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a b s t r a c t

Given k ≥ 2 fixed positive integers p1, p2, . . . , pk−1 ≥ 2, and k vertices {x1, x2, . . . , xk}, let
G be a simple graph of sufficiently large order n. It is proved that if δ(G) ≥ (n + 2k − 2)/2,
then there is a Hamiltonian cycle C of G containing the vertices in order such that the
distance along C is dC (xi, xi+1) = pi for 1 ≤ i ≤ k − 1. Also, let {(xi, yi)|1 ≤ i ≤ k} be a set
of k disjoint pairs of vertices and a graph of sufficiently large graph n and p1, p2, . . . , pk ≥ 2
for k ≥ 2 fixed positive integers. It will be proved that if δ(G) ≥ (n+ 3k− 1)/2, then there
are k vertex disjoint paths Pi(xi, yi) of length pi for 1 ≤ i ≤ k.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Given an ordered set of vertices S = {x1, x2, . . . , xk} in a graph, there are a series of results giving minimum degree
conditions that imply the existence of a Hamiltonian cycle such that the vertices in S are located in order on the cycle
with restrictions on the distance between consecutive vertices of S. Examples include results by Kaneko and Yoshimoto [6],
Sárközy and Selkow [9], and Faudree, Gould, Jacobson, and Magnant [3]. In each of these results the distances on the
Hamiltonian cycle was close, by not precise relative to the predetermined objective. In the case of pairs of vertices, there are
results in which the distance between the vertices is precise by Faudree and Li [5] and Faudree, Lehel, and Yoshimoto [4].
The objective is to replace 2 by a fixed number k ≥ 3 of vertices that can be placed on a Hamiltonian cycle at precise
predetermined distances. However, in this case the distances will not be a positive fraction of the order of the Hamiltonian
cycle, as was true in some of the previous cases.

We deal only with finite simple graphs and our notation generally follows the notation of Chartrand and Lesniak in [1].
The connectivity of a graph G will be denoted by κ(G) and the independence number by α(G). A path (or cycle) with an
ordered set of vertices {x1, x2, . . . , xk} will be denoted by (x1, x2, . . . , xk) (or (x1, x2, . . . , xk, x1)). If xi is a vertex of a cycle
(path) then x+

i will denote the successor xi+1, and if S is a set of its vertices, then S+ will denote the set of all successors
of the vertices of S. The set S− of predecessors is defined similarly. Given a cycle C containing vertices x and y, let dC (x, y)
denote the distance between x and y on the cycle C . The set of all adjacencies of a vertex v ∈ G in S ⊂ G will be denoted by
NS(v), and we set dS(v) = |NS(v)|.

A graph G of order n is panconnected if between each pair of vertices x and y of G there is a path Pi(x, y) of length i for
each dG(x, y) ≤ i < n. Williamson [10] gave a minimum degree condition that implies a graph is panconnected.

Theorem 1 ([10]). If G is a graph of order n with δ(G) ≥ n/2 + 1, then for any 2 ≤ k ≤ n − 1 and for any vertices x and y,G
has a path from x to y of length k. �

We prove the following, which in some sense generalizes the result of Williamson [10].
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Fig. 1. Panconnected example.

Theorem 2. Let {p1, p2, . . . , pk−1} be a set of k − 1 integers each at least 2, and {x1, x2, . . . , xk} an ordered set of k vertices of
a graph G of order n. If

δ(G) ≥ (n + 2k − 2)/2,

then, there is an n0 = n0(k, p1, p2, . . . , pk−1) such that if n ≥ n0 there is a path P such that dP(xi, xi+1) = pi for 1 ≤ i ≤ k− 1.

The graph G in Fig. 1 implies that the degree condition in Theorem 2 is sharp, since if k vertices are all in one of the
complete graphs K2k−2 of G, there does not exist k − 1 paths of length 3 between consecutive pairs of these vertices.

The following conjecture of Enomoto [8] created research interest in placing vertices at precise distances on Hamiltonian
cycles.

Conjecture 1 ([8]). If G is a graph of order n ≥ 3 and δ(G) ≥ n/2 + 1, then for any pair of vertices x, y in G, there is a
Hamiltonian cycle C of G such that dC (x, y) = ⌊n/2⌋.

The following result of Faudree, Lehel, and Yoshimoto [4], which was motivated by the conjecture of Enomoto [8], deals
with locating a pair of vertices at a precise distance on a Hamiltonian cycle.

Theorem 3 ([4]). Let k ≥ 2 be a fixed positive integer. If G is a graph of order n ≥ 6k and δ(G) ≥ (n + 2)/2, then for any
vertices x and y,G has a Hamiltonian cycle C such that dC (x, y) = k.

This result along with Theorem 2 will be generalized in some sense in the following theorem, which will be proved.

Theorem 4. Let {p1, p2, . . . , pk−1} be a set of k − 1 integers and {x1, x2, . . . , xk} a fixed set of k ordered vertices in a graph G
of order n. If

δ(G) ≥ (n + 2k − 2)/2,

then, there is a n0 = n0(k, p1, p2, . . . , pk−1) such that if n ≥ n0, there is a Hamiltonian cycle C such that dC (xi, xi+1) = pi for
1 ≤ i ≤ k − 1.

Just as in the case of Theorem 2, Fig. 1 verifies that the degree condition of Theorem 4 is sharp.
For k ≥ 1 a graph G is k-linked, if given any set of k disjoint pairs of vertices {(xi, yi) | 1 ≤ i ≤ k}, there exist k vertex

disjoint paths P1(x1, y1), P2(x2, y2), . . . , Pk(xk, yk) between the k pairs of vertices.
The next theorem to be proved is a natural companion of Theorem 2.

Theorem 5. Let {(xi, yi) | 1 ≤ i ≤ k} be a set of k disjoint pairs of vertices in a graph G of order n, and let p1, p2, . . . , pk ≥ 2
and k ≥ 2 be fixed positive integers. If

δ(G) ≥ (n + 3k − 1)/2,

then, there is an n0 = n0(k, p1, p2, . . . , pk) such that if n ≥ n0, there are k vertex disjoint paths Pi(xi, yi) of length pi for
1 ≤ i ≤ k.

The graph G in Fig. 2 that follows implies that the degree condition in Theorem 5 is sharp, since if the 2k vertices in the
linkage are all in one of the K3k−1 complete graphs of G, there does not exist k paths of length 3 between the k pairs of these
vertices.

2. Proofs

Proof of Theorem 2. Let {x1, x2, . . . , xk} denote the k vertices and p1, p2, . . . , pk−1 the k − 1 integers each at least 2 with
p = (

k−1
i=1 pi) + 1. The proof will be by double induction, first on k and then on p. In the case when k = 2, the result is

just Theorem 1. The smallest value of p is 2(k − 1) + 1. Observe that each xi has at least (n + 2k − 2)/2 − (k − 1) = n/2
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Fig. 2. Linkage example.

adjacencies in G − {x1, x2, . . . , xk}. Thus, each xi and xi+1 have at least k common adjacencies in G − {x1, x2, . . . , xk}. Thus,
there is a path P(x1, xk) in which dP(xi, xi+1) = 2, so the theorem is true when p = 2(k − 1) + 1.
Case 1: Suppose p1 = 2. Since δ(G) ≥ (n + 2k − 2)/2, there is a vertex y ∉ {x1, x2, . . . , xk} such that x1y, yx2 ∈ G. Consider
the graph G′

= G − {x1, y}. Then G′ has n′
= n − 2 vertices and δ(G′) ≥ (n + 2k − 2)/2 − 2 = (n′

+ 2(k − 1) − 2)/2. Thus,
by induction on k there is a path P ′(x2, xk) such that dP ′(xi, xi+1) = pi for i ≥ 2. Thus, clearly there is a path P(x1, xk) in G
obtained from P ′ by adjoining the path (x1, y, x2). Hence we can assume that p1 > 2.
Case 2: Suppose p1 > 2. By inductionwe can assume there is a path P ′

= P ′(x1, xk)with p−1 vertices such that dP ′(x1, x2) =

p1 − 1 and dP ′(xi, xi+1) = pi for i ≥ 2. Let x1 = y1, y2, . . . , yp1 = x2 be the path from x1 to x2. Consider the neighborhoods
NG−P ′(yi) for 1 ≤ i ≤ p1 and observe that if Ni = NG−P ′(yi), then |Ni| ≥ (n + 2k − 2)/2 − (p − 2) ≥ (n + 2k + 2)/2 − p.
If Ni ∩ Ni+1 ≠ ∅, then the path from x1 to x2 can be lengthened by 1, giving the required path. Hence, we can assume that
Ni ∩Ni+1 = ∅. This implies that |Ni ∩Ni+2| ≥ (n+ 6k− 4p+ 4)/2, and also there are no edges in Ni ∩Ni+2, since this would
allow the path from x1 to x2 to be lengthened. This implies there is a nearly complete bipartite graph between Ni ∩Ni+2 and
Ni+1. More generally, we can define the two setsNo andNe such that the intersection of the adjacencies of yi for i odd outside
of P ′ are in No and the intersection of the adjacencies of yi for i even outside of P ′ are in Ne. Also, there are no edges in No or
Ne and there is a nearly complete bipartite graph between No and Ne. For each vertex y ∈ N1, there is a path (x1, z, y) from
x1 to y avoiding the vertices {x2, x3, . . . , xk}. One of the following two subcases will occur. There will be at least p such paths
that are disjoint except for the initial vertex x1, or there will be at least p such paths of the form (x1, z, y) where the x1 and
z are fixed and the y are different. Using the dense bipartite graph between No and Ne this implies in the first subcase that
there are more than p paths of length p1 from x1 to x2 whose interior vertices are disjoint. In the second case this implies
there are more than p paths of length p1 from x1 to x2 whose interior vertices are disjoint except for z. Consider the graph
G′

= G−{x1} in the first subcase and G′
= G−{x1, z} in the second subcase. By the induction assumption on p there is a path

P ′′(x2, xk) with the desired properties. Since P ′′ has less than p vertices, one of the vertex disjoint paths from x1 to x2 will be
disjoint from P ′′ and so can be appended to P ′′ to get the required path P(x1, xk). This completes the proof of Theorem 2. �

The following proof has the same structure as the proof of Theorem 2, and so less detail will be given in this proof because
of the similarity.

Proof of Theorem 5. Let {x1, y1}, {x2, y2}, . . . , {xk, yk} denote the k pairs of vertices and p1, p2, . . . , pk the k integers each
at least 2 with p = (

k
i=1 pi)+ k. The proof will be by double induction, first on k and then on p. In the case when k = 1, the

result is just Theorem 1. The smallest value of p is 3k. Observe that each xi and yi has at least (n+3k−1)/2−2(k−1)−1 =

(n − k + 1)/2 adjacencies in G − {x1, y1, x2, y2, . . . , xk, yk}. Thus, each xi and yi have at least k common adjacencies in
G−{x1, y1, x2, y2 · · · , xk, yk}. Hence, there is system of vertex disjoint paths P(x1, y1), P(x2, y2), . . . , P(xk, yk) each of length
2, 1 ≤ i ≤ k. Thus, the theorem is true when p = 3k.
Case 1: Suppose p1 = 2. Since δ(G) ≥ (n+ 3k− 1)/2, there is a vertex z ∉ {x1, y1, x2, y2, . . . , xk, yk} such that x1z, zy1 ∈ G.
Consider the graphG′

= G−{x1, z, y1}. ThenG′ has n′
= n−3 vertices and δ(G′) ≥ (n+3k−1)/2−3 = (n′

−3(k−1)−1)/2.
Thus, by induction on k there is a system of paths P ′

= {P(x2, y2), P(x3, y3), . . . , P(xk, yk)} such that dP ′(xi, yi) = pi for i ≥ 2.
Thus, clearly the required path system in G is obtained from P ′ by adding the path (x1, z, y1) to the system. Hence we can
assume that p1 > 2.
Case 2: Suppose p1 > 2. By the induction assumption we can assume there is a path system P ′ with p − 1 vertices, such
that the respective path lengths are p1 − 1, p2, . . . , pk. Let x1 = w1, w2, . . . , wp1 = y1 be the path from x1 to y1. Consider
the neighborhoods NG−P ′(wi) for 1 ≤ i ≤ p1 and observe that if Ni = NG−P ′(wi), then |Ni| ≥ (n + 3k − 1)/2 − (p − 2) ≥

(n+ 3k+ 3)/2− p. If Ni ∩Ni+1 ≠ ∅, then the path from x1 to y1 can be lengthened by 1, giving the required path from x1 to
y1. Hence, we can assume that Ni ∩Ni+1 = ∅. This implies that |Ni ∩Ni+2| ≥ (n+9k+7)/2−2p, and also there are no edges
in Ni ∩ Ni+2, since this would allow the path from x1 to x2 to be lengthened by one. This implies there is a nearly complete
bipartite graph between Ni ∩ Ni+2 and Ni+1. More generally, there are two sets No and Ne such that all the adjacencies of yi
for i odd outside of P ′ are in No and all the adjacencies of yi for i even outside of P ′ are in Ne. Also, there are no edges in No or
Ne and there is a nearly complete bipartite graph between No and Ne. For each vertex w ∈ N1, there is a path (x1, z, w) from
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x1 to w which is disjoint from {y1, x2, y2, . . . , xk, yk}. One of the following two subcases will occur. There will be at least p
such paths that are disjoint except for the initial vertex x1, or there will be at least p such paths of the form (x1, z, w) where
the x1 and z are fixed and the w are different. Using the dense bipartite graph between No and Ne this implies in the first
subcase that there are more than p paths of length p1 from x1 to y1 whose interior vertices are disjoint. In the second case
this implies there are more than p paths of length p1 from x1 to y1 whose interior vertices are disjoint except for z. Consider
the graph G′

= G− {x1, y1} in the first subcase and G′
= G− {x1, z, y1} in the second subcase. By the induction assumption

applied to G′ there is a path system P ′′ containing k − 1 vertex disjoint paths from xi to yi for 2 ≤ i ≤ k of the required
lengths. Since P ′′ has less than p vertices, one of the vertex disjoint paths from x1 to y1 will be disjoint from P ′′ and so can
be added to P ′′ to get the required path system. This completes the proof of Theorem 5. �

Before giving the proof of Theorem 4, some additional results needed in the proof will be stated and some proved.
We will use a classical result from Nash-Williams [7] on dominating cycles. A cycle C is called a dominating cycle in G if

G − C is an independent set.

Theorem 6 ([7]). Let G be a 2-connected graph on n verticeswith δ(G) ≥ (n+2)/3. Then, every longest cycle of G is a dominating
cycle. �

Theminimumdegree condition δ(G) ≥ (n+2k−2)/2 in a graph of order n forces a relationship between the connectivity
and the independence number, which the following result gives.

Lemma 1. If G is a graph of order n with δ(G) ≥ (n + 2k − 2)/2 + 1, then κ(G) ≥ α(G).

Proof of Lemma 1. Let κ(G) = s, and let S be a minimum cut set of G, so that |S| = s. Let H1 and H2 be the components
of G − S, with h1 and h2 vertices, respectively. Let H∗

i be the subgraph spanned by Hi ∪ S, for i = 1, 2. For i = 1 or 2, any
independent set in H∗

i with a vertex in Hi will have at most hi + s − ((n + 2k − 2)/2) vertices. Hence, any independent set
in G containing a vertex in H1 or H2 will have at most h1 + h2 + 2s− (2(n+ 2k− 2)/2) ≤ s vertices. Since S cannot contain
an independent set with more than s vertices, α(G) ≤ s = κ(G) follows. �

In the following proof given a fixed k vertices x1, x2, . . . , xk and fixed integers p1, p2, . . . , pk−1 each at least 2, then a path
P = P(x1, xk) containing {x1, x2, . . . , xk} in order such that dP(xi, xi+1) = pi will be called a good path. A cycle containing a
good path will be called a good cycle of G. A good path will contain p = (

k−1
i=1 pi) + 1 vertices.

Proof of Theorem 4. Let x1, x2, . . . , xk be a fixed set of k vertices of G, p1, p2, . . . , pk−1 be a fixed set of k − 1 integers each
at least 2, and p = (

k−1
i=1 pi) + 1.

Since δ(G) ≥ (n + 2k − 2)/2, κ(G) ≥ 2k. If κ(G) = 2k, then it follows immediately that G = S + (K(n−2k)/2 ∪ K(n−2k)/2),
where S ⊆ K2k. With n being sufficiently large, it is straightforward to construct the required Hamiltonian cycle that is good.
Hence, we will assume from this point on that κ(G) ≥ 2k + 1.

We will first prove the following claim.

Claim 1. There is a good path P in G such that κ(G − P) ≥ 2.

Theorem 2 implies there is a good path P with p+1 vertices. If κ(G) ≥ p+3, then, κ(G−P) ≥ 2, which verifies the claim.
Thus,we can assume that 2k+1 ≤ κ(G) ≤ p+2, and soG has aminimumcutset S of order s, 2k+1 ≤ s ≤ p+2. LetH1,H2 be
the connected components of G−S, and so δ(H1), δ(H2) ≥ (n+2k−2)/2−s and (n+2k)/2−s ≤ |H1| ≤ |H2| ≤ (n−2k)/2.
Since p is fixed andn is sufficiently large, this implies that bothH1 andH2 are nearly complete graphs. Also, there is amatching
with s edges between S and each of the Hi. Also, each of the vertices of S will have a large number of adjacencies in either H1
or H2 or possibly both. In building the k− 1 subpaths that make up the good path P in G, there are several cases to consider:
both endvertices are in some Hi, endvertices are in different Hi, or at least one of the endvertices is in S. However, in each of
these cases it is straightforward to show that the subpath can be constructed using at most one vertex of S in the interior of
the path. Also, one can avoid a fixed neighbor of a vertex in S in building these paths, since H1 and H2 are so dense. Thus, a
good path P can be constructed using at most s′ ≤ k+ (k− 1) vertices of S. Thus, G− P would contain two nearly complete
graphs with (s − s′) ≥ 2 disjoint paths of length 2 between the two nearly complete graphs. Hence, κ(G − P) ≥ 2. This
proves Claim 1. �

Consider the graph H = G − P , where P is good path with p + 1 vertices. Since H is 2-connected and δ(H) ≥

(n + 2k − 2)/2 − p = (n + 2k − 2p − 2)/2, by Dirac’s Theorem [2] H has a cycle C of length at least n + 2k − 2p − 2. Also,
by theorem [7] this cycle is a dominating cycle. Thus, G − P − C is an independent set with at most p − 2k + 3 vertices.

Claim 2. There is a good cycle in G of length at least n + 2k − p − 2.

Consider the case when x1 and xk of the path P have no neighbors in the independent set G − C , and so dC (xi) ≥

(n + 2k − 2p − 2)/2, for i = 1, k. If there exist a neighbor of x1 and a neighbor of xk which are consecutive on C , then
P and C join into a good cycle of length at least n+2k−p−2 that misses the independent set G−C , and thus is dominating.
If a neighbor of x1 and a neighbor of xk are never consecutive on C , then a good cycle can be formed by selecting a neighbor
of xk closest to a neighbor of x1 on C , whichwill yield a cycle of length at least 2(n+2k−2p−2)/2+p = n+2k−p−2. If x1
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or xk has an adjacency in G− C , say x′

1 or x
′

k, then this longer path P ′ with endvertices x′

1 or x
′

k, can be used as in the previous
argument to insert P ′ into C to obtain a good cycle of the same length or longer. This completes the proof of Claim 2. �

Claim 3. If C is a longest good cycle and it has length at least n + 2k − p − 2, then C is a dominating good cycle.

Let C = P ∪ Q be a good cycle of maximum lengthm ≥ n + 2k − p − 2, where P is the good path on p + 1 vertices from
x1 to xk, and Q is the path from xk to x1 withm − p + 1 vertices. Assume that H = G − C is not independent. Let u and v be
endvertices of a longest path in H . By the maximality of C , neither u nor v can be adjacent to consecutive vertices of Q , and
also any adjacency of u onQ implies that v is not adjacent to any vertex ofQ within a distance 2 of this adjacency. Each vertex
ofH has at least (n+2k−2)/2−(n−m)+1 adjacencies in C , and so dC (v) ≥ m−n/2+k. Also, dQ (u) ≥ m−n/2+k−p+2.
If uz ∈ G for z ∈ Q , then vz+, vz++

∉ G except for two vertices at the end of the path Q , since this would result in a longer
cycle than C ′. This implies that dC (v) ≤ m − 2(m − n/2 + k − p), which gives the following inequality:

m − n/2 + k ≤ dC (v) ≤ m − 2(m − n/2 + k − p).

This results in m ≤ 3n/4 − 3k/2 + p, which is in contradiction to the fact that m ≥ n + 2k − p − 2, since p and k are fixed
and n is sufficiently large. Thus, we can assume that H is an independent set. This completes the proof of Claim 3. �

Claim 4. If P is a good path in a graph G with α(G) ≥ (n+ 2k− 2p− 2)/2 and δ(G) ≥ (n+ 2k− 2)/2, then P can be inserted
into a dominating good cycle of G.

Since α(G) ≥ (n + 2k − 2p − 2)/2 and δ(G) ≥ (n + 2k − 2)/2, Lemma 1 implies that κ(G) ≥ α(G) ≥ p + 3. Therefore,
G − P is 2-connected. Therefore, by Claims 1–3, P can be inserted into a good cycle of length at least n + 2k − p − 2. This
completes the proof of Claim 4. �

By Claims 1–3, G has a dominating good cycle C = P ∪ Q of maximum length m ≥ n + 2k − p − 2, where P is a good
path from x1 to xk,Q is a path from xk to x1, and H = G − C is an independent set. Given any w ∈ H , the maximality of C
implies that w cannot be adjacent to two consecutive vertices of Q . Moreover, A(w) = N+

Q−x1
(w) ∪ {w} is an independent

set, since any adjacency within A(w) would result in a longer good cycle including w.
Observe that every w′

∈ H − A(w) has at most one adjacency in A(w), for otherwise a good cycle could be formed
including w and w′. Therefore each w′ can either be added to A(w) or can replace its only neighbor in A(w). In this way we
obtain an independent set A(H) containing H such that |A(H)| ≥ |A(w)| = |NQ−x1(w)| + 1 ≥ (dG(w) − dP−xk(w)) + 1 ≥

(n + 2k − 2p − 2)/2.
For w ∈ H , let U(w) = N+

Q (w) ∩ N−

Q (w). If u ∈ U(w), then w is interchangeable with u to obtain a good cycle C ′ that
includes w and excludes u. This C ′ is dominating, provided H ′

= (H − w) + u is independent. However, any edge between
u and H − w results in a cycle C ′ of the same maximum length that is not dominating, contradicting Claim 3. Thus we
conclude that U(w) ⊆ A(H). Since dQ (w) ≥ (n + 2k − 2)/2 − p + 2 = (n + 2k − 2p + 2)/2, and |Q | ≤ n − p, we have
|U(w)| ≥ 3(dQ (w) − 1) − |Q | ≥ 3((n + 2k − 2p + 2)/2) − (n − p) = (n + 6k + 6 − 4p)/2. Consequently there are more
than (n + 6k + 6 − 4p)/2 vertices of C that might play the role of a given w ∈ H in the independent set A(H). For a given
maximum length dominating good cycle C , let A = A(C) be an independent set of maximum order containing H = G − C .

Our next objective is to find a good path P∗ that contains as many vertices of A as is possible. We say that P∗ is saturated
by A. Recall that the path P∗ consists of k − 1 subpaths Pi from xi to xi+1 of length pi for 1 ≤ i ≤ k − 1. Thus, actually the
objective is to saturate each of these subpaths, since the vertices in {x1, x2, . . . , xk} are fixed. In selecting the path Pi of length
pi from xi to xi+1 there are 3 cases to be considered: A contains 0, 1 or 2 vertices of {xi, xi+1}. Observe that any pair of vertices
of G has at least 2k − 2 common adjacencies, a pair of non-adjacent vertices has at least 2k common adjacencies, and the
vertices in A have nearly n/2 common adjacencies. Also, observe that for any s+ 1 < pi vertices of A, there is a path P ′ with
2s + 1 vertices, such that vertices of P ′ alternate between A and A starting with and ending with predetermined vertices of
A. This is a consequence of the fact that each pair of vertices of A have nearly n/2 common adjacencies. To obtain a path P ′

with 2s + 2 vertices such that s of the vertices are in A and s are in A, some edge with both vertices in A can be inserted in
the path between the neighborhoods of 2 vertices of A. If x (or y) is not in A, then x (or y) is adjacent to a vertex in A. Observe
also that any parity issues that arise in the paths can be handled, since each pair of vertices in G has at least 2k− 2 common
adjacencies. Using these observations, the following can easily be verified for each of the paths Pi.
Case (1) xi, xi+1 ∈ A: If pi is odd, then Pi can be chosen such that |Pi ∩ A| ≥ (pi + 1)/2, and if pi is even, |Pi ∩ A| ≥ (pi + 2)/2.
Case (2) xi ∈ A, xi+1 ∉ A: If pi is odd, then Pi can be chosen such that |Pi ∩ A| ≥ (pi + 1)/2, and if pi is even, |Pi ∩ A| ≥ pi/2.
Case (3) xi, xi+1 ∉ A: If pi is odd, then Pi can be chosen such that |Pi ∩ A| ≥ (pi − 1)/2, and if pi is even, |Pi ∩ A| ≥ pi/2.

Thus, the good path P∗ will contain as many as
k−1

i=1 (pi − 1)/2 = (p − 1)/2 − (k − 1)/2 = (p − k)/2 vertices in A.
Hence any vertex in Awill have at most (p + k + 2)/2 adjacencies in P∗.

Let C∗ be a maximum length dominating good cycle containing P∗, that is given by Claim 4. Set C∗
= P∗

∪ Q ∗ and
H∗

= G−C∗. Assume that |C∗
| = m < n. Consider the casewhen there is aw ∈ H∗

∩A. Observe that dP∗(w) ≤ (p+k+2)/2,
and dQ∗(w) ≤ (m − p)/2. This gives the following inequality

(n + 2k − 2)/2 ≤ dG(w) = (p + k + 2)/2 + (m − p)/2 ≤ (n − 1 + k + 2)/2,

a contradiction. Thus, w ∉ A. Let B = A(C∗) be a maximum independent set containing H∗ which also has at least
(n+2k−2p−2)/2vertices. However, since there are at least (n+6k+6−4p)/2vertices that canplay the role ofw, there are at
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least (n+6k+6−4p)/2 vertices of B that are not inA. Thus, |A∪B| ≥ (n+2k−2p−2)/2+(n+6k+6−4p)/2 = n+4k−3p+2.
Hence, if u ∈ A ∩ B, then dG(u) ≤ 3p − 4k − 2, a contradiction. Thus, we can conclude that A ∩ B = ∅.

Our next step is to find a good path P∗∗ that contains as many vertices of A ∪ B as possible. The paths are obtained in
the same way as the paths that were saturated in A, except the paths in P∗∗ will mainly alternate between A and B with
some vertices in G− (A∪ B). As before, let C∗∗ be a maximum length dominating good cycle containing P∗∗ that is given by
Claim 4. Set C∗∗

= P∗∗
∪ Q ∗∗,H∗∗

= G − C∗∗ and assume that w ∈ H∗∗
∩ (A ∪ B). A repeat of the previous argument with

P∗ and C∗ implies that w ∉ A ∪ B. Thus, there is a disjoint independent set which we will denote by D relative to C∗∗. The
set D corresponds to the disjoint independent sets A and B relative to C and C∗ respectively. Each of these sets has at least
(n + 2k − 2p − 2)/2 vertices, which implies 3(n + 2k − 2p − 2)/2 ≤ n, or equivalently n ≤ 2p − 2k + 2, a contradiction.
This completes the proof of Theorem 4. �

3. Questions

There are many natural open questions left from these results. However, the major one is the following:

Question 1. In Theorems 2, 4 and 5 can the condition that n is sufficiently large be removed or at least reduced?
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