k − �) | (t − �), such that there exists

an ordering of the vertices in such a way that two consecutive edges intersect in
exactly � vertices. Their extremal number relies on the extremal number of P(k, �) =
P(k−1,�−1)

�k/(k−1)�(k−�)+(�−1).

Theorem 99 [99] For any k ≥ 2, � ∈ {0, . . . , k − 1}, there exists an n0 such that for
any n ≥ n0 and (k − �) | n,

ex(n, C (k,�)
n ) =

(
n − 1

k

)
+ ex(n − 1, P(k, l)).

They also describe the extremal hypergraph and find a Dirac-type bound for Hamil-
tonian cycles.
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8.1 Coloring Hamiltonian Cycles

To ensure the presence of properly colored or rainbow colored subhypergraphs, it
is necessary to consider restricted colorings in some manner. We say a coloring is
r -bounded if every color is used at most r times, and is r -degree bounded if the
hypergraph induced by any single color has maximum degree at most r . Rainbow
colored (every edge is a different color) Hamiltonian cycles have been well-studied in
graphs (see [102]). But until recently very little was known about properly colored or
rainbow Hamiltonian cycles in colored k-uniform hypergraphs for k ≥ 3.

In [60], Dudek et al. provided the following two results:

Theorem 100 [60] For every 1 ≤ � < k there is a constant c = c(k, �) such that if n
is sufficiently large and k − � divides n, then any cnk−� -degree bounded coloring of
K (k)

n yields a rainbow copy of an �-overlapping Hamiltonian cycle, C(k)
n (�).

Theorem 101 [60] For every 1 ≤ � < k, there is a constant c′ = c′(k, �) such that if
n is sufficiently large and k − � divides n, then any c′nk−�-degree bounded coloring
of K (k)

n yields a properly colored copy of C (k)
n (�).

It was noted in [60] that both of these results are optimal for loose cycles up to the
values of c and c′. It was also conjectured that these results are similarly optimal for
all 2 ≤ � < k.

Dudek and Ferrara [56] extended these two results by demonstrating that for appro-
priate c, a cnk−1-bounded coloring of K (k)

n assures a rainbow �-overlapping Hamil-
tonian cycle, provided some additional conditions are placed on the number of edges
of any color that contain a given �-subset of vertices. We say a coloring of a hypergraph
H is (a, r)-bounded if for each color i , every set of a vertices in V (H) is contained
in at most r edges of color i . Thus, an r -bounded coloring is thus (0, r)-bounded and
an r -degree bounded coloring is (1, r)-bounded.

Theorem 102 [56] For every 1 ≤ � < k, there is a constant c = c(k, �) such that if n
is sufficiently large and k − � divides n, then any (0, cnk−1)- and (l, cnk−�)-bounded
colorings of K (k)

n yields a rainbow copy of C (k)
n (�).

Theorem 103 [56] For every 1 ≤ � < k, there is a constant c = c(k, �) such that if
n is sufficiently large and k − � divides n, then any (�, c′nk−�)-bounded coloring of
K (k)

n yields a properly colored copy of C (k)
n (�).

Both of these results are optimal up to the choices of c and c′ as any subset of �

vertices is contained in at most O(nk−�) edges. Theorem 102 is also optimal in that
we cannot relax the condition that the coloring is O(nk−1)-bounded.

As noted in [57], it would be of interest to obtain corresponding results for much
more general classes of hypergraphs. For graphs, such results were obtained by
Böttcher et al. [31]. Their work relies on a framework developed by Lu and Székely
[156] that is based on the Lovasz Local Lemma. Unfortunately, it is not clear how to
obtain such results for hypergraphs.
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9 Surfaces

There is a long history of interest in finding Hamiltonian cycles in graphs embedded
on surfaces. In 1880, Tait [195] conjectured that every 3-connected planar graph is
Hamiltonian. If true, this would have implied the four color theorem. However, Tutte
[203] constructed a counter-example.

A triangulation of a closed surface is simply an embedding of a graph on the sur-
face so that each face is a triangle and so that any two faces share at most one edge.
Whitney [208] proved that every 4-connected planar triangulation has a Hamiltonian
cycle. Tutte [203] extended this to show every 4-connected planar graph is Hamil-
tonian. Thomassen [199] further generalized this to every 4-connected planar graph
is Hamiltonian connected. Thomas and Yu [196] proved another generalization.

Theorem 104 [196] Let G be a graph obtained from a 4-connected planar graph by
deleting at most two vertices. Then G is Hamiltonian.

Chen [41] relaxed the conditions in a different manner.

Theorem 105 [41] Any maximal planar graph with only one separating triangle is
Hamiltonian.

Helden [114] also relaxed the conditions.

Theorem 106 [114] Every plane triangulation with at most two separating triangles
is Hamiltonian.

Helden and Vieten [115] gave conditions under which a maximal planar graph
would have a Hamiltonian cycle containing any two boundary edges. They also
extended Whitney’s theorem to maximal planar graphs with exactly three separat-
ing triangles.

In 1988, Malkevitch [158] made the following conjecture.

Conjecture 8 [158] Every 4-connected planar graph on n vertices is pancyclic if it
contains a cycle of length 4.

This conjecture has been verified for cycle length n − 1 (by Nelson (see [199]), for
length n − 2 (Thomas and Yu [196]) and length n − 3 (Sanders [187]). Chen, Fan and
Yu [43] proved the cases n − 4, n − 5 and n − 6. The case n − 7 was established in
[53], where it was also shown that if G is a 4-connected planar graph and u ∈ V (G),
then there exists a set X ⊂ V (G) such that u ∈ X, |X | = 6, and G − X is Hamiltonian
when |V (G)| ≥ 9.

A famed conjecture due to Barnette [18] is the following:

Conjecture 9 (The Cubic Planar Graph Conjecture) [18] Every 3-connected 3-regular
bipartite planar graph is Hamiltonian.

This conjecture is known to be true for graphs up to order 66 [116]. Florek [89]
proved the following:
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Theorem 107 [89] If G is a 3-connected 3-regular bipartite graph with a 2-factor F
that consists only of facial 4-cycles, then the following are satisfied:

1. If an edge is chosen on a face and this edge is in F, there is a Hamiltonian cycle
containing all other edges of this face.

2. If any face is chosen, there is a Hamiltonian cycle which avoids all edges of this
face which are in F.

3. If any two edges are chosen on the same face, there is a Hamiltonian cycle through
one and avoiding the other.

4. If any two edges are chosen which are an even distance apart on the same face,
there is a Hamiltonian cycle which avoids both.

For toroidal graphs, Grünbaum [109] and Nash-Williams [167] conjectured the
following:

Conjecture 10 Every 4-connected toroidal graph is Hamiltonian.

Thomas and Yu [197] gave strong evidence the conjecture may be true.

Theorem 108 [197] Let G be a 5-connected toroidal graph. Then every edge of G is
contained in a Hamiltonian cycle.

Note, the above does not hold for 4-connected toroidal graphs (see [199]). Thomas,
Yu and Zang [198] recently gave more evidence in favor of the conjecture by showing:

Theorem 109 [198] Every 4-connected toroidal graph has a Hamiltonian path.

The radial graph of a map G is a bipartite quadrangulation obtained from the face
subdivision of G by removing all edges of G. Nakamoto and Ozeki [165] showed the
following:

Theorem 110 [165]

1. The radial graph R(Q) of a bipartite quadrangulation Q on the torus is Hamil-
tonian.

2. The map obtained from a closed 2-cell embedding G on the torus by taking a radial
graph twice, (i.e. R(R(G))) is Hamiltonian.

They also conjectured the following:

Conjecture 11 [165] The radial graph of any quadrangulation Q on the torus is
Hamiltonian.

Very recently, in [95], the following was shown, which essentially shows the con-
jecture is true.

Theorem 111 [95] Every quadrangulation map Q on the torus with no contractible
2-cycle has R(Q) Hamiltonian.

They further showed:
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Theorem 112 [95]

1. Let G be a 3-connected balanced bipartite graph which is embeddable in the
torus. If one of the partite sets consists only of vertices of degree four, then G is
Hamiltonian.

2. Let G be a 4-connected toroidal graph. If the toughness of G is exactly one, then
G is Hamiltonian.

Brunet et al. [37] considered the Klein Bottle.

Theorem 113 [37] Every 5-connected triangulation of the Klein Bottle is Hamil-
tonian.

Kawarabayashi [125] speculates that 4-connected might be enough.
Biebighauser and Ellingham [26] considered prisms. The prism over a graph G

is the cartesian product of G with K2. We say G is prism-Hamiltonian if G × K2 is
Hamiltonian. In [26], the authors prove that the prism of any triangulation of the plane,
projective plane, torus or Klein bottle contains a Hamiltonian cycle. They also show
that the prism of every 4-connected triangulation of a surface with sufficiently large
representativity and the prism of a 3-connected bipartite planar graph are Hamiltonian.
This last result lends support to the following conjecture of Rosenfeld and Barnette
[182].

Conjecture 12 [182] Every 3-connected planar graph is prism-Hamiltonian.

Note, Yu [211] showed that a 5-connected triangulation of a surface of Euler genus
g and representativity r(G) ≥ 96(2g − 1) is Hamiltonian. Kawarabayashi [125] con-
jectures that the condition of “triangulation” may not be needed, i.e., that perhaps
the result would hold for any 5-connected graph on a surface of Euler genus g and
sufficiently large representativity.

10 Random and Pseudo-Random Graphs

For results on multiple Hamiltonian cycles, see Sect. 4.
Lee and Sudakov [149] combined random and density ideas.

Theorem 114 [149] For every ε > 0, there is a constant C = C(ε) such that for
p ≥ (C log n)/n asymptotically almost surely every subgraph with minimum degree
at least (1/2 + ε)np is Hamiltonian.

This result answered a question of Sudakov and Vu [193]. The constant 1/2 and
the range of p are both asymptotically best possible.

Another area that has blossomed is the study of resilience. Let P be a monotone
increasing graph property. Counting the minimum number of edges one needs to
remove from a graph G in order to destroy property P is called the global resilience of
G with respect to P (or the edit distance of G with respect to P). For some properties
like being Hamiltonian, removing all edges incident to a vertex of minimum degree
destroys the property and thus, yields a trivial upper bound on the global resilience.
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We seek better control. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two sequences
of n numbers. Write a ≤ b if ai ≤ bi for every 1 ≤ i ≤ n. Given a graph on vertex
set [n], we denote its degree sequence by degG = (degG (1), . . . , degG (n)).

Let k = (k1, k2, . . . , kn) be a sequence of integers. For an increasing monotone
graph property P we say the graph G = ([n], E) is k-resilient with respect to P if
for every subgraph H ⊂ G such that degH (i) ≤ ki for every 1 ≤ i ≤ n, the graph
G − H possesses property P .

The local resilience of G with respect to P is the minimum value of the maximum
degree of a non-k-resilient sequence and we denote this parameter

rl(G,P) = min { r : ∃H ⊂ G such that �(H) = r and G − H /∈ P}.

If G is Hamiltonian we will say G ∈ HAM . Sudakov and Vu [193] were one of the
first to study local resilience with respect to being Hamiltonian. Let G(n, p) denote
the usual binomial random graph introduced by Erdös and Rényi.

Theorem 115 [193] For all p > log4 n/n, the local resilience of G(n, p) with respect
to being Hamiltonian is (1/2 + o(1))np.

Ben-Shimon et al. [21] studied this idea for the property of being Hamiltonian.
For every constant ε > 0 and t > 0 define the (not necessarily integral) sequence
d̄ = (d̄1, . . . , d̄n) as follows:

1. d̄v = dv − 2 if deg v < t :
2. d̄v = dv(1/3 − ε) otherwise.

Theorem 116 [21] For every ε > 0 and p ≥ ln n + ln ln n+ω(1)
n , with high probability

G = ([n], E) ∈ G(n, p) with degree sequence d is d̄(
np
100 , ε)-resilient with respect to

being Hamiltonian.

Theorem 117 [21] If ln n+ln ln n+ω(1)
n ≤ p ≤ 1.02ln n

n and G ∈ G(n, p), then with
high probability rl(G,HAM) = δ − 1.

Theorem 118 [21] For every ε > 0 there exists a constant C = C(ε) > 0 such that
if p ≥ C ln n

n , then with high probability

rl(G(n, p),HAM) ≥ np

3
(1 − ε).

An interesting and fairly new class of random graphs has received considerable
attention recently. Let n, m be positive integers, 0 ≤ p ≤ 1. The random intersection
graph Gn,m,p is a probability space over the set of graphs on the vertex set {1, 2, . . . , n}
where each vertex is assigned a random subset from a fixed set of m elements. Each
edge arises between two vertices when their sets have at least one element in common.
Each random subset assigned to a vertex is determined by

Pr [vertex i chooses element j] = p

with these events mutually independent. This model was introduced by Karoński
et al. [123]. Hamiltonicity was studied first in [63].
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Theorem 119 [63] Let m = �nα�, and C1, C2 be sufficiently large constants. If p ≥
C1

log n
m for 0 < α < 1 or p ≥ C2

√
log n

m for α > 1 then almost all Gn,m,p are
Hamiltonian. The bounds are asymptotically tight.

The same authors extend their work in [64]. Here they study hamiltonicity of the
random intersection graph in the natural setting m = �nα� and establish a tight thresh-
old p = p(n, m) for hamiltonicity of Gn,m,p. This threshold is shown to satisfy

p = log n
m for α ∈ (0, 1) and p =

√
log n
nm for α > 1. Related results (somewhat more

accurate) were obtained by Rybarczk [185].
A somewhat different model studied independently in [27] and [168] is the follow-

ing: Consider a collection of n independent random subsets of [m] = {1, 2, . . . , m}
that are uniformly distributed in the class of subsets of size d. Call any two subsets
adjacent whenever they intersect. This defines a graph called the uniform random
intersection graph and we denote this by Gn,m,d . In [27] they fix d = 2, 3, . . . and
study when as n, m → ∞, the graph Gn,m,d contains a Hamiltonian cycle. They show
that

Pr(Gn,m,d ∈ HAM) = o(1) for d2nm−1 − ln ln m → −∞
and

Pr(Gn,m,d ∈ HAM) = 1 − o(1) for 2nm−1 − ln m − ln ln m → ∞.

Turning to random bipartite graphs (see also Sect. 10), Greenhill et al. [108] considered
random bipartite regular graphs. Let Bn,d be the space of bipartite graphs on 2n labelled
vertices {1, 2, . . . , 2n} which are d-regular, with each graph being equally likely to be
chosen. They prove a conjecture of Robinson and Wormald [177] that the probability
that a graph in Bn,d has �d/2� edge disjoint Hamiltonian cycles tends to 1 as n → ∞.
Further, if n is odd, the edges not in cycles form a perfect matching.

Frieze and Krivelevich [92] showed that for every constant 0 < p < 1, with high
probability almost all edges of G(n, p) can be packed into edge disjoint Hamiltonian
cycles. Further, they make the following conjecture.

Conjecture 13 [92] With high probability a random graph G(n, m) with n vertices
and m edges contains �δ/2� edge disjoint Hamiltonian cycles.

Knox et al. [129] extended the work of Frieze and Krivelevich [92] to essentially
the entire range of p.

Theorem 120 [129] For any ε > 0, there exists a constant C such that if p ≥
(C log n)/n, then with high probability G(n, p) contains (1 − ε)np/2 edge disjoint
Hamiltonian cycles.

Krivelevich and Samotji [133] considered the polylogarithmic range for p.

Theorem 121 [133] There exists a positive constant ε such that the following is true.
Assume that log n/n ≤ p(n) ≤ n−1+ε and G ∈ G(n, p). Then G asymptotically
almost surely (a.a.s) contains a collection of �δ(G)/2� edge disjoint Hamiltonian
cycles.
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Glebov and Krivelevich [98] were interested in estimating the number of Hamil-
tonian cycles in G(n, p) when it is a.a.s Hamiltonian. They showed the following:

Theorem 122 [98]

1. Let G ∈ G(n, p) with p ≥ ln n+ln ln n+ω(1)
n . Then the number of Hamiltonian

cycles is n!pn(1 − o(1))n a.a.s.
2. In the random graph process, at the very moment the minimum degree becomes

two, the number of Hamiltonian cycles becomes ( ln n
e )n(1 − o(1))n a.a.s

After [129], Kühn and Osthus [138] proved the conjecture in the range p(n) ≥
1 − log9 n/n1/4. This work resolves the conjecture.

In [93] it is shown that if H is a 3-uniform hypergraph on n vertices and H satisfies
a certain pseudo-randomness condition, and if n is divisible by 4, then H contains a
collection of edge disjoint tight Hamiltonian cycles which cover almost all the edges
of H . This has consequences for the random 3-uniform hypergraph Hn,p,3 which is
obtained by including each of the

(n
3

)
possible edges with probability p, independently.

Then if ε45np16 � log21 n and n is divisible by 4, then with high probability Hn,p,3
contains a collection of edge disjoint tight Hamiltonian cycles which together cover all
but at most ε1/15 n of the edges. These results have been extended by Bal and Frieze
[15] as follows. To do this we need the following definition.

Definition 3 We say an n-vertex k-graph H is (ε, p)-regular if the following holds:
Let d ∈ {1, 2, . . . , �} and let s ∈ {1, 2, . . . , 2z +2}, where z = �(k −�)/��. Given any
s distinct (k − d)-sets A1, A2, . . . , As such that | ∪i Ai | ≤ k + 2q, where (q = �z),
there are (1 ± ε) nd

d! ps sets of d vertices, D, such that all of A1 ∪ D, . . . , As ∪ D are
edges of H .

Note that (ε, p)-regular hypergraphs include random hypergraphs.

Theorem 123 [15] Let k and � < k/2 be given. Let α = 1/(9 + 7z3). Suppose that
n is a sufficiently large multiple of 2q and that ε, n and p satisfy

ε16z+12np8z � log8z+5n.

Let H be an (ε, p)-regular k-graph with n vertices. Then H contains a collection of
edge disjoint Hamiltonian �-cycles that contain all but at most an εα-fraction of the
edges.

In [13] the question of a Hamiltonian decomposition of the complete k-uniform
hypergraph of order n is discussed. The problem is connected to large sets of designs
and several approaches are explored, including clique-finding techniques and dif-
ference patterns. The paper concludes with a table of results for 5 ≤ n ≤ 16 and
2 ≤ k ≤ 14.

Recently, Ben-Shimon et al. [21] extended the range of p for graphs in G(n, p),
using their work on k-resilience.

Theorem 124 [21] If p ≤ 1.02 ln n
n , then with high probability, G ∈ G(n, p) contains

� δ(G)
2 � edge disjoint Hamiltonian cycles.
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Denote by Hδ the property that a graph G contains � δ(G)
2 � edge disjoint Hamiltonian

cycles. Frieze and Kivelevich [92] showed that if p ≤ (1+o(1))ln n
n , then with high

probability G(n, p) ∈ Hδ . They conjectured that this property is typical for the entire
range of p.

Conjecture 14 [92] For every 0 ≤ p(n) ≤ 1, with high probability G(n, p) has the
Hδ property.

Clearly, Theorem 124 extended the range for p.
Answering and old question on G3−out (a graph on n vertices in which each vertex

chooses three neighbors uniformly at random) Bohman and Frieze [28] show that the
probability that G3−out is Hamiltonian goes to 1 as n tends to ∞.

Three slightly different models of random geometric graphs were also investigated
for hamiltonicity. In each, points are randomly chosen within some square. Edges
are then randomly placed according to some rule. (See [164,16] and [54].) Random
threshold graphs were considered in [172]. Finally, random graphs with a given degree
sequence were studied in [51].

11 Special Topics

This section contains a number of interesting results that do not fit under the conditions
of the other sections.

We begin with an old conjecture due to Hendry. A graph is cycle extendable if for
every nonHamiltonian cycle C , there exists a cycle C ′ such that V (C) ⊂ V (C ′) and
|V (C ′)| = |V (C)| + 1. Also recall that a graph is chordal if every cycle of length at
least 4 has a chord. Hendry conjectured that every Hamiltonian chordal graph is cycle
extendable. Several result have been shown which lend support to this conjecture.
Jiang [119] showed the following:

Theorem 125 [119] Every planar Hamiltonian chordal graph is cycle extendable.

Two different proofs of the result for interval graphs were produced at the same
time.

Theorem 126 [2,44] Every Hamiltonian interval graph is cycle extendable.

In [2] it is also shown that split graphs are cycle extendable as well as some sub-
classes of strongly chordal graphs. A spider is a tree of which one and only one vertex
has degree exceeding 2. A spider intersection graph is that graph obtained from the
intersection of subgraphs of a spider. Recently, these last two results were extended
as follows:

Theorem 127 [3] Every Hamiltonian spider intersection graph is cycle extendable.

However, very recently, Lafond and Seamone [145] have produced a family of
clever counterexamples to the Hendry conjecture. To understand the examples we
need to define some terms. The clique sum of G and H (also called a clique pasting)
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Fig. 2 The base graph H for
counterexamples for Hendry’s
conjecture

is formed from the disjoint union of G and H by identifying pairs of vertices in these
two cliques to form a single clique. The counterexamples to Hendry’s conjecture are
built from the graph H shown in Fig. 2.

Now the cycle C : abchg f eda contains all the bold edges (called heavy edges). It
is straightforward to verify that there is no extension of this cycle that contains all the
heavy edges. It is also easy to see H is Hamiltonian. Now form graphs by pasting a
clique on each heavy edge. Thus, the graph formed has order at least 15, will still be
chordal and Hamiltonian, but since there is not extension of the cycle C , there exist
nonHamiltonian cycles in this new graph that are not extendable. Thus, the Hendry
conjecture is false.

A graph is called strongly chordal if it is chordal and every even cycle of length at
least six has a chord that connects vertices at an odd distance from one another along
the cycle. A graph G is fully cycle extendable if every vertex of G lies on a triangle and
for every nonHamiltonian cycle C , there is a cycle C ′ in G such that V (C) ⊂ V (C ′)
and |V (C ′)| = |V (C)|+1. Lafond and Seamone [145] asked the following questions:

Question 2 [145]

1. Is every strongly chordal graph fully cycle extendable?
2. Does there exist a value of k > 2 such that every k-connected Hamiltonian chordal

graph is cycle extendable?
3. Does there exist a value of t > 1 such that every t-tough chordal Hamiltonian

graph is cycle extendable?

Recall that a k-tree is defined as follows: Kk is the smallest k-tree and a graph on at
least k + 1 vertices is a k-tree if an only if it contains a simplicial vertex v with degree
k such that G − v is a k-tree.

Theorem 128 [35]

1. Let G �= K2 be a k-tree. Then G is Hamiltonian if and only if G contains a 1-tough
spanning 2-tree.
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2. If G �= K2 is a (k + 1)/3-tough k-tree (k ≥ 2), then G is Hamiltonian.

A graph is sep-chordal if it contains no separating chordless cycle of length at least
four. The following generalized a result in [29].

Theorem 129 [97] Every sep-chordal planar graph with toughness greater than one
is Hamiltonian.

The binding number of a graph G is defined as:

bind(G) = min { N (S)

|S| | ∅ �= S ⊆ V (G), N (S) �= V (G)}.

Woodal introduced binding number and showed that if bind(G) ≥ 3/2, then G is
Hamiltonian. This was generalized as follows:

Theorem 130 [19] Let b ≤ 3/2 and let G be a graph on n ≥ 3 vertices such that
bind(G) ≥ b and δ(G) ≥ 2−b

3−b n. Then G is Hamiltonian unless G = Gr + (r + 1)K2
or G = K1 + 2Kr for r ≥ 2, where Gr denotes an arbitrary graph on r vertices.

Theorem 131 [19] Let b ≤ 3/2 and let G be a 2-connected graph on n ≥ 3 vertices
such that bind(G) ≥ b and δ(G) ≥ 2−b

3−b n. Then G is pancyclic.
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