Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A note on powers of Hamilton cycles in generalized claw-free graphs

Ralph J. Faudree^{a,*}, Ronald J. Gould^b

^a University of Memphis, Memphis, TN 38152, United States ^b Emory University, Atlanta, GA 30322, United States

ARTICLE INFO

Article history: Received 12 December 2011 Accepted 26 April 2012 Available online 26 May 2012

Keywords: Hamiltonian graph Generalized claw-free Powers of cycle Complete graph factorizations

1. Introduction

ABSTRACT

Seymour conjectured for a fixed integer $k \ge 2$ that if *G* is a graph of order *n* with $\delta(G) \ge kn/(k + 1)$, then *G* contains the *k*th power C_n^k of a Hamiltonian cycle C_n of *G*, and this minimum degree condition is sharp. Earlier the k = 2 case was conjectured by Pósa. This was verified by Komlós et al. [4]. For $s \ge 3$, a graph is $K_{1,s}$ -free if it does not contain an induced subgraph isomorphic to $K_{1,s}$. Such graphs will be referred to as *generalized claw*-*free graphs*. Minimum degree conditions that imply that a generalized claw-free graph *G* of sufficiently large order *n* contains a *k*th power of a Hamiltonian cycle will be proved. More specifically, it will be shown that for any $\epsilon > 0$ and for *n* sufficiently large, any $K_{1,s}$ -free graph of order *n* with $\delta(G) \ge (1/2 + \epsilon)n$ contains a C_n^{h} .

© 2012 Elsevier B.V. All rights reserved.

In this paper we consider only graphs without loops or multiple edges. We let V(G) and E(G) denote the sets of vertices and edges of *G*, respectively. The *order* of *G*, usually denoted by *n*, is |V(G)| and the *size* of *G* is |E(G)|. For any vertex *v* in *G*, let N(v) denote the set of vertices adjacent to *v* and $N[v] = N(v) \cup v$. The *degree* d(v) of a vertex *v* is |N(v)|, and we let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degrees of a vertex in *G*, respectively. Given subgraphs H_1 and H_2 , $E(H_1, H_2)$ will denote the edges between H_1 and H_2 . The notation will generally follow that in Chartrand and Lesniak [1].

Let *G* and *H* be graphs. We say that *G* is *H*-free if *H* is not an induced subgraph of *G*. More specifically, we are interested in $K_{1,s}$ -free graphs for $s \ge 3$, which we will call generalized claw-free graphs. We are interested in determining the minimum degree $\delta(G)$ in a $K_{1,s}$ -free graph *G* of order *n* which implies that the *k*th power C_n^k of a Hamiltonian cycle is present in *G*.

Seymour [7] conjectured for a fixed integer $k \ge 2$ that if *G* is a graph of order *n* with $\delta(G) \ge kn/(k+1)$, then *G* contains the *k*th power C_n^k of a Hamiltonian cycle C_n of *G*, and this minimum degree condition is sharp. The special case k = 2 was conjectured earlier by Pósa [6]. This was verified by Komlós et al. [4].

Theorem 1 ([4]). For a fixed integer $k \ge 2$, any graph G of sufficiently large order n with $\delta(G) \ge kn/(k+1)$ contains a C_n^k . Also, the minimum degree condition is sharp.

The following result for generalized claw-free graphs will be proved.

Theorem 2. Let $k \ge 2$ and $s \ge 3$ be fixed integers. For any given $\epsilon > 0$ there is a constant $c = c(k, s, \epsilon)$ such that if G is a $K_{1,s}$ -free graph of order $n \ge c$ with $\delta(G) \ge (1/2 + \epsilon)n$, then G contains a C_n^k .

* Corresponding author. E-mail address: rfaudree@memphis.edu (R.J. Faudree).

⁰⁰¹²⁻³⁶⁵X/ $\$ – see front matter $\$ 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2012.04.023

2. Examples

The complete *t*-partite graph with partite sets of order $n_1, n_2, ..., n_t$ will be denoted by $K_{n_1, n_2, ..., n_t}$. For a fixed positive integer $k \ge 2$ and *n* divisible by k + 1, the slightly unbalanced complete multipartite graph $G = K_{n/(k+1)+1,n/(k+1)-1,n/(k+1)}$ does not contain a C_n^k and $\delta(G) = kn/(k+1) - 1$. This verifies that the result of Komlós et al. [4] is sharp.

A graph being generalized claw-free places additional restrictions on the graph, and so possibly a lower minimum degree condition will imply the existence of powers of a Hamiltonian cycle. For example, the complete multipartite graph has many induced generalized claws.

For a fixed $k \ge 2$ consider the graph $G = K_{2k-1} + (K_{(n-2k+1)/2} \cup K_{(n-2k+1)/2})$ for *n* odd. The graph *G* is $K_{1,3}$ -free (claw-free) and $\delta(G) = (n+2k-3)/2$. There is no C_n^k in *G*, since the vertex cut that separates two (nonadjacent) vertices of a C_n^k contains at least 2k vertices. Thus, at least $\delta(G) \ge n/2 + c$ will be needed to imply the existence of a power of a Hamiltonian cycle.

3. Proof

Before giving the proof of Theorem 2, some notation and critical results must be presented. In a series of two papers [2,3], results on cycles and factorizations in claw-free graphs and in generalized claw-free graphs with minimum degree conditions were proved. In each case a minimum degree condition of approximately n/2 in a graph of order n is sufficient to give a factorization into complete graphs. If a graph G of order n contains the kth power C_n^k of a Hamiltonian cycle, it certainly contains a factorization of complete graphs K_{k+1} if n is divisible by k + 1.

Theorem 3 ([2]). If G is a claw-free graph of sufficiently large order n = 3k with $\delta(G) \ge n/2$, then G contains k disjoint triangles.

Theorem 4 ([3]). Let $m \ge 4$ and $s \ge 3$. If G is a $K_{1,s}$ -free graph of sufficiently large order n = rm, then there is a c = c(s, m) such that if $\delta(G) \ge n/2 + c$, then G contains r disjoint copies of K_m .

Given a graph *H*, the extremal number ext(n, H) is the maximal number of edges in a graph of order *n* that does not contain *H* as a subgraph. The following result of Kővari et al. gives a bound on the extremal number $ext(n, K_{p,q})$ for the complete bipartite graph $K_{p,q}$.

Theorem 5 ([5]). Let $p \le q$ be positive integers. Then, there exists a c' = c'(p, q) such that

$$ext(n, K_{p,q}) \leq c'(p, q)n^{2-1/p}$$

Proof of Theorem 2. Select an integer $m \ge 6k$ and m sufficiently large. We will first consider the case where n is divisible by m. By Theorem 4, there are r = n/m vertex disjoint copies of K_m in G if $n \ge c = c(s, k, m)$. Label these r copies of K_m as H_1, H_2, \ldots, H_r . \Box

Claim. For each H_i , there are at least $\lceil r/2 \rceil$ different H_j with $j \neq i$ such that $|E(H_i, H_j)| > c''(2k, 2k)m^{2-1/2k} = c'(2k, 2k)$ $(2m)^{2-1/2k}$. Therefore, by Theorem 5 there is a complete bipartite graph $K_{2k,2k}$ between the vertices of H_i and H_j .

Proof of Claim. Without loss of generality consider the graph H_1 , and assume that the claim is not true. We can assume that between H_1 and each of the H_j for $2 \le j \le d$ with $d \le \lceil r/2 \rceil$ there are at least $c'(2k, 2k)m^{2-1/2k}$ edges, but this is not true for those H_j with j > d. This implies

 $m(1/2 + \epsilon)n - m^2 < |E(H_1, G - H_1)| \le (d - 1)m^2 + (r - d)c'(2k, 2k)m^{2-1/2k},$

since there are at most m^2 edges between H_1 and H_j for $j \le d$ and at most $c'(2k, 2k)m^{2-1/2k}$ edges for the remaining H_j for j > d. However, this implies

$$\frac{\left(\frac{1}{2}\right)\left(\frac{n}{m}\right)}{1-\frac{c'}{m^{1/2k}}}+\frac{\left(\epsilon-\frac{c'}{m^{1/2k}}\right)\left(\frac{n}{m}\right)}{1-\frac{c'}{m^{1/2k}}}< d.$$

Thus, for *m* sufficiently large and n = mr, clearly $d > \lceil r/2 \rceil = \lceil n/2m \rceil$. \Box

Now, form a new graph *F* in which the vertices of the graph *F* are the graphs $H_i(1 \le i \le r)$, and there is an edge between an H_i and an H_j if there are more than $c'(2k, 2k)m^{2-1/2k}$ edges in *G* between H_i and H_j . Thus, the graph *F* has r = n/m vertices, and by the claim, $\delta(F) \ge r/2$. Thus, *H* is a Hamiltonian graph by Dirac's Theorem.

The complete graphs $\{H_i : (1 \le i \le r)\}$ can be placed in cycle order, say $(H_1, H_2, \ldots, H_r, H_1)$, such that there is a complete bipartite graph $K_{2k,2k}$ between consecutive complete graphs H_j and H_{j+1} . Thus, between consecutive complete graphs H_j and H_{j+1} , vertex disjoint complete bipartite graphs $K_{k,k}$ can be selected. Therefore, a Hamiltonian cycle C_n can be chosen in G by using the order of the graphs $(H_1, H_2, \ldots, H_r, H_1)$ and an arbitrary ordering of the vertices in each H_i except

that the first k vertices are part of the $K_{k,k}$ with H_{i-1} and the last k vertices are part of the $K_{k,k}$ with H_{i+1} . This results in a kth power of a Hamiltonian cycle C_n^k .

The previous calculations were done under the assumption that *m* divides *n*. If this is not true, then it is easily seen that one of the complete graphs H_i can be selected to have m + t vertices for some $1 \le t < m$, and the same argument applies to the collection of $\{H_i : (1 \le i \le r)\}$, this follows since only the constant in the bound on the extremal result for bipartite graphs would change with the change in the size of one H_i . This completes the proof of Theorem 2. \Box

4. Questions

The most natural open question is the following:

Question 1. What is the sharp minimum degree condition that implies that a $K_{1,s}$ -free graph of order n contains the kth power C_n^k of a Hamiltonian cycle?

It would be of interest to determine whether the weaker question could be answered.

Question 2. Is there a minimum degree condition of the form $\delta(G) \ge n/2 + o(n)$, or more specifically a condition of the form $\delta(G) \ge n/2 + c$, that implies that a $K_{1,s}$ -free graph of order n contains the kth power C_n^k of a Hamiltonian cycle?

References

- [2] R.J. Faudree, R.J. Gould, M.S. Jacobson, Minimum degree and disjoint cycles in claw-free graphs, Combinatorics, Probability, and Computing 21 (2012) 129–139.
- [3] R.J. Faudree, R.J. Gould, M.S. Jacobson, Minimum degree and disjoint cycles in generalized claw-free graphs, Manuscript.
- 4] J. Komlós, G.N. Sárközy, E. Szemerédi, Proof of the Seymour conjecture for large graphs, Ann. Comb. 2 (1) (1998) 43–60.
- [5] T. Kővari, V.T. Sós, P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954) 50–57.
- [6] L. Pósa, Personal communication.
- [7] P. Seymour, Problem section, in: T.P. Donough, V.C. Mavron (Eds.), Combinatorics: Proceedings of the British Combinatorial Conference 1973, Cambridge University Press, 1974, p. 201.

^[1] G. Chartrand, L. Lesniak, Graphs and Digraphs, Chapman and Hall, London, 2005.