A note on powers of Hamilton cycles in generalized claw-free graphs

Ralph J. Faudree ${ }^{\mathrm{a}, *}$, Ronald J. Gould ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ University of Memphis, Memphis, TN 38152, United States
${ }^{\mathrm{b}}$ Emory University, Atlanta, GA 30322, United States

ARTICLE INFO

Article history:

Received 12 December 2011
Accepted 26 April 2012
Available online 26 May 2012

Keywords:

Hamiltonian graph
Generalized claw-free
Powers of cycle
Complete graph factorizations

Abstract

Seymour conjectured for a fixed integer $k \geq 2$ that if G is a graph of order n with $\delta(G) \geq k n /(k+1)$, then G contains the k th power C_{n}^{k} of a Hamiltonian cycle C_{n} of G, and this minimum degree condition is sharp. Earlier the $k=2$ case was conjectured by Pósa. This was verified by Komlós et al. [4]. For $s \geq 3$, a graph is $K_{1, s}-$ free if it does not contain an induced subgraph isomorphic to $K_{1, s}$. Such graphs will be referred to as generalized clawfree graphs. Minimum degree conditions that imply that a generalized claw-free graph G of sufficiently large order n contains a k th power of a Hamiltonian cycle will be proved. More specifically, it will be shown that for any $\epsilon>0$ and for n sufficiently large, any $K_{1, s}-$ free graph of order n with $\delta(G) \geq(1 / 2+\epsilon) n$ contains a C_{n}^{k}.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider only graphs without loops or multiple edges. We let $V(G)$ and $E(G)$ denote the sets of vertices and edges of G, respectively. The order of G, usually denoted by n, is $|V(G)|$ and the size of G is $|E(G)|$. For any vertex v in G, let $N(v)$ denote the set of vertices adjacent to v and $N[v]=N(v) \cup v$. The degree $d(v)$ of a vertex v is $|N(v)|$, and we let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degrees of a vertex in G, respectively. Given subgraphs H_{1} and $H_{2}, E\left(H_{1}, H_{2}\right)$ will denote the edges between H_{1} and H_{2}. The notation will generally follow that in Chartrand and Lesniak [1].

Let G and H be graphs. We say that G is H-free if H is not an induced subgraph of G. More specifically, we are interested in $K_{1, s}$-free graphs for $s \geq 3$, which we will call generalized claw-free graphs. We are interested in determining the minimum degree $\delta(G)$ in a $K_{1, s}$ free graph G of order n which implies that the k th power C_{n}^{k} of a Hamiltonian cycle is present in G.

Seymour [7] conjectured for a fixed integer $k \geq 2$ that if G is a graph of order n with $\delta(G) \geq k n /(k+1)$, then G contains the k th power C_{n}^{k} of a Hamiltonian cycle C_{n} of G, and this minimum degree condition is sharp. The special case $k=2$ was conjectured earlier by Pósa [6]. This was verified by Komlós et al. [4].

Theorem 1 ([4]). For a fixed integer $k \geq 2$, any graph G of sufficiently large order n with $\delta(G) \geq k n /(k+1)$ contains a C_{n}^{k}. Also, the minimum degree condition is sharp.

The following result for generalized claw-free graphs will be proved.
Theorem 2. Let $k \geq 2$ and $s \geq 3$ be fixed integers. For any given $\epsilon>0$ there is a constant $c=c(k, s, \epsilon)$ such that if G is a $K_{1, s}-$ free graph of order $n \geq c$ with $\delta(G) \geq(1 / 2+\epsilon) n$, then G contains a C_{n}^{k}.

[^0]
2. Examples

The complete t-partite graph with partite sets of order $n_{1}, n_{2}, \ldots, n_{t}$ will be denoted by $K_{n_{1}, n_{2}, \ldots, n_{t}}$. For a fixed positive integer $k \geq 2$ and n divisible by $k+1$, the slightly unbalanced complete multipartite graph $G=$ $K_{n /(k+1)+1, n /(k+1)-1, n /(k+1), \ldots, n /(k+1)}$ does not contain a C_{n}^{k} and $\delta(G)=k n /(k+1)-1$. This verifies that the result of Komlós et al. [4] is sharp.

A graph being generalized claw-free places additional restrictions on the graph, and so possibly a lower minimum degree condition will imply the existence of powers of a Hamiltonian cycle. For example, the complete multipartite graph has many induced generalized claws.

For a fixed $k \geq 2$ consider the graph $G=K_{2 k-1}+\left(K_{(n-2 k+1) / 2} \cup K_{(n-2 k+1) / 2}\right)$ for n odd. The graph G is $K_{1,3}$-free (claw-free) and $\delta(G)=(n+2 k-3) / 2$. There is no C_{n}^{k} in G, since the vertex cut that separates two (nonadjacent) vertices of a C_{n}^{k} contains at least $2 k$ vertices. Thus, at least $\delta(G) \geq n / 2+c$ will be needed to imply the existence of a power of a Hamiltonian cycle.

3. Proof

Before giving the proof of Theorem 2, some notation and critical results must be presented. In a series of two papers [2,3], results on cycles and factorizations in claw-free graphs and in generalized claw-free graphs with minimum degree conditions were proved. In each case a minimum degree condition of approximately $n / 2$ in a graph of order n is sufficient to give a factorization into complete graphs. If a graph G of order n contains the k th power C_{n}^{k} of a Hamiltonian cycle, it certainly contains a factorization of complete graphs K_{k+1} if n is divisible by $k+1$.

Theorem 3 ([2]). If G is a claw-free graph of sufficiently large order $n=3 k$ with $\delta(G) \geq n / 2$, then G contains k disjoint triangles.
Theorem 4 ([3]). Let $m \geq 4$ and $s \geq 3$. If G is a $K_{1, s}$-free graph of sufficiently large order $n=r m$, then there is a $c=c(s, m)$ such that if $\delta(G) \geq n / 2+c$, then G contains r disjoint copies of K_{m}.

Given a graph H, the extremal number $\operatorname{ext}(n, H)$ is the maximal number of edges in a graph of order n that does not contain H as a subgraph. The following result of Kővari et al. gives a bound on the extremal number ext ($n, K_{p, q}$) for the complete bipartite graph $K_{p, q}$.

Theorem 5 ([5]). Let $p \leq q$ be positive integers. Then, there exists $a c^{\prime}=c^{\prime}(p, q)$ such that

$$
\operatorname{ext}\left(n, K_{p, q}\right) \leq c^{\prime}(p, q) n^{2-1 / p}
$$

Proof of Theorem 2. Select an integer $m \geq 6 k$ and m sufficiently large. We will first consider the case where n is divisible by m. By Theorem 4, there are $r=n / m$ vertex disjoint copies of K_{m} in G if $n \geq c=c(s, k, m)$. Label these r copies of K_{m} as $H_{1}, H_{2}, \ldots, H_{r}$.

Claim. For each H_{i}, there are at least $\lceil r / 2\rceil$ different H_{j} with $j \neq i$ such that $\left|E\left(H_{i}, H_{j}\right)\right|>c^{\prime \prime}(2 k, 2 k) m^{2-1 / 2 k}=c^{\prime}(2 k, 2 k)$ $(2 m)^{2-1 / 2 k}$. Therefore, by Theorem 5 there is a complete bipartite graph $K_{2 k, 2 k}$ between the vertices of H_{i} and H_{j}.
Proof of Claim. Without loss of generality consider the graph H_{1}, and assume that the claim is not true. We can assume that between H_{1} and each of the H_{j} for $2 \leq j \leq d$ with $d \leq\lceil r / 2\rceil$ there are at least $c^{\prime}(2 k, 2 k) m^{2-1 / 2 k}$ edges, but this is not true for those H_{j} with $j>d$. This implies

$$
m(1 / 2+\epsilon) n-m^{2}<\left|E\left(H_{1}, G-H_{1}\right)\right| \leq(d-1) m^{2}+(r-d) c^{\prime}(2 k, 2 k) m^{2-1 / 2 k}
$$

since there are at most m^{2} edges between H_{1} and H_{j} for $j \leq d$ and at most $c^{\prime}(2 k, 2 k) m^{2-1 / 2 k}$ edges for the remaining H_{j} for $j>d$. However, this implies

$$
\frac{\left(\frac{1}{2}\right)\left(\frac{n}{m}\right)}{1-\frac{c^{\prime}}{m^{1 / 2 k}}}+\frac{\left(\epsilon-\frac{c^{\prime}}{m^{1 / 2 k}}\right)\left(\frac{n}{m}\right)}{1-\frac{c^{\prime}}{m^{1 / 2 k}}}<d
$$

Thus, for m sufficiently large and $n=m r$, clearly $d>\lceil r / 2\rceil=\lceil n / 2 m\rceil$.
Now, form a new graph F in which the vertices of the graph F are the graphs $H_{i}(1 \leq i \leq r)$, and there is an edge between an H_{i} and an H_{j} if there are more than $c^{\prime}(2 k, 2 k) m^{2-1 / 2 k}$ edges in G between H_{i} and H_{j}. Thus, the graph F has $r=n / m$ vertices, and by the claim, $\delta(F) \geq r / 2$. Thus, H is a Hamiltonian graph by Dirac's Theorem.

The complete graphs $\left\{H_{i}:(1 \leq i \leq r)\right\}$ can be placed in cycle order, say $\left(H_{1}, H_{2}, \ldots, H_{r}, H_{1}\right)$, such that there is a complete bipartite graph $K_{2 k, 2 k}$ between consecutive complete graphs H_{j} and H_{j+1}. Thus, between consecutive complete graphs H_{j} and H_{j+1}, vertex disjoint complete bipartite graphs $K_{k, k}$ can be selected. Therefore, a Hamiltonian cycle C_{n} can be chosen in G by using the order of the graphs $\left(H_{1}, H_{2}, \ldots, H_{r}, H_{1}\right)$ and an arbitrary ordering of the vertices in each H_{i} except
that the first k vertices are part of the $K_{k, k}$ with H_{i-1} and the last k vertices are part of the $K_{k, k}$ with H_{i+1}. This results in a k th power of a Hamiltonian cycle C_{n}^{k}.

The previous calculations were done under the assumption that m divides n. If this is not true, then it is easily seen that one of the complete graphs H_{i} can be selected to have $m+t$ vertices for some $1 \leq t<m$, and the same argument applies to the collection of $\left\{H_{i}:(1 \leq i \leq r)\right\}$. this follows since only the constant in the bound on the extremal result for bipartite graphs would change with the change in the size of one H_{i}. This completes the proof of Theorem 2.

4. Questions

The most natural open question is the following:
Question 1. What is the sharp minimum degree condition that implies that a $K_{1, s}$-free graph of order n contains the k th power C_{n}^{k} of a Hamiltonian cycle?

It would be of interest to determine whether the weaker question could be answered.
Question 2. Is there a minimum degree condition of the form $\delta(G) \geq n / 2+o(n)$, or more specifically a condition of the form $\delta(G) \geq n / 2+c$, that implies that a $K_{1, s}$-free graph of order n contains the k th power C_{n}^{k} of a Hamiltonian cycle?

References

[1] G. Chartrand, L. Lesniak, Graphs and Digraphs, Chapman and Hall, London, 2005.
[2] R.J. Faudree, R.J. Gould, M.S. Jacobson, Minimum degree and disjoint cycles in claw-free graphs, Combinatorics, Probability, and Computing 21 (2012) 129-139.
[3] R.J. Faudree, R.J. Gould, M.S. Jacobson, Minimum degree and disjoint cycles in generalized claw-free graphs, Manuscript.
[4] J. Komlós, G.N. Sárközy, E. Szemerédi, Proof of the Seymour conjecture for large graphs, Ann. Comb. 2 (1) (1998) 43-60.
[5] T. Kővari, V.T. Sós, P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954) 50-57.
[6] L. Pósa, Personal communication.
[7] P. Seymour, Problem section, in: T.P. Donough, V.C. Mavron (Eds.), Combinatorics: Proceedings of the British Combinatorial Conference 1973, Cambridge University Press, 1974, p. 201.

[^0]: * Corresponding author.

 E-mail address: rfaudree@memphis.edu (R.J. Faudree).

