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a b s t r a c t

A graph G is pancyclic if it contains cycles of each length ℓ, 3 ≤ ℓ ≤ |V (G)|. The generalized
bull B(i, j) is obtained by associating one endpoint of each of the paths Pi+1 and Pj+1 with
distinct vertices of a triangle. Gould, Łuczak and Pfender (2004) [4] showed that if G is a
3-connected {K1,3, B(i, j)}-free graph with i + j = 4 then G is pancyclic. In this paper, we
prove that every 4-connected, claw-free, B(i, j)-free graph with i + j = 6 is pancyclic. As
the line graph of the Petersen graph is B(i, j)-free for any i+ j = 7 and is not pancyclic, this
result is best possible.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are simple. A graph G is hamiltonian if it contains a spanning cycle, and is pancyclic if it contains
cycles of each length ℓ, 3 ≤ ℓ ≤ |V (G)|. We consider all cycles to have an implicit clockwise orientation. With this in
mind, given a cycle C and a vertex x on C , we let x+ denote the successor of x under this orientation and let x− denote the
predecessor. We define x+i recursively with x+1

= x+ and x+(i+1)
= (x+i)+ for i > 1 and define x−i analogously. For any

other vertex y on C , we let xCy denote the path from x to y on C in the clockwise direction of the orientation and xC−y denote
the path from x to y on C in the counterclockwise direction.When convenient, wewill also let C(x, y) denote V (x+Cy−), that
is, the set of vertices lying between x and y on C when traversed in the clockwise direction. We will use the term arc to
describe these paths on a cycle. Given a subgraph H of G and a vertex v ∈ G − H , by a v − H path we mean a path P with
endpoints v and w ∈ H such that P ∩ H = {w}. For a set of vertices A in G and a subgraph H of G, we let NG(A) denote the
neighborhood of A in G andNH(A) denote the neighborhood of A inH . When A = {x}, wewriteNG(x) andNH(x), respectively.
Furthermore let dG(x) = |NG(x)| and dH(x) = |NH(x)|.

Given a family F of graphs, a graph G is said to be F -free if G contains no member of F as an induced subgraph. If
F = {K1,3}, then G is said to be claw-free. The net, N , is the graph obtained by attaching a pendant vertex to each vertex in
a triangle. The generalized net N(i, j, k) is obtained by associating one endpoint of each of the paths Pi+1, Pj+1 and Pk+1 with
distinct vertices of a triangle. We refer to the generalized net N(i, j, 0) as the generalized bull, and denote this by B(i, j).

The following well-known conjecture of Matthews and Sumner [8] has provided the impetus for a great deal of research
into the hamiltonicity of claw-free graphs.
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Fig. 1. The line graph of the Petersen graph.

Conjecture 1.1 (The Matthews–Sumner Conjecture). If G is a 4-connected claw-free graph, then G is hamiltonian.

In [10] Ryjáček demonstrated that this was equivalent to a conjecture of Thomassen [14] that every 4-connected line
graph is hamiltonian. Also in [10], Ryjáček showed that every 7-connected, claw-free graph is hamiltonian. More recently,
in [6], Kaiser and Vrána showed that every 5-connected claw-free graph Gwith minimum degree at least six is hamiltonian,
which currently represents the best general progress towards affirming Conjecture 1.1. As the general conjecture has proven
difficult, a number of authors have considered the hamiltonicity of {K1,3,G′

}-free graphs for various choices of G′. These
include proofs that every 4-connected {K1,3,H}-free graph is hamiltonian when H is the hourglass [1] or a chain of three
triangles [9], as well as results that any 3-connected {K1,3, P11}-free [15] graph is hamiltonian.

In this paper, we are not only interested in the hamiltonicity of highly connected claw-free graphs, but also in their
pancyclicity. Significantly fewer results of this type can be found in the literature, in part because it has been shown inmany
cases [11,12] that closure techniques such as those in [10] do not apply to pancyclicity.

In [13], Shepherd showed the following, which extended a well-known result of Duffus, Gould and Jacobson [2].

Theorem 1.2. Every 3-connected, {K1,3,N}-free graph is pancyclic.

Gould, Łuczak and Pfender [4] obtained the following characterization of forbidden pairs of subgraphs that imply
pancyclicity in 3-connected graphs. Here Ł denotes the graph obtained by connecting two disjoint triangles with a single
edge.

Theorem 1.3. Let X and Y be connected graphs on at least three vertices such that neither X nor Y are P3 and Y is not K1,3. Then
the following statements are equivalent:
1. Every 3-connected {X, Y }-free graph G is pancyclic.
2. X = K1,3 and Y is a subgraph of one of the graphs from the family

F = {P7, Ł, B(4, 0), B(3, 1), B(2, 2),N(2, 1, 1)}.

The Matthews–Sumner conjecture and Theorem 1.3 together inspire the following general question.

Problem 1. Characterize those pairs of graphs (X, Y ) such that every 4-connected, (X, Y )-free graph is pancyclic.

In [3], the following was shown.

Theorem 1.4. Every 4-connected, claw-free, P10-free graph is either pancyclic or is the line graph of the Petersen graph.
Consequently, every 4-connected, claw-free, P9-free graph is pancyclic.

The line graph of the Petersen graph is 4-connected and contains no cycle of length 4 (see Fig. 1).
The main result of this paper is the following, which represents new progress towards Problem 1.

Theorem 1.5. Every 4-connected {K1,3, B(i, j)}-free graph, where i + j = 6, is pancyclic.

As the line graph of the Petersen graph is B(i, j)-free for all i + j = 7, this result is best possible in the sense that the
condition on i + j could not be increased.

2. Proof of Theorem 1.5

Before we proceed, we introduce some additional notation. For the remainder of the paper, we will let ⟨w + xyz⟩
denote a K1,3 in G, induced or otherwise, with center vertex w and pendant vertices x, y and z. Also, we let
N(xyz; x1 · · · xi, y1 · · · yj, z1 · · · zk)denote a copyofN(i, j, k)with central triangle xyz and appendedpaths xx1 · · · xi, yy1 · · · yj,
and zz1 · · · zk. A copy of the bull B(i, j) is denoted B(xyz; x1 · · · xi, y1 · · · yj) where xyz is the central triangle with appended
paths xx1 · · · xi and yy1 · · · yj.
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The following two results allow us to establish the hamiltonicity of the graphs under consideration.

Theorem 2.1 (Hu and Lin [5]). If G is a 3-connected, {K1,3,N(5, 2, 2)}- or {K1,3,N(4, 3, 2)}-free graph, then G is hamiltonian.

Theorem 2.2 (Lai et al. [7]). If G is a 3-connected, {K1,3,N(8, 0, 0)}-free graph, then G is hamiltonian.

By these results, we immediately get the following corollary which provides hamiltonicity of all graphs considered in
this paper.

Corollary 2.3. If G is a 3-connected, {K1,3, B(6, 0)}-, {K1,3, B(5, 1)}-, {K1,3, B(4, 2)}-or {K1,3, B(3, 3)}-free graph, then G is
hamiltonian.

Our strategy for the proof of Theorem 1.5 is to show that for t ≥ 4 the presence of a t-cycle in our graph implies the
existence of a (t − 1)-cycle. In the absence of such a cycle, we show that the graph contains either an induced K1,3 or each
of B(6, 0), B(5, 1), B(4, 2) and B(3, 3). Given a cycle C , an edge xy ∉ C with x, y ∈ V (C) is called a chord of C , and x and y
are called chordal vertices of C . A hop is a chord xy of C where there is exactly one vertex between x and y on C .

Lemma 2.4. Let G be a 4-connected K1,3-free graph containing a cycle C of length t ≥ 4. If C has a chord or if there is a vertex
w ∈ G \ C with at least 4 neighbors on C, then G contains another cycle C ′ of length t − 1.

Proof. Given a cycle C , a path P with endpoints x and y such that V (P) ∩ V (C) = {x, y} shortens xCy if |V (P)| < |xCy|. In
this case we say that P is a shortening path that covers the arc xCy. Note that a chord of C is certainly a shortening path, but
other paths may be as well. Let X denote the set of vertices on C that are not incident to a chord of C , and call any vertex in
V (C) − X a chordal vertex of C .

Let C be a cycle as given in the statement of the lemma and note that we may assume C has no hops. We would now like
to show that there exist a pair of (not necessarily disjoint) shortening paths of C , each of length at most two, that shorten
disjoint arcs of C . Recall that either C has a chord, or there is some vertexw ∈ G−C such that dC (w) ≥ 4. Assume the latter,
and note that since G is claw-free and has no hops, each vertex with a neighbor x on C must also be adjacent to either x+

or x−. The assumption that dC (w) ≥ 4 implies that there must be two pairs of vertices in NC (w) that are consecutive on C .
Let w1, w

+

1 , w2 and w+

2 denote these vertices, and note that w2 is neither w+2
1 nor w+3

1 and similarly that w1 is neither w+2
2

nor w+3
2 as any of these possibilities results in a cycle of length t − 1 in G. Thus w1ww+

2 and w+

1 ww2 comprise the desired
shortening paths.

If there is no vertex outside C with four neighbors, then by the conditions of the lemma, C must have at least one chord.
Among all chords of C , choose the chord xy so that |xCy| is a minimum.Wewill show that we can either find a cycle of length
t − 1 or that there are in fact two vertex-disjoint, non-crossing chords. Now, to avoid the induced claw ⟨y + y−xy+

⟩, we
must have that xy+

∈ E(G) as the edge xy− would create a chord with |xCy−
| < |xCy|. Similarly, to avoid the induced claw

⟨x+ x−yx+
⟩, we have x−y ∈ E(G). To avoid the induced claw ⟨y+ y−x−y+

⟩, either x−y−
∈ E(G) or x−y+

∈ E(G) since C has
no hops. If x−y−

∈ E(G), then the cycle x−y−C−xy+Cx− is the desired cycle of length t −1. If x−y−
∉ E(G) and x−y+

∈ E(G),
then the chords xy and x−y+ are the desired vertex-disjoint, non-crossing chords. Note that we can consider these chords
as shortening paths that cover disjoint arcs of C .

We now select two shortening paths PL and PR of length at most two which cover disjoint arcs of C . Let xL and yL
(respectively xR and yR) denote the endpoints of PL (resp. PR). In particular, assume that xR, yR, xL and yL appear in that
order when C is traversed in the clockwise direction where xRyR ∉ E(G) and xLyL ∉ E(G). We select PL and PR such that
|xLCyL ∩ X | + |xRCyR ∩ X | is minimum and, subject to this, such that |xLCyL| + |xRCyR| is minimum. As each chord of C is a
shortening path, this implies that there is no chord of C with both endpoints in xRCyR, with the possible exception of xRyR,
and we may draw a similar conclusion about xLCyL. Finally, without loss of generality suppose that xRCyR contains at least
as many vertices of X as xLCyL.

Now, let CL denote the cycle yLCxLPLyL, that is, the shortening of C obtained via PL. Recall that every chordal vertex in xLCyL
must have a neighbor in y+

L Cx
−

L . Thus, as G is claw-free and C has no hops, any chordal vertex x in xLCyL must be adjacent
to some vertices y and y+ in yLCxL. Thus, it is possible to increase the length of CL by one by inserting x between y and y+.
Inserting all chordal vertices from xLCyL into CL allows the creation of cycles of lengths |CL| to t − |xLCyL ∩ X |. If no vertices
in xLCyL are also in X , then this allows us to construct a t − 1 cycle in G. Thus, we may assume that xLCyL ∩ X is nonempty,
and recall that since xRCyR contains at least as many vertices of X as xLCyL, |CL ∩ X | ≥ |xLCyL ∩ X |.

We now proceed to extend CL using vertices in G − C . Since G has minimum degree at least four, each vertex in X has at
least two neighbors in G − C . We also claim that by the minimality conditions placed on PL and PR, every vertex of G − C
can be adjacent to at most three vertices in xRCyR as otherwise there would be a shortening path with one of xRCyR ∩ X or
xRCyR having smaller cardinality. Further, suppose v ∈ G − C has three neighbors in X covered by xRCyR. Either these three
neighbors are consecutive or there is a shortening path that contradicts the minimality of PR. Furthermore, v has no other
neighbors in C since otherwise G contains an induced claw or v has four consecutive neighbors on C .

Let X ∩ xRCyR = {x1, x2, . . . , xl} for some l which by assumption satisfies l ≥ |xLCyL ∩ X |. Note that each vertex xi has
at least two neighbors in G − C and each of these neighbors is adjacent to either x−

i or x+

i . We claim that one vertex from
G − C can be inserted into CL for each vertex of X ∩ xRCyR (which allows us to find cycles of all lengths from t − |xLCyL|
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up to our desired length of t − 1). Since each xi has at least two neighbors in G − C that could be inserted, the only way
that it is not possible to insert distinct vertices for each xi is if there are consecutive vertices x−, x and x+ on C such that
NG−C (x−, x, x+) = {u, v} for some u, v in G − C . Since G is claw-free, we immediately have that uv is an edge in G, and that
u and v have no other neighbors on C . Now, assume that without loss of generality u has some neighbor u′

≠ v in G − C .
As C is hop-free, the claw ⟨u + u′x−x+

⟩ implies that u′x− or u′v+ is an edge in G, which contradicts our assumption that
NG−C (x−, x, x+) = {u, v}. Consequently, the set {x−, x, x+

} is a cut of size three in G, which contradicts our assumption that
G is 4-connected. This completes the proof. �

From this result we immediately get the following corollary.

Corollary 2.5. If G is 4-connected and {B, K1,3}-free where B is one of B(6, 0), B(5, 1), B(4, 2) or B(3, 3) then G is pancyclic
provided all cycles of length at least four contain chords.

We now present some results which will allow us to focus strictly on finding short cycles in order to prove that G is
pancyclic.

The first lemma takes advantage of the fact that, via Corollary 2.5, G must contain induced cycles. We omit the proof as
it is standard.

Lemma 2.6. Let C = Ct be an induced cycle in a K1,3-free graph G with t ≥ 9. If there exists a vertex w ∈ G − C with exactly
two neighbors on C then G contains an induced B(6, 0), B(5, 1), B(4, 2) and B(3, 3).

The following lemma allows us to find a shorter cycle when a vertex has three or more neighbors on an induced cycle.

Lemma 2.7. Let C = Ct for t ≥ 6 be an induced cycle in a 4-connected K1,3-free graph G and suppose that all vertices v ∈ G−C
with dC (v) ≥ 1 have dC (v) ≥ 3. Then G contains a cycle of length t − 1.

Proof. Assume thatG does not contain a cycle of length t−1, and choose a vertexw ∈ G−C with dC (w) ≥ 1. By assumption
w must have three neighbors on C and since G is K1,3-free and G has no (t−1) cycle, these neighborsmust all be consecutive
on C . Let v1v2 · · · vt denote the vertices of C in order, and let Vi denote the set of vertices in G − C which are adjacent to
{vi−1, vi, vi+1} where these indices are taken modulo t . For v, w ∈ Vi, the claw ⟨vi−1 + vi−2vw⟩ for v, w ∈ Vi implies that
the sets Vi must all be complete.

Claim 1. For wi ∈ Vi, N(wi) ⊆ {vi−1, vi, vi+1} ∪ Vi−1 ∪ Vi ∪ Vi+1.

Proof. For a contradiction, suppose z ∈ N(wi) and z ∉ {vi−1, vi, vi+1}∪Vi−1∪Vi∪Vi+1. Considering the claw ⟨wi+zvi−1vi+1⟩,
we must have either zvi−1 or zvi+1 in G. Without loss of generality, suppose zvi+1 ∈ E(G). By assumption, z must have three
consecutive edges to C but since z ∉ Vi ∪ Vi+1, we must have z ∈ Vi+2. Then the cycle vi−1wizvi+3Cvi−1 is a (t − 1)-cycle, a
contradiction. �

Next we claim that there are at most two sets Vi which are empty and furthermore, if Vi and Vj are both empty with i < j,
then j = i + 1. Suppose that the sets Vi and Vj are empty and j ≠ i + 1. By Claim 1 and the fact that C is induced, the set
{vi, vj} forms a 2-cut of G, a contradiction to the assumption that G is 4-connected. Hence, j = i+1 and there can be at most
two empty sets.

Since t ≥ 6 and at most two Vi are empty, we may assume without loss of generality that Vs ≠ ∅ for 1 ≤ s ≤ t − 2.
Choose a vertex xi in Vi for each 1 ≤ i ≤ t − 2. If t = 2m andm is odd, then vtx1v2x3v4 · · · v t−2

2
x t−2

2
v t−4

2
· · · x2v1vt is a cycle

of length t − 1 in G. If t = 2m andm is even, then vtx1v2x3v4 · · · x t−2
2

v t−2
2

v t−4
2

· · · x2v1vt is a cycle of length t − 1 in G. Now,
if t = 2m + 1 and m is odd, then v1x2v3x4 · · · x t−1

2
v t−1

2
x t−3

2
· · · v2x1v1 is a cycle of length t − 1 in G. Finally, if t = 2m + 1

and m is even, then v1x2v3x4 · · · v t−1
2
x t−1

2
x t−3

2
· · · v2x1v1 is a cycle of length t − 1 in G, completing the proof. �

From these lemmas we get the following corollary.

Corollary 2.8. If G is a 4-connected {K1,3, B}-free graph where B is one of B(6, 0), B(5, 1), B(4, 2) or B(3, 3), then G is pancyclic
as long as it contains cycles of length four, five, six and seven.

Proof. By Corollary 2.3, G is hamiltonian and since G is 4-connected, no hamiltonian cycle is induced. So, this hamiltonian
cycle has a chord, and by Lemma 2.4, G contains a (n − 1)-cycle. Let C be a t-cycle of G for some 9 ≤ t ≤ n − 1. If C is not
induced, then Lemma 2.4 implies the existence of a (t − 1)-cycle so suppose C is induced and there exists no (t − 1)-cycle
in G. Then by Lemmas 2.6–2.7, we obtain an induced copy of B, contradiction. Since G is 4-connected and K1,3-free, G clearly
contains a triangle and the result follows. �

2.1. Proof of Theorem 1.5

We first make some general observations which will be used heavily. Let G be a 4-connected {K1,3, B(i, j)}-free graph
where i + j = 6 and suppose G contains no Ct for 4 ≤ t ≤ 7. By Theorem 1.4, since the line graph of the Petersen graph
contains B(i, j), we may assume there is an induced P10 say P , in G, with vertices p1, p2, . . . , p10.



464 M. Ferrara et al. / Discrete Mathematics 313 (2013) 460–467

We also prove another small fact for use in the first few cases.

Fact 2.9. If there is a vertex v ∈ G − P with three consecutive neighbors on P, then G contains C4, C5 and C6.

Proof. Let v be a vertex in G−P and assume that pi, pi+1 and pi+2 are elements of NP(v). Further, letw be a neighbor of pi+1
in G−P that is distinct from v. As G is claw-free,w must also be adjacent to either pi or pi+2 and hence if v is also adjacent to
either pi+3 or pi−1 then we obtain cycles of length four, five and six. Thus, wemay assume that no vertex in G− P is adjacent
to 4 consecutive vertices on P .

Without loss of generality, suppose wpi ∈ E(G). Since G is 4-connected, v must be adjacent to some vertex x that, as
outlined above, does not lie on P . To avoid an induced claw centered at v, we must have either xpi ∈ E(G) or xpi+2 ∈ E(G).
Either case produces all desired cycles unless x = w so we therefore conclude that vw ∈ E(G).

At this point, {pi+2, pi, w} comprises a 3-cut that separates v and pi+1 from the rest of the graph. Since G is 4-connected,
there must be another edge from either v or pi+1 to a vertex x ∉ {pi+2, pi, w}. If xpi+1 ∈ E(G) then since P is induced we
have that x ∉ P . Hence either xpi or xpi+2 must be in G to avoid a claw, in either case producing all desired cycles. Similarly
if xv ∈ E(G), we also get that either xpi or xpi+2 is an edge in G, again producing all desired cycles. �

The remainder of the proof of Theorem 1.5 is broken into Lemmas 2.10–2.13, each showing the existence of a small cycle.

Lemma 2.10. Every 4-connected {K1,3, B(i, j)}-free graph, where i + j = 6, contains a C4.

Proof. Let G be a 4-connected {K1,3, B(i, j)}-free graph, where i+ j = 6 and i ≥ j, and suppose that there is no C4 in G. Note
that since G is 4-connected, K1,3-free and contains no C4, Gmust be 4-regular.

As P is induced, each pℓ, 2 ≤ ℓ ≤ 9, has at least two neighbors in G− P . Since G is K1,3-free, each of these neighbors must
be adjacent to either pℓ−1 or pℓ+1. To avoid a C4, for each 1 ≤ t ≤ 9 there is a vertex vt adjacent to both pt and pt+1. Note
that these vt may not be distinct. Certainly vt ≠ vt+1, vt+2, or vt+3 as each of these equalities would imply the existence of
a C4.

The remainder of the proof is broken into cases in which each B(i, j) with i + j = 6 is forbidden.
Case 1. i = j = 3.

The bull B = B(p5p6v5; p4p3p2, p7p8p9) cannot be induced, and therefore implies that either v5 = v1 or v5 = v9, as any
other edge in B would result in a C4. Suppose without loss of generality that v5 = v9, so that v5p9 and v5p10 are edges. As
v6 ∉ {v5, v7, v8, v9} the bull B1 = B(p6p7v6; p5p4p3, p8p9p10) implies that v6 = v2. Finally, to avoid a C4, v7 is not adjacent
to any vertex in {p2, p3, p5, p6, p9, v5, v6}. Now, as v7p3 and v7p5 are not in G, we also know that v7p4 ∉ E(G). However, this
means the bull B(p5v5p6; p4p3p2, p9p8v7) is induced, a contradiction.
Case 2. i = 4 and j = 2.

As the bull B(p5p6v5; p4p3p2p1, p7p8) cannot be induced and neither v5p7 nor v5p8 is in E(G), as either edge would create
a C4, we have that v5p1 (and possibly v5p2) is in E(G). Similarly, B(p6p5v5; p7p8p9p10, p4p3) implies that v5p10 (and possibly
v5p9) is in E(G). However, then ⟨v5 + p1, p5, p10⟩ is an induced claw, a contradiction.
Case 3. i = 5 and j = 1.

Consider the bull B(p4p3v3; p5p6p7p8p9, p2), and note that v3p5, v3p6 ∉ E(G) as either of thesewould create a C4. We now
consider several possible cases. First, if v3 = v7, then B(p3p2v2; p4p5p6p7p8, p1) must be induced, as any additional edges
would create a C4 in G, a contradiction. If v3 = v8, then v4pℓ ∉ E(G) for all 6 ≤ ℓ ≤ 9 so that v4p10 must be in E(G) lest
the bull B(p5p4v4; p6p7p8p9p10, p3) is induced. Now since B(p3p2v2; p4p5p6p7p8, p1) is not induced, v2 = v6 since all other
edges would produce a C4. Then B(v2p2p3; p7p8p9p10v4, p1) is necessarily induced, as all edges within this structure would
either produce an induced K1,3 or a C4. Finally, if v3 = v9, then the bull B(p8p9v8; p7p6p5p4p3, p10) is necessarily induced, as
otherwise we would again contradict the assumption that G is claw-free and does not contain a C4.
Case 4. i = 6 and j = 0.

Recall that v1, v2, and v3 are distinct, and note that for t ≤ 3 the bulls Bt = B(ptpt+1vt; pt+2 · · · pt+7) imply that vt is
adjacent to one of pt+4, pt+5, pt+6, or pt+7. In particular, we have that v1 ∈ {v5, v6, v7, v8}, v2 ∈ {v6, v7, v8, v9}, and also
that v3 ∈ {v7, v8, v9} or v3p10 ∈ E(G) but v3p9 is not. Note that v1 and v2 can have no common neighbor on P except for
p2 (such a neighbor would force a C4), and similarly v2 and v3 can have no common neighbor on P except for p3. With this
in mind, there are several possibilities. We will consider cases based on v3. If v3p10 ∈ E(G) but v3p9 ∉ E(G), then either (i)
v1 = v5 and v2 = v7, (ii) v1 = v5 and v2 = v8, or (iii) v1 = v6 and v2 = v8. In (i) and (ii), the bull B(v1p1p2; p6p7p8p9p10v3) is
induced (as otherwise we get a C4 or an induced claw). In (iii), the bull B(v3p3p4; p10p9p8p7v1p1) is similarly induced. Now, if
v3 = v9, then either v1 = v5 and v2 = v7, which leads to the induced bull B(v1p1p2; p6p7p8p9v3p4), or v1 = v8 and v2 = v6,
which leads to the induced bull B(v1p1p2; p8p7p6p5p4v3). The restrictions above on common neighbors between vi and vi+1
for i ∈ {1, 2} implies that v3 ≠ v8 unless v1 = v8 as well. However, this immediately leads to a C4. Thus, the only remaining
possibility is that v3 = v7. Suppose v3 = v7. Now, if v1 = v5 and v2 = v9, then the bull B(v3p7p8; p4p5v1p2v2p10) is induced.
If v1 = v6 and v2 = v9, then the bull B(p6v1p7; p5p4p3v2p9p8) is induced. This final contradiction completes the proof. �

Lemma 2.11. Every 4-connected {K1,3, B(i, j)}-free graph, where i + j = 6, contains a C5.
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Proof. Let G be a 4-connected {K1,3, B(i, j)}-free graph, where i + j = 6 (assume again that i ≥ j) and suppose there is
no C5 in G. As above consider an induced P10, P = p1 · · · p10, but note that we cannot ensure the existence of the vertices
v1, . . . , v9 here, as we are not prohibiting C4 as a subgraph of G.
Case 1. i = j = 3.

We note first that since P is induced, dG−P(p5) ≥ 2; let v be one such vertex so that v is also adjacent to either p4 or
p6. Without loss of generality, suppose vp4 is an edge of G and observe that by Fact 2.9 neither vp3 nor vp6 is an edge in G.
Also, the edges vpi with i ∈ {1, 2, 7, 8} are forbidden as each of these creates a C5 in G. All other edges between vertices in
B(p4p5v; p3p2p1, p6p7p8) are forbidden as P is induced, forcing a contradiction.
Case 2. i = 4 and j = 2.

Again let v ∈ NG−P(p5), and assume first that vp6 ∈ E(G) so that by Fact 2.9, vp7 and vp4 are not in E(G). In order to avoid
a C5, we also know that vpi ∉ E(G) for i ∈ {2, 3, 8, 9}. Consideration of B(p5p6v; p4p3p2p1, p7p8) implies that we must have
vp1 ∈ E(G) and symmetrically, we must also have vp10 ∈ E(G) but this gives us an induced claw centered at v using p1, p5
and p10, a contradiction. Thus, we may assume vp4 ∈ E(G).

Now, as B(p5p4v; p6p7p8p9, p3p2) is not induced, it follows that vp9, and hence vp10 in G. However, then
B(vp9p10; p4p3p2p1, p8p7) is necessarily induced by Fact 2.9 and the fact that G contains no C5.
Case 3. i = 5 and j = 1.

Let v and w be vertices in NG−P(p3), and note that both of v and w are also adjacent to either p2 or p4. Suppose first that
both vp2 and wp2 are edges in G, so that by Fact 2.9, vp4 ∉ E(G) and, to avoid a C5, we also do not have vp5 or vp6 in G.
Consequently, the bull B(p3p2v; p4p5p6p7p8, p1) implies that vp8 (and possibly also vp7) must be an edge of G. Similarly,
we have that wp8 is in E(G) so that vp3p2wp8v is a C5 in G. The case where wp4 and vp4 are in E(G) is handled in a nearly
identical fashion.

Thus, assume that vp2 and wp4 are in G. As above, we have that vp8 is an edge in G, and similarly that wp9 is as well.
Then, vp3wp9p8v is a C5 in G.
Case 4. i = 6 and j = 0.

Let v and w be vertices in NG−P(p2), and assume first that wp3 and vp3 are both in G. Examination of the bull
B(p3p2w; p4p5p6p7p8p9) implies thatw is adjacent to p7 and p8, p8 and p9, or p9 and p10, and the bull B(p3p2v; p4p5p6p7p8p9)
allows us to reach a similar conclusion about v. However, v and w must have either common or consecutive neighbors in
the subpath of P from p7 to p10, and this leads to a C5 in G, a contradiction. If vp1 and wp1 are edges in G, then we reach a
similar conclusion and contradiction.

If vp1 and wp3 are edges in G, then w is adjacent to p7 and p8, p8 and p9, or p9 and p10, and v is adjacent to p6 and p7, p7
and p8, or p8 and p9. This implies that v and w have either common or consecutive neighbors in the subpath of P from p6 to
p10 unless v is adjacent to p6 and p7 and w is adjacent to p9 and p10.

We therefore examine the neighbors of p9 in G − P , and similarly conclude that there are vertices v′ and w′ in NG−P(p9)
such thatw′ is adjacent to p8, p1 and p2, and v′ is adjacent to p10, p4 and p5. However, as no vertex in G−P has five neighbors
on P , v, w, v′ and w′ must be distinct vertices so that wp3p2w′p9w is a C5 in G. �

Lemma 2.12. Every 4-connected {K1,3, B(i, j)}-free graph, where i + j = 6, contains a C6.

Proof. Let G be a 4-connected {K1,3, B(i, j)}-free graph, where i + j = 6 (assume i ≥ j) and suppose there is no C6 in G.
Case 1. Either i = j = 3 or i = 4 and j = 2.

Choose v ∈ NG−P(p5) so that v must also be adjacent to either p4 or p6. Wemay assume vp4 ∈ E(G) as the case where vp6
is in G is handled in a nearly identical manner. Since neither B(p5p4v; p6p7p8, p3p2p1) nor B(p5p4v; p6p7p8p9, p3p2) may be
induced, we must get that either vp2 ∈ E(G) or vp7 ∈ E(G) since all other edges would produce a C6. However, by Fact 2.9,
v is adjacent to neither p3 nor p6, which implies (as P is induced and G is claw-free) that either v is adjacent to p1 and p2, or
is adjacent to p7 and p8. In both cases, C6 ∈ G, a contradiction.
Case 2. i = 5 and j = 1.

Let v be a neighbor of p3 in G − P and suppose that vp2 ∈ E(G) (the case where vp4 ∈ E(G) is identical). Fact 2.9 and the
assumption that G has no C6 imply that v is not adjacent to any vertex in {p1, p4, p5, p6, p7}. Since B(p3p2v; p4p5p6p7p8, p1)
is not induced, we must have the vp8, and hence vp9 in E(G). Now let w ≠ v be another vertex in NG−P(p3) so that again w
must be adjacent to either p2 or p4. If wp2 ∈ E(G), then by the same argument, wp8, wp9 ∈ E(G) and hence wp8p9vp2p3w
is a C6 in G. If wp4 ∈ E(G), then wp9 and wp10 are edges in G, so that vp3wp10p9p8v is a C6.
Case 3. i = 6 and j = 0.

Let v ∈ NG−P(p2) and assume that vp1 ∈ E(G). The case when vp3 ∈ E(G) can be handled in a similar manner. Fact 2.9
and the assumption that G contains no C6 imply that v also cannot be adjacent to any vertex in {p3, p4, p5, p6}.

Since the bull B(p2p1v; p3p4p5p6p7p8) cannot be induced, we must have vp8 (and possibly also vp7) in E(G). Now let
w ≠ v be another neighbor of p8 in G − P . Then w is also adjacent to either p9 or p7. Suppose that wp9 ∈ E(G). An
argument similar to the above yields that wp2 ∈ G, implying the existence of the C6 given by wp2p1vp8p9w. As the case
when wp7 ∈ E(G) is similar, this completes the proof. �

Lemma 2.13. Every 4-connected {K1,3, B(i, j)}-free graph, where i + j = 6, contains a C7.
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Proof. Suppose that G is a 4-connected, claw-free graph that does not contain a C7. We once again consider an induced P10,
P = p1 · · · p10.

Claim 2. If a vertex v in G − P is adjacent to vertices pℓ, pℓ+1, pt and pt+1 with ℓ + 1 < t, then 7 ≤ |ℓ − t| ≤ 8.

Proof. Let v be a vertex inG−P adjacent to pℓ, pℓ+1, pt , and pt+1 with ℓ < t , and assume to the contrary that 2 ≤ |ℓ−t| ≤ 6.
If 4 ≤ |ℓ − t| ≤ 7, then G immediately contains a C7, so we may suppose that 2 ≤ |ℓ − t| ≤ 3. If |ℓ − t| = 3, then since G is
4-connected, there is some vertex x ≠ v in NG−P(pℓ+2). Since G is claw-free and P is induced, x is either adjacent to pℓ+1 or
pt , so that either vpℓpℓ+1xpℓ+2ptpt+1v or vpℓpℓ+1pℓ+2xptpt+1v is a C7 in G.

Thus, we may assume that t = ℓ + 2, namely that v is adjacent to pℓ, pℓ+1, pℓ+2 and pℓ+3. Since G is 4-connected,
pℓ and pℓ+3 cannot separate v, pℓ+1 and pℓ+2 from the remainder of G. We therefore have that there are distinct vertices
u1, u2 ∈ {v, pℓ+1, pℓ+2} and distinct vertices y1 and y2 in G − P − v such that u1y1 and u2y2 are edges in G. Since G is claw-
free, if u1 = pℓ+1, then y1 is adjacent to either pℓ or pℓ+2 and if u1 = pℓ+2, then y1 is adjacent to pℓ+1 or pℓ+3. Similarly,
if u1 = v, then y1 is adjacent to at least one vertex in each of {pℓ, pℓ+2}, {pℓ, pℓ+3}, and {pℓ+1, pℓ+3}. We reach identical
conclusions if u2 is each of pℓ+1, pℓ+2 or v.

For any choices of u1 and u2, these additional edges immediately imply that G contains a C7, except in the case where,
without loss of generality, u1 = pℓ+1, u2 = pℓ+2 and both y1pℓ+2 and y2pℓ+1 are edges in G. However, in this case, the
claw ⟨pℓ+1 + y1y2v⟩ implies that either y1y2 ∈ E(G) or, without loss of generality, y1v ∈ E(G). If y1y2 ∈ E(G), then
vpℓpℓ+1y1y2pℓ+2pℓ+3v is a C7 in G. If y1v is an edge in G, then ⟨v + pℓy1pℓ+3⟩ implies that y1 is either adjacent to pℓ or
pℓ+3. Either possibility implies the existence of a C7 in G. �

Claim 3. If there are vertices v and x in G such that v is adjacent to pℓ, pℓ+1 and pℓ+2, and x is adjacent to pℓ and pℓ+2, then G
contains a C7.

Proof. By symmetry, we may assume that ℓ > 1. Claim 2 and the claw ⟨pℓ + vxpℓ−1⟩ then together imply that vx is an
edge in G. As G is 4-connected, pℓ and pℓ+2 cannot separate {v, x, pℓ+1} from the remainder of G. Therefore, there are distinct
vertices y1 and y2 in G − (P ∪ {v, x}) and distinct vertices u1, u2 ∈ {x, v, pℓ+1} such that u1y1, u2y2 ∈ E(G). Since each of
x, v, and pℓ+1 are adjacent to pℓ and pℓ+2, each of y1 and y2 is adjacent to at least one of pℓ and pℓ+2 as well. Subject to these
observations, it is straightforward to check that any way the neighbors of y1 and y2 are chosen from {pℓ, pℓ+1, pℓ+2, x, v},
we obtain a C7 in G. �

Case 1. i = 6 and j = 0.
By Claim 2, no vertex in G−P has four consecutive neighbors on P . We now claim that there is no vertex v in G−P that is

adjacent to p1, p2, and p3. Indeed, assume otherwise, and consider the bull B(p3p2v; p4p5p6p7p8p9) which, since G contains
no C7 and v cannot be adjacent to p4, must be induced unless vp9 is in G. However, then ⟨v + p1p3p9⟩ is necessarily induced,
a contradiction.

As P is induced, p1 has three neighbors in G− P , call them v1, v2 and v3. Suppose first that none of v1, v2 or v3 is adjacent
to p2, which implies that v1v2v3 must be a triangle inG. Now, consider the bull B(p1v1v2; p2p3p4p5p6p7), which, since neither
v1 nor v2 is adjacent to p2, would imply that G contains a C7 unless (without loss of generality) v1 is adjacent to p7. To avoid
an induced claw or a C7 in G, v1 must also be adjacent to p8. Now the bull B(p1v2v3; p2p3p4p5p6p7) also implies that (without
loss of generality) v2 is adjacent to p7 and p8.

Symmetrically, p10 must also have three neighbors in G−P , call them x1, x2, and x3. Note that xi ≠ v1 for any i, as then v1
would be adjacent to p1, p6, and p10, forming an induced claw in G. As xi is similarly not equal to v2 for any i, wemay assume
without loss of generality that v1 and v2 are not any of x1, x2, or x3. Since G contains no C7, x1 and x2 are immediately not
adjacent to p5. If x1 (or equivalently x2) is adjacent to p6, then x1p6p7v1p8p9p10x1 is a C7 in G.

Assume that either x1 or x2 is adjacent to p9, say x1, and consider the bull B(p9p10x1; p8p7p6p5p4p3). Recall that no vertex
in G− P is adjacent to p1, p2, and p3. Since p1 and p10 behave symmetrically, there is also no vertex in G− P that is adjacent
to p8, p9, and p10. In particular, as x1p9, x1p10 ∈ E(G), x1 cannot be adjacent to p8. As x1 is also not adjacent to p6 and G is
claw-free, we conclude that x1p7 ∉ E(G) as well. Finally, x1p4 ∉ E(G) as it would create the C7 given by x1p4p5p6p7p8p9x1.
So, we must have x1p3, x1p2 ∈ E(G), but this provides a contradiction as we now have the C7 given by x1p2p1v2p7p8p9x1.

Thus,wemay conclude that neither x1 nor x2 is adjacent to p9, so that the claw ⟨p10+x1x2p9⟩ implies that x1x2 is an edge in
G. We now consider the bull B(p10x1x2; p9p8p7p6p5p4) which is induced unless, without loss of generality, x1 has a neighbor
in {p4, . . . , p9}. By assumption, x1 is not adjacent to p9, and either x1p5 or x1p6 would form a C7 in G. Since v1 is adjacent to
both p7 and p8, the vertex x1 cannot be adjacent to p7 and p8 as this forms a C7. Therefore, x1 must be adjacent to p3 and
p4. However, then the bull B(x1x2p10; p4p5p6p7v1p1) is necessarily induced, as every possible edge within this substructure
either creates a C7 or an induced claw.

We may therefore suppose that some vertex in NG−P(p1), say v1, is adjacent to p2. As we have already ruled out the
possibility that v1p3 ∈ E(G), the bull B(p2p1v1; p3p4p5p6p7p8) is induced unless v1 is adjacent to either p4 and p5 or to p8
and p9. Since p4 and p5 would contradict Claim 2, we may assume v1 is adjacent to p8 and p9.

Note then that v1 is not adjacent to p10, as then the claw ⟨v1 + p1p8p10⟩ is induced. By symmetry, there is some neighbor
v of p10 that is also adjacent to p9 and also by a symmetric argument, v must be adjacent to p3 and p2. However, then
v1p1p2p3vp10p9v1 is a C7 in G, the final contradiction that completes this case.
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Case 2. i = 5 and j = 1.
Again by Claim 2, no vertex in G is adjacent to four consecutive vertices on P . We next wish to show that there is no

vertex v in G − P such that NP(v) = {p2, p3, p4}. Assume otherwise, and let v be such a vertex and, since G is 4-connected
and v cannot have any other neighbors on P , there is some vertex x ∈ NG−P(v). The claw ⟨v + xp2p4⟩ implies that xmust be
adjacent to p2 or p4.

Suppose first that x is adjacent to p4 but is not adjacent to p2 and consider the bull B(vp4x; p2, p5p6p7p8p9). Now, x cannot
be adjacent to any vertex in {p6, p7, p8, p9} by Claim 2 and the assumption that G is claw-free. Since x is not adjacent to p2,
we have that B is induced unless xp5 is an edge in G. Given that G is 4-connected, p2 and p5 cannot separate {p3, p4, x, v}

from the rest of G. Thus, there is some vertex y, distinct from p2 and p5, with a neighbor in {p3, p4, x, v}. However, since P
is induced and x is not adjacent to p2, any neighbor of y in this set forces y to be adjacent to consecutive vertices on the C6
given by xp5p4p3p2vx, forming a C7 in G. Similarly, if x is adjacent to p2 but not p4, the bull B(p2vx; p1, p4p5p6p7p8) implies
that x is either adjacent to p1 or p5 and again we can use the connectivity of G to demonstrate the existence of a C7 in G.
Thus we have that x is adjacent to both p2 and p4, contradicting Claim 3 and implying that there is no vertex v in G − P that
is adjacent to p2, p3 and p4. A nearly identical argument yields that there is no vertex v in G − P that is adjacent to p3, p4
and p5.

Now consider a vertex w ∈ G − P that is adjacent to p4, and note that w is adjacent to either p3 or p5, but not both. If
wp3 is in E(G), then the bull B(p3p4w; p2, p5p6p7p8p9) is induced unless w is adjacent to p6 and p7, contradicting Claim 2. If
wp5 is an edge in G, then by Claim 2 and the fact that w is not adjacent to p3, the bull B(p4p5w; p3, p6p7p8p9p10) is induced
unlessw is adjacent to p6. Symmetrically, wemay assume that there is some vertexw′ in G−P that is adjacent to p7, p6 and
p5. As G is 4-connected and {p4, p7} would separate {w, w′, p5, p6} from the rest of G, one of these four vertices must have a
neighbor w′′ in G − P . As G is claw-free, the vertex w′′ is adjacent to one of the following pairs of vertices: p5 and p6, w and
p4, w and p6, w′ and p5, or w′ and p7. In each of these cases, G necessarily contains a C7 unless w′′ is adjacent to p5 and p6.
However, then the claw ⟨p5 + ww′w′′

⟩ implies that one of the edges ww′, ww′′, or w′w′′ is in G. Each of these edges implies
that G contains a copy of C7, as desired.
Case 3. i = 4 and j = 2.

This case proceeds in a manner nearly identical to that for B(5, 1), and so we only provide a sketch here in the interest of
concision. Using Claim 3, one can show that there is no vertex in G − P adjacent to pi, pi+1 and pi+2 for 3 ≤ i ≤ 6. We then
consider a vertex v in G − P that is adjacent to p5, and therefore also to one of either p4 or p6. By Claim 2, if v is adjacent
to p4, then B(p4p5v; p3p2, p6p7p8p9) is induced, and if v is adjacent to p6, then B(p6p5v; p7p8, p4p3p2p1) is induced. In both
cases, we have a contradiction.
Case 4. i = j = 3.

Using Claims 2 and 3, along with an argument similar to those in the previous cases, we have that no vertex in G − P is
adjacent to p4, p5, and p6, or adjacent to p5, p6, and p7. We therefore consider a vertex v inNG−P(p5), which is necessarily also
adjacent to either p4 or p6. If v is adjacent to p6, then, as v cannot also be adjacent to p4 or p7, the bull B(p5p6v; p4p3p2, p7p8p9)
is necessarily induced.

Thus, we may assume that v is adjacent to p4 and p5, and more so that there is no vertex in G− P adjacent to both p5 and
p6. Considering the bull B(p4p5v; p3p2p1, p6p7p8), we conclude that vp3 is an edge in G, and that v has no additional edges
on P . Thus, since dG(v) ≥ 4, there is some vertex x in NG−P(v) and as G is claw-free, x is also adjacent to either p3 or p5. If x is
adjacent to p5, then since x cannot be adjacent to p6, the edge xp4 is also inG. However, then the bull B(p4p5x; p3p2p1, p6p7p8)
is necessarily induced, as x cannot be adjacent to p3 by Claim 3.

So, assume xp5 ∉ E(G) and xp3 ∈ E(G). Since dG(p5) ≥ 4, there is some vertex y ≠ v in NG−P(p5). As y cannot be adjacent
to both p5 and p6, we have that yp4 is an edge of G. However, then the claw ⟨p5 + p6yv⟩ implies that yv is an edge of G, so
that there is some neighbor of v adjacent to p4 and p5, a possibility that has been prohibited. This is the final contradiction
that completes the proof of the lemma. �

From Lemmas 2.10–2.13 and Corollary 2.8, we immediately obtain Theorem 1.5.
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