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Abstract An upper bound on the saturation number for graphs as well as associated
extremal graphs was given by (Kászonyi and Tuza in J. Graph Theory, 10:203–210,
1986). A minor improvement of that result, which was implied in their paper, will be
stated. Using this result, a series of exact saturation numbers and associated extremal
graphs will be proved for the nearly complete graphs Kt − E(L), where L is a graph
of order at most 4.
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1 Introduction

We will deal only with finite graphs without loops or multiple edges. Notation will be
standard, and generally follow the notation of Chartrand and Lesniak [1]. We let K p

denote the complete graph on p vertices, C p the cycle on p vertices, and Pp the path
on p vertices. We will also use the more compact notation that if H is a subgraph of
G, then G − E(H) will be denote by just G − H . Thus, for example Kt − P4 will
denote the graph obtained from the complete graph Kt by deleting the three edges in
a path with four vertices.

Given a graph F , we say that the graph G is F-free if G has no subgraph isomorphic
to F . A graph G is F-saturated if G is F-free, but G + e does contain a copy of F
for every edge e ∈ E(G), where G denotes the complement of G. Specifically we are
interested in the following:
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sat (n, F) := min{|E(G)| : |V (G)| = n and G is F-saturated},
Sat (n, F) := {G : |V (G)| = n, |E(G)| = sat (n, F), and G is F-saturated}.

S AT (n, F) := {G : |V (G)| = n, and G is F-saturated}.

The saturation number of F on n vertices is sat (n, F), and Sat (n, F) is the set of
graphs on n vertices that are F-saturated with sat (n, F) edges.

In 1986 Kászonyi and Tuza [5] proved the best known general upper bound for
sat (n, F) for any fixed graph F , and in fact for a family of graphs. This result verifies
that sat (n, F) is linear in n for any graph F . Let α(F) be the independence number
of F , and define the following two parameters:

u = u(F) = |V (F)| − α(F) − 1,

and

d = d(F) = min{|E(F ′)| : F ′ is induced by S ∪ x},

where S is a maximal independent set and x ∈ V (F) − S. Thus, d is the minimum
degree of a vertex in F relative to a maximal independent set of F .

Consider the graph G = Ku + H , where H is a nearly (d − 1)-regular graph of
order n −u [where nearly (d −1)-regular means every vertex has degree d −1 except
for possibly one vertex, which has degree d − 2]. The addition of any edge to G will
generate a vertex of degree d in H . As a result the graph G contains an F-saturated
graph, and so some subgraph of G is a candidate to be in Sat (n, F). This leads to the
following result of Kászonyi and Tuza.

Theorem 1 [5] sat (n, F) ≤ un + �(d − 1)(n − u)/2� − (u+1
2

)
.

However in [5] the saturation number of the star K1,d was determined and the result
was the following.

Theorem 2 For n ≥ d + �d/2�,

sat (n, K1,d) = ((d − 1)/2)n − 1

2
�d2/4�.

The graph K�(d+1)/2� ∪ A, where A is a nearly (d − 1)-regular graph of order
n − �(d + 1)/2�, is a graph in S AT (n, K1,d). If the graph G = Ku + H in the proof
of Theorem 1 is replaced by the graph G ′ = Ku + H ′, where H ′ is the graph in
Sat (n − u, K1,d) associated with Theorem 2, then this provides an improved upper
bound for the saturation number of a graph in terms of the parameters u and d. This
gives the following result, which lowers the bound of Theorem 1 by 1

2�d2/4�.

Theorem 3 sat (n, F) ≤ un + �(d − 1)(n − u)/2� − (u+1
2

) − 1
2�d2/4�.

In Sect. 2 the impact of the Kászonyi and Tuza results (Theorems 1 and 2) will be
exhibited. A series of known results on the saturation number of a graph for which the
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bound in Theorem 3 is a sharp bound will be discussed. In Sect. 3, new results dealing
with nearly complete graphs of the form Kt − L , where L is a graph of order at most
4, will be stated using the bound of Theorem 3 or graphs derived from the Kászonyi
and Tuza examples as the sharp upper bound.

2 Known Results

The star K1,t has the following parameters: α(K1,t ) = t , u = u(K1,t ) = 0, and
d = d(K1,t ) = t , which implies sat (n, K1,t ) ≤ (t − 1)/n − 1

2�t2/4�. Theorem 2
verifies that this bound is sharp.

The complete graph Kt has the following parameters: α(Kt ) = 1, u = u(Kt ) =
t − 2, and d = d(Kt ) = 1. Thus, Kt−2 + K n−t+2 is Kt -saturated, and sat (n, Kt ) ≤
(t − 2)n − (t−2

2

) = (t − 2)(n − t + 2) + (t−2
2

)
by Theorem 3. The following theorem

of Erdős, Hajnal, and Moon shows that this bound is sharp.

Theorem 4 [3] If 2 ≤ t ≤ n, then

sat (n, Kt ) = (t − 2)(n − t + 2) +
(

t − 2

2

)

and Sat (n, Kt ) contains only one graph, Kt−2 + K n−t+2.

The graph K2 + K t is the book with t pages, and will be denoted by Bt . It is
easy to see that Bt has the following parameters: α(Bt ) = t , u = u(Bt ) = 1, and
d = d(Bt ) = t . Thus, Theorem 3 implies that sat (n, Bt ) ≤ n +�(t − 1)(n − 1)/2�−
1 − 1

2�t2/4� = �(t + 1)(n − 1)/2� − 1
2�t2/4�. The following result of Chen et al. [2]

verifies that this bound is sharp.

Theorem 5 [2] For t ≥ 2 and n ≥ t3 + t ,

sat (n, Bt ) = �(t + 1)(n − 1)/2� − 1

2
�t2/4�.

Generalized books Bb,t = Kb + K t were considered in [2]. It is easy to see that Bb,t

has the following paramenters: α(Bb,t ) = t , u = u(Bb,t ) = b−1, and d = d(Bt ) = t .
Thus, Theorem 3 implies that sat (n, Bb,t ) ≤ (b − 1)n + �(t − 1)(n − b + 1)/2� −(b

2

) − 1
2�t2/4� = (�(t + 2b − 3)(n − b + 1)/2� + (b)(b − 1))/2 − 1

2�t2/4�. The
following result in [2] verifies that this bound is sharp.

Theorem 6 [2] For t ≥ 2, b ≥ 3 and n ≥ 4(t + 2b)b,

sat (n, Bb,t ) = (�(t + 2b − 3)(n − b + 1)/2� + b(b − 1))/2 − 1

2
�t2/4�.

The graph K1,t + e is the graph obtained from a star with t edges by adding one
edge between two vertices of degree 1. This is a graph with α(K1,t + e) = t − 1,
u = u(K1,t + e) = 1, and d = d(K1,t + e) = 1. Thus, Theorem 3 implies that
sat (n, K1,t + e) ≤ n − 1, and the (K1,t + e)-saturated graph with this number
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of edges is the star K1,n−1. This bound was shown to be sharp by the following result
of Faudree et al. [4].

Theorem 7 [4] For t ≥ 2 and n ≥ t + 1,

sat (n, K1,t + e) = n − 1,

and Sat (n, K1,t + e) = {K1,n−1}.
The previous result can be generalized to give a class of graphs for which the Kász-

onyi and Tuza [5] bound is sharp. Let Hs be an arbitrary graph of order s, and let Gs,t

be the graph obtained from Hs + Kt by adding one edge in the graph induced by K t .

Theorem 8 For s ≥ 1, t ≥ 2s + 2, and n sufficiently large,

sat (n, Gs,t ) = sn −
(

s + 1

2

)
.

Proof By Theorem 1, the number of edges in the graph Ks +K n−s , which is sn−(s+1
2

)
,

gives an upper bound for sat (n, Gs,t ). Thus, sat (n, Gs,t ) ≤ sn − (s+1
2

)
.

Let G ∈ Sat (n, Gs,t ). If δ = δ(G) ≥ 2s, then G has sn edges. Thus we can assume
that δ(G) < 2s. First consider the case when δ(G) ≤ s − 1. Choose a vertex v such
that d(v) = δ(G). If there is a vertex w ∈ G such that vw ∈ G and dG(w) < t − 1,
then consider G + vw, which must contain a copy of Gs,t containing the edge vw.
However, this is impossible, since there is no edge in Gs,t with one endvertex of degree
≤ s and the other strictly < t . Hence, we can assume that each vertex of G not adjacent
to v has degree at least t − 1. Therefore,

|G| ≥ (δ(δ + 1) + (n − δ − 1)(t − 1))/2

≥ (t − 1)n/2 − (δ + 1)(t − 1 − δ)/2 ≥ sn −
(

s + 1

2

)
.

Hence, we can assume that s ≤ δ(G) ≤ 2s − 1.
We have d(v) = δ(G) = s + r , where 0 ≤ r < s. Partition the vertices of G − v

into three sets N = NG(v), A, and B, where A is the set of vertices nonadjacent to v

of degree at most t − 2, and B is the set of remaining vertices of G. Thus, each vertex
of B has degree at least t − 1. Let a = |A| and so |B| = n − s − r − 1 − a. The
addition of any edge vw for w ∈ A, must generate a copy of Gs,t containing vw, and
so w must have at least s adjacencies in N . Therefore,

2|G| ≥ (s + r) + a(2s + r) + (n − s − r − 1 − a)(t − 1)

≥ 2sn − (s + r + 1)(2s) + ar.

Thus, if ar ≥ 2sr , then |G| ≥ sn − (s+1
2

)
, so we can assume a ≤ 2s − 1. Thus,

there are at least n − 4s vertices of G of degree at least t − 1 ≥ 2s + 1. Thus,
|G| ≥ (2s + 1)(n − 4s) ≥ 2sn for n sufficiently large. This completes the proof of
Theorem 8. 	
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It is clear that there are many known saturation results in which the upper bound
given by Kászonyi and Tuza [5] is sharp. New results will be given in the next section
with this same property.

3 Nearly Complete Graphs

The objective is to determine the saturation number of the graphs Kt − H , where H is a
graph of order at most 4. Thus, the possibilities for H are K2, P3, K3, P4, K1,3, C4, K4
− K1,2, K4 − K2, K4, and 2K2. In many, and in fact most, of the cases the upper bound
given by Theorem 3 is sharp, and in the remaining cases the structure of a minimal
saturated graph is suggested by Theorem 3. Of these ten possibilities, three of them
are already known, namely K2, K3, and K4, since these are all generalized books (see
Theorem 6), and it has already been indicated that these fit the Kászonyi and Tuza
upper bound. This is stated in the following summary result.

Theorem 9 For n ≥ t ,

(i) sat (n, Kt − K2) = �(2t − 5)(n − t + 3)/2� + (t−3
2

)
.

(ii) sat (n, Kt − K3) = �(2t − 6)(n − t + 4)/2� + (t−4
2

) − 1.

(iii) sat (n, Kt − K4) = �(2t − 7)(n − t + 5)/2� + (t−5
2

) − 3.

For the graph Kt − P3 we have the following parameters: α(Kt − P3) = 2, u(Kt −
P3) = t −3, and d(Kt − P3) = 1. This would indicate that the graph Kt−3+K n−t+3 ∈
Sat (n, Kt − P3). This graph gives the upper bound for the following result which will
be proved in Sect. 4.

Theorem 10 For t ≥ 4 and n ≥ 7t − 24,

sat (n, Kt − P3) = (t − 3)(n − t/2 + 1).

For the graph Kt − P4 we have the following parameters: α(Kt − P4) = 2, u(Kt −
P4) = t −3, and d(Kt − P4) = 1. This would indicate that the graph Kt−3+K n−t+3 ∈
Sat (n, Kt − P4). Although this graph is (Kt − P4)-saturated, it is not minimal. How-
ever, The graph Kt−4 + ((n − t + 4)/2)K2 ∈ Sat (n, Kt − P4) when n − t is even,
and Kt−4 + (K3 ∪ ((n − t + 1)/2)K2) ∈ Sat (n, Kt − P4) when n − t is odd. This
graph gives the upper bound for the following result which will be proved in Sect. 4.

Theorem 11 For t ≥ 5 and n ≥ 7t − 18,

sat (n, Kt − P4) = �(2t − 7)(n − t + 4)/2� +
(

t − 4

2

)
+ θ(n, t),

where θ(n, t) = 2 if n − t is odd, and 0 otherwise.

For the graph Kt − K1,3 we have the following parameters: α(Kt − K1,3) =
2, u(Kt − K1,3) = t − 3, and d(Kt − K1,3) = 1. The graph Kt−3 + K n−t+3 ∈
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S AT (n, Kt − K1,3); however, there is a smaller graph in Sat (n, Kt − K1,3). The
addition of any edge in R = Kt−5 + ((�(n − t + 5)/4�)K4 ∪ Kn−t+5−4�(n−t+5)/4�)
will induce a K5 − K1,3 disjoint from the vertices in the Kt−5. It will be shown that
R ∈ Sat (n, Kt −K1,3), and the number of edges in R is ((2t−7)n−t2+6t−θ(n, t))/2,
where θ(n, t) = 5, 8, 9, 8 respectively when n−t ≡ 3, 2, 1, 0 mod 4. This graph gives
the upper bound for the following result which will be proved in Sect. 4.

Theorem 12 For t ≥ 5 and n ≥ 10t − 16,

sat (n, Kt − K1,3) = ((2t − 7)n − t2 + 6t − θ(n, t))/2,

where θ(n, t) = 5, 8, 9, 8 respectively when n − t ≡ 3, 2, 1, 0 mod 4.

For the graph Kt −C4 we have the following parameters: α(Kt −C4) = 2, u(Kt −
C4) = t −3, and d(Kt −C4) = 1. This would indicate that the graph Kt−3+K n−t+3 ∈
Sat (n, Kt − C4). Although this graph is (Kt − C4)-saturated, it is not minimal. How-
ever, The graph Kt−4 + (K3 ∪ K n−t+1) ∈ S AT (n, Kt − C4). This graph gives the
upper bound for the following result which will be proved in Sect. 4.

Theorem 13 For t ≥ 5 and n ≥ 7t − 25,

sat (n, Kt − C4) = (t − 4)(n − t + 4) +
(

t − 4

2

)
+ 3.

For the graph Kt − (K4 − K1,2) we have the following parameters: α(Kt − (K4 −
K1,2)) = 3, u(Kt − (K4 − K1,2)) = t − 4, and d(Kt − (K4 − K1,2)) = 2. This would
indicate that the graph Kt−4 + �(n − t + 4)/2�K2 ∈ Sat (n, Kt − (K4 − K1,2)). This
graph gives the upper bound for the following result which will be proved in Sect. 4.

Theorem 14 For t ≥ 5 and n ≥ 9t − 36,

sat (n, Kt − (K4 − K1,2)) = �(2t − 7)(n − t + 4)/2� +
(

t − 4

2

)
.

For the graph Kt − (K4 − K2) we have the following parameters: α(Kt − (K4 −
K2)) = 3, u(Kt − (K4 − K2)) = t − 4, and d(Kt − (K4 − K2)) = 1. This would
indicate that the graph Kt−4 + K n−t+4 ∈ Sat (n, Kt − (K4 − K2)). This is the upper
bound for the following result which will be proved in Sect. 4.

Theorem 15 For t ≥ 5 and n ≥ 7t − 31,

sat (n, Kt − (K4 − K2)) = (t − 4)(n − t/2 + 3/2).

An interesting case involves the nearly complete graphs Kt − 2K2. For this graph
we have the following parameters: α(Kt − (2K2)) = 2, u(Kt − (2K2)) = t − 3, and
d(Kt − (2K2)) = 2. This would indicate that the graph Kt−3 + (�(n − t +3)/2�)K2 ∈
Sat (n, Kt − (2K2)). Although this graph is (Kt − (2K2))-saturated, it is not minimal.
In the case when n is even, let D be the graph obtained from K t−3∪�(n−2t +6)/2�K2
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by making all of the vertices of the K t−3 adjacent to one of the remaining vertices of D.
In the case when n is odd, let D be the graph obtained from K t−2 ∪�(n−2t +5)/2�K2
by making all of the vertices of the K t−2 adjacent to one of the remaining vertices of
D. Consider the graph R, which is obtained from the graph Kt−3 + D by deleting a
perfect matching between Kt−3 and the K t−3 in D when n is even, and by deleting
a matching with t − 3 edges between Kt−3 and the K t−2 along with one additional
edge such that each vertex in the K t−2 is the endvertex of a missing edge, when n is
odd. The graph R ∈ Sat (n, Kt − 2K2), and gives the upper bound for the following
result which will be proved in Sect. 4.

Theorem 16 For t ≥ 5 and n ≥ 8t − 25,

sat (n, Kt − 2K2) = �((2t − 5)n − t (t − 3) − 1)/2�.

4 Proofs

The proofs of the theorems stated in Sect. 3 will be given. The structure of all of the
proofs are the same, so to reduce repetition, we will outline this general structure prior
to giving the individual proofs. We will also introduce the notation that results, and
not repeat it in each case. Let G be a graph in S AT (n, Kt − S) for some subgraph S
of Kt . Let x be a vertex of G of minimal degree δ = δ(G), B = NG(x), and A the
remaining vertices of G. Thus, |B| = δ, and |A| = n − δ − 1. An edge xy for some
y ∈ A will be added, which will produce a subgraph H of G with H isomorphic to
Kt − S and containing xy. The graph H will contain some s ≥ 1 vertices of A, which
we will denote by {y, y1, y2, . . . , ys−1}, and B will contain the remaining t − s − 1
vertices of H . Note that, xyi �∈ G for 1 ≤ i < s.

In most cases the copy of H in G + xy will have y adjacent to a least t − s − 1
vertices of A, which form a complete graph. This implies that a count on the sum of
the degrees of the vertices in G would give the following inequality:

2|E(G)| ≥ 2δ + (t − s − 1)(n − δ − 1) + 2

(
t − s − 1

2

)
+ (n − δ − 1)δ,

where the 4 terms give lower bounds on the number of edges incident to x doubled,
edges between A and B, edges in B doubled, and sum of degrees of the vertices in
A respectively. This count will be supplemented in some cases, such as the additional
edges in B that may not be in a copy of H when the edge xy is added.

Proof of Theorem 10 It is direct and straightforward to check that R = Kt−3 +
K n−t+3 ∈ S AT (n, Kt − P3) and has (t − 3)(n − t/2 + 1) edges.

Let G ∈ S AT (n, Kt − P3). Since each pair of vertices in Kt − P3 has at least t − 3
common adjacencies, each pair of non-adjacent vertices of G must have at least t − 4
common adjacencies and δ ≥ t − 4. Add an edge xy to G, where x has minimum
degree and y ∈ A to produce H , a copy of Kt − P3 in G.
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Case 1: δ > t − 2.
Each vertex of A must have at least t − 4 adjacencies in B. Also, the addition of

the edge xy will result in H , a copy of Kt − P3 in G, and so there will be at least
(t−4

2

)

edges in B. Therefore,

2|E(G)| ≥ 2δ + (t − 4)(n − δ − 1) + 2

(
t − 4

2

)
+ (n − δ − 1)δ

= 2δ + (δ + t − 4)(n − δ − 1) + (t − 4)(t − 5).

Since, δ ≥ t − 1, δ + t − 4 > 2t − 6, and so for n ≥ 7t − 24 it is straightforward to
determine that G has as many as |E(R)| edges.
Case 2: δ = t − 4.

The graph H will contain three vertices {y, y1, y2} of A, all vertices of B and x . The
copy of P3 ∈ H will contain x and the two vertices {y1, y2} of A in H . Thus, B forms
a complete graph, y is adjacent to all of the vertices of B and at least two vertices of
A. Since y is a typical vertex of A, all vertices of A have the same properties as y.
Therefore,

2|E(G)| ≥ 2(t − 4) + (t − 4)(n − t + 3) + 2

(
t − 4

2

)
+ (n − t + 3)(t − 2)

= (2t − 6)n − t2 + 5t − 6.

Since, (2t − 6)n − t2 + 5t − 6 ≥ 2((t − 3)(n − t/2 + 1), this implies δ ≥ t − 3.
Case 3: δ = t − 3.

The graph H will contain either two or three vertices of A. In the case when there
are two vertices y and y1 in A, then y1 will be the center of the P3 in H , and y will be
adjacent to all of the vertices of B, which is complete. If there are three vertices in A,
then x will be the center of the P3 in H , and y will be adjacent to the other two vertices
y1, y2 of A in H and at least t − 4 vertices of B forming a complete graph. Also, each
vertex of B must have degree at least t −4 in B. Let i be the number of vertices y ∈ A
associated with an H having two vertices in A. This results in the following bound on
the number of edges in G:

2|E(G)| ≥ 2(t − 3) + i(t − 3) + (n − t + 2 − i)(t − 4) + 2

(
t − 3

2

)

+i(t − 3) + (n − t + 2 − i)(t − 2)

= (2t − 6)n − t2 + 5t − 6.

This implies δ ≥ t − 2.
Case 4: δ = t − 2.

The graph H will contain one, two, or three vertices of A. This implies that each
vertex of A will have at least t − 4 adjacencies in B and B will have a complete
subgraph with t − 4 vertices. Since each vertex of B has degree at least t − 4 in B,
there are at least

(t−2
2

) − 2 edges in B. If that is precisely the number of edges in
B, then the graph H associated with each vertex y ∈ A will contain the same t − 4
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vertices of B. Therefore two of the vertices of B will have additional adjacencies in
A not counted in the t − 4 adjacencies of each vertex of A. This gives the following
lower bound for the number of edges in G:

2|E(G)| ≥ 2(t − 2) + (t − 4)(n − t + 1) + 2

((
t − 2

2

)
− 2

)
+ (n − t + 1)(t − 2)

+2 = (2t − 6)n − (t − 2)(t − 3).

Thus, G has at least as many edges as R, which completes the proof of Case 4 and
Theorem 10. 	

Proof of Theorem 11 It can easily be checked that the graph R = Kt−4 + ((�(n −
t + 4)/2�)K2) is in S AT (n, Kt − P4) when n − t is even, and Kt−4 + (K3 ∪ ((n −
t + 1)/2)K2) ∈ S AT (n, Kt − P4) when n − t is odd. The number of edges in R is
�((2t − 7)n − (t − 4)(t − 2))/2� + θ(n, t), where θ(n, t) = 2 if n − t is odd, and 0
otherwise

Let G ∈ S AT (n, Kt − P4). Since each pair of vertices in Kt − P4 has at least t − 4
common adjacencies, each pair of non-adjacent vertices of G must have at least t − 5
common adjacencies and δ ≥ t − 5.
Case 1: δ ≥ t − 2.

The copy H of Kt − P4 in G will have at most 3 vertices of A in H . Thus, y will
have at least t − 4 adjacencies in B which form a complete subgraph of B.

2|E(G)| ≥ 2δ + (t − 4)(n − δ − 1) + 2

(
t − 4

2

)
+ (n − δ − 1)δ

= 2δ + (δ + t − 4)(n − δ + 1) + (t − 4)(t − 5).

Since, δ ≥ t − 2, δ + t − 4 > 2t − 7, and for n ≥ 7t − 18 it is straightforward to
determine G has more than |E(R)| edges.
Case 2: δ = t − 5.

The graph H must contain four vertices {y, y1, y2, y3} of A with x nonadjacent to
{y1, y2, y3}. However, this gives a contradiction, since this implies K1,3 ∈ H . Thus,
we can assume that δ ≥ t − 4.
Case 3: δ = t − 4.

The graph H contains three vertices of A, which are y, y1, y2, and all of the ver-
tices of B. Thus the P4 in H will contain (y1, x, y2) along with some other vertex in
A ∪ B. Since each vertex of A is adjacent to all of the vertices of B, the P4 ∈ H will
be without loss of generality (y, y1, x, y2), and yy2, y1 y2 ∈ E(G). Thus, y will be
adjacent to at least one vertex of A of degree 2, and B will be a complete graph. The
property that every vertex of A is adjacent to a vertex of degree 2 implies that each
component of A will contain a cycle, and so A has at least |A| edges. Thus,

|E(G)| ≥ (t − 4)(n − t + 4) +
(

t − 4

2

)
+ (n − t + 3)

= (t − 3)(n − t + 4) + (t − 4)(t − 5)/2 − 1.
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Since, 2((t − 3)(n − t + 4)) + (t − 4)(t − 5) − 2 > (2t − 7)(n − t + 4) + (t − 4)

(t − 5) + 2θ(n, t), this implies δ ≥ t − 3.
Case 4: δ = t − 3.

The graph H will contain two or three vertices of A, and the vertex y will have at
least t − 4 adjacencies in B. If for some y there are only two vertices y, y1 in H ∩ A,
then B is either complete or missing at most one edge. At least one of y or y1 will
have t −3 adjacencies in B. Also, if B is not complete, then y has degree at least t −2
with t − 3 adjacencies in B. If n − t is odd, then the sum of the degrees of A relative
to A will exceed |A| or some vertex other than y or y1 will have t − 3 adjacencies in
B, since the vertices of A cannot all have degree precisely one relative to A. Thus, in
this case when for some y, |H ∩ A| = 2,

2|E(G)| ≥ 2(t − 3) + (t − 4)(n − t + 2) + 2

((
t − 3
2

)
− 1

)

+2 + (n − t + 2)(t − 3) + θ ′(n, t)

= (2t − 7)(n − t + 4) + (t − 4)(t − 5) + θ ′(n, t),

where θ ′(n, t) ≥ 2. Therefore, since �(2t −7)(n − t +4)+(t −4)(t −5)�+θ ′(n, t) ≥
�(2t − 7)(n − t + 4) + (t − 4)(t − 5)� + θ(n, t), the number of edges in G is at least
as large as the number of edges in R.

We now deal with the case where each copy of H has three vertices in A, which
are {y, y1, y2}. Then y1 y2 ∈ E(G), and with no loss of generality we can assume
that yy1 ∈ E(G). Thus, each vertex of y ∈ A has t − 4 adjacencies in B that form a
complete graph, and is adjacent to a vertex of degree 2 in A. Thus, every component
of G in A has a cycle, and so G has at least |A| edges in A. Thus, we have

|E(G)| ≥ (t − 3) + (t − 4)(n − t + 2) +
(

t − 4

2

)
+ (n − t + 2)

= (t − 3)(n − t + 4) + (t − 4)(t − 5)/2 + (t − 3).

Hence, in this case, since n ≥ 7t − 18, G has more than �(2t − 7)(n − t + 4)/2� +(t−4
2

) + θ(n, t) edges. This completes the proof of Case 4 and Theorem 11. 	


Proof of Theorem 12 Consider the graph R = Kt−5 + ((�(n − t + 5)/4�)K4 ∪
Kn−t+5−4�(n−t+5)/4�). The addition of any edge in R will induce a K5 − K1,3 disjoint
from the vertices in the Kt−5, and so it is easy to check that R ∈ S AT (n, Kt − K1,3).
The number of edges in R is ((2t−7)n−t2+6t−θ(n, t))/2, where θ(n, t) = 5, 8, 9, 8
respectively when n − t ≡ 3, 2, 1, 0 mod 4.

Let G ∈ S AT (n, Kt − K1,3). Since each pair of vertices in Kt − K1,3 has at least
t − 4 common adjacencies, each pair of non-adjacent vertices of G must have at least
t − 5 common adjacencies and δ ≥ t − 5.
Case 1: δ ≥ t − 1.

The copy H of Kt − K1,3 in G will have at most 4 vertices of A in H . Thus, y will
have at least t − 5 adjacencies in B, which form a complete graph. Thus,
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2|E(G)| ≥ 2δ + (t − 5)(n − δ − 1) + 2

(
t − 5

2

)
+ (n − δ − 1)δ

= 2δ + (δ + t − 5)(n − δ − 1) + (t − 5)(t − 6).

Since, δ ≥ t − 1, δ + t − 5 > 2t − 7, and so for n ≥ 10k − 16 it is straightforward to
verify that G has more than |E(R)| edges.
Case 2: δ = t − 5.

The graph H must contain four vertices {y, y1, y2, y3} of A with x nonadjacent to
{y1, y2, y3}. Thus, y is adjacent to {y1, y2, y3} and all of the t −5 vertices of B. In fact,
the vertices {y, y1, y2, y3} ∪ B form a complete subgraph of H . Thus, each vertex of
A is in a K4. Therefore, it can be checked directly that the sum of the degrees of the
vertices of A relative to A is at least 3(n − t + 4) + β(n, t) where β(n, t) = 3, 4, 3, 0
respectively when n − t ≡ 3, 2, 1, 0 mod 4. Therefore,

2|E(G)| ≥ 2(t − 5) + (t − 5)(n − t + 4) + 2

((
t − 5

2

))
+ (n − t + 4)(t − 2)

+β(n, t) = (2t − 7)n − t2 + 6t − 8 + β(n, t).

Thus, G has as many edges as R, so we can assume that δ ≥ t − 4.
Case 3: δ = t − 4.

The graph H contains either three vertices of A, which are y, y1, y2, or four vertices
of A, which are {y, y1, y2, y3}. In the first category y is adjacent to both {y1, y2} and
all of the vertices of B, which is complete. Thus, the vertices of B ∪ {x} ∪ {y, y1, y2}
induce a copy of Kt − K1,3 without the edge xy, so this category cannot occur. In
the second category y is adjacent to the vertices {y1, y2, y3} and at least t − 5 verti-
ces of B, which form a complete subgraph. Thus, each y ∈ A will be in K4 ⊆ A.
Hence, we have that the sum of the degrees of the vertices in A relative to A is at least
3(n − t + 3) + β(n, t) where β(n, t) = 4, 3, 0, 3 respectively when n − t ≡ 3, 2, 1, 0
mod 4. We can assume that each vertex in B has at least t − 5 adjacencies in B. If
not, consider the a vertex z ∈ B that does not have t − 5 adjacencies in B. If z is not
adjacent to a vertex in y′ ∈ A, then since y′ and z must have at least t − 5 common
adjacencies, they have at least one common adjacency in A. This implies that either
there would be at least 2t edges between z and vertices in A not involved in the count
of edges between A and B from the copies of H , or a large number of the vertices of
A (at least (|A| − 2t)/2t) would be adjacent to a neighbor of z in A. In the calculation
on the lower bound on the number of edges in E(G) we can assume that each vertex
in B has degree at least t − 5, since the bound would be much larger for n ≥ 10t − 16
by the observation just made.

2|E(G)| ≥ 2(t−4) + (n − t + 3)(t−5) + 2

(
t−4

2

)
+ (t − 2)(n − t + 3) + β(n, t)

= (2t − 7)n − t2 + 6t − 9 + β(n, t).

Clearly, since β(n, t) − 9 ≥ −θ(n, t), G has at least as many edges as R. Thus, we
can assume that δ ≥ t − 3.
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Case 4: δ = t − 3.
The graph H will contain two, three, or four vertices of A. In the first category

y will be adjacent to t − 3 vertices of B, which is a complete graph. In the second
category, y will be adjacent to at least t − 4 vertices of B which form a complete
graph and will be in a K3 in A. However, this case cannot occur, since just as in the
previous case, this implies G contains a copy of Kt − K1,3. In the last category, y will
be adjacent to at least t − 5 vertices of B which forms a complete graph, and will be
in a K4 of A. As observed, before, each vertex of B can be assumed to have degree at
least t − 5 relative to B. Thus, if i, k are the number of vertices of A in the first and
third categories respectively, then a lower bound on the number of edges in G is given
by the following:

2|E(G)| ≥ 2(t − 3) + i(t − 3) + k(t − 5) + 2

((
t − 3

2

)
− 2

)
+ 4 + i(t − 3)

+ k(t − 2) = (2t − 7)n − t2 + 6t − 8 + i.

Using an analysis essentially identical to that of the previous case it can be shown that
there are additional edges that imply that G has as many edges as R.
Case 5: δ = t − 2.

The graph H will contain one, two, three, or four vertices of A. In the first category
y will be adjacent to t − 5 vertices of B, which form a complete graph. In the second
category y will be adjacent to at least t − 3 vertices of B, which form a complete
graph. In the third category, y will be adjacent to {y1, y2} and at least t − 4 vertices
of B which form a complete graph and will be in a K3 in A. However, as observed in
the previous two cases, this category cannot occur, since Kt − K1,3 is a subgraph of
G. In the last category, y will be adjacent to {y1, y2, y3} at least t − 5 vertices of B,
which form a complete graph, and also y will be in a K4 of A. As observed, before,
each vertex of B has degree at least t − 2 and can be assumed to have degree at least
t − 5 relative to B. Thus, if i, j, � are the number of vertices of A in the first, second,
and fourth categories respectively, then a lower bound on the number of edges in G is
given by the following:

2|E(G)| ≥ 2(t − 2) + i(t − 5) + j (t − 3) + �(t − 5) + 2

((
t − 2

2

)
− 4

)

+8 + (n − t + 1)(t − 2) = (2t − 7)n − t2 + 6t − 5 + 2 j.

This implies G has more edges than R, so this completes the proof of Case 5 and
Theorem 12. 	

Proof of Theorem 13 Consider the graph R = Kt−4+(K3∪K n−t+1). The addition of
any edge from R will give a 2K2 disjoint from the Kt−4 ∈ R, and so R ∈ S AT (n, Kt −
C4) and has (t − 4)n − (t2 − 7t + 6)/2 edges.

Let G ∈ S AT (n, Kt −C4). Since each pair of vertices in Kt −C4 has at least t −4
common adjacencies, each pair of non-adjacent vertices of G must have at least t − 5
common adjacencies which form a complete graph, and δ ≥ t − 5.
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Case 1: δ ≥ t − 2.
Each vertex of A must have at least t − 5 adjacencies in B. Therefore,

2|E(G)| ≥ 2δ + (t − 5)(n − δ − 1) + 2

(
t − 5

2

)
+ (n − δ − 1)δ

= (δ + t − 5)(n − δ − 1) + 2δ + (t − 5)(t − 6).

Since, δ ≥ t − 2, δ + t − 5 > 2t − 8, and since n ≥ 7t − 25, it is straightforward to
verify that G has more than |E(R)| edges.
Case 2: δ = t − 5.

The graph H will contain four vertices {y, y1, y2, y3} of A, all vertices of B and
x . The vertex x is not adjacent to any of the vertices {y1, y2, y3}, so K1,3 ∈ H , a
contradiction. Thus, δ ≥ t − 4.
Case 3: δ = t − 4.

The graph H will contain three vertices of A, which will be {y, y1, y2}. Thus, y
will be adjacent to all of the vertices of B, which will be complete, and y1 y2 ∈ E(G).
This implies each vertex of A is adjacent to all of the vertices of B, and there will be
an edge in A disjoint from the vertex. Since, two edge-disjoint edges in A implies the
existence of a Kt − C4 ∈ G, we can assume that there are three edges in A that form
a triangle. Thus, we have the following edge count:

2|E(G)| ≥ 2(t − 4) + (t − 4)(n − t + 3) + 2

(
t − 4

2

)
+ (n − t + 3)(t − 4) + 6

= 2(t − 4)(n − t + 4) + 2

(
t − 4

2

)
+ 6.

This implies |E(G)| ≥ |E(R)|, and so δ ≥ t − 3.
Case 4: δ = t − 3.

The graph H will contain two or three vertices of A. In both the two and three
vertex case in H ∩ A, the vertex y will be adjacent to at least t − 4 vertices of B that
form a complete graph. As a result, a lower bound on the number of edges in G is the
following:

2|E(G)| ≥ 2(t − 3) + (n − t + 4)(t − 4) + 2

(
t − 4

2

)
+ (n − t + 4)(t − 3)

≥ (2t − 7)n − t2 + 8t − 14.

Since, 2t − 7 > 2t − 8, the graph G has more edges than R for n ≥ 7t − 25. This
completes the proof of Case 4 and Theorem 13. 	

Proof of Theorem 14 It is straightforward to verify that R = Kt−4 + �(n − t +
4)/2�K2 ∈ S AT (n, Kt − (K4 − K1,2)) and has �(2t − 7)(n − t + 4)/2� + (t−4

2

) =
�((2t − 7)n − t2 + 6t − 8)/2� edges.

Let G ∈ S AT (n, Kt −(K4 − K1,2). Since each pair of vertices in Kt −(K4 − K1,2)

has at least t − 4 common adjacencies, each pair of vertices of non-adjacent vertices
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of G must have at least t − 5 common adjacencies and δ ≥ t − 5. Thus, |B| = δ and
|A| = n − δ − 1.
Case 1: δ ≥ t − 1.

Each vertex of A must have at least t − 5 adjacencies in B, and these vertices will
form a complete graph in B. Therefore,

2|E(G)| ≥ 2δ + (t − 5)(n − δ − 1) + 2

(
t − 5

2

)
+ (n − δ − 1)δ

= (δ + t − 5)(n − δ − 1) + 2δ + (t − 5)(t − 6).

Since, δ ≥ t − 1, δ + t − 5 > 2t − 7, and since n ≥ 9t − 36, it is straightforward to
verify that G has more than |E(R)| edges.
Case 2: δ = t − 5.

The graph H will contain four vertices {y, y1, y2, y3} of A, all vertices of B, and
x . The copy of K4 − K1,2 ∈ H will contain x and all of the vertices {y1, y2, y3} of A
in H . Thus, B forms a complete graph, y is adjacent to at all of the vertices of B and
all of the vertices {y1, y2, y3} of A. All vertices of A have the same properties as y.
Therefore,

2|E(G)| ≥ 2(t − 5) + (t − 5)(n − t + 4) + 2

(
t − 5

2

)
+ (n − t + 4)(t − 2)

= (2t − 7)n − (t − 4)(t − 2).

Thus, G has as many edges as R.
Case 3: δ = t − 4.

The graph H will contain either three or four vertices of A. In the case when there
are four vertices {y, y1, y2, y3} in A, y will be adjacent to at least t − 5 vertices of B,
which form a complete graph, and all of the vertices {y1, y2, y3}. Also, each vertex of
B must have degree at least t − 5 relative to B. If all of the vertices of A have this
property, then there is the following bound on the number of edges in G:

2|E(G)| ≥ 2(t − 4) + (n − t + 3)(t − 5) + 2

(
t − 4

2

)
+ (n − t + 3)(t − 2)

= (2t − 7)n − (t − 3)(t − 3).

Since �((2t − 7)n − t2 + 6t − 9)/2� ≥ �((2t − 7)n − t2 + 6t − 8)/2�, G has as many
edges as R.

Thus, we assume that this does not occur for each vertex y ∈ A. In the case when
there are three vertices {y, y1, y2} in A, y will be adjacent to the t − 4 vertices of B,
which form a complete graph, and at least one vertex in A. Assume there are i vertices
in the first category and j vertices in the second category. We know that j ≥ 1 and
i + j = n − t + 3. Thus, we have the following:
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2|E(G)| = i(t − 5) + j (t − 4) + 2(t − 4) + 2

(
t − 4

2

)
+ i(t − 2) + j (t − 3)

= (2t − 7)n − (t − 3)(t − 3).

Since �((2t − 7)n − t2 + 6t − 9)/2� = �((2t − 7)n − t2 + 6t − 8)/2�, we can assume
that δ ≥ t − 3.
Case 4: δ = t − 3.

The graph H will contain four, three, or two vertices of A. In the case of four
vertices, the vertex y will have degree at least t − 2, since it will be adjacent to at least
3 vertices of A, and will be adjacent to a complete graph with t − 5 vertices in B. In
the second case y will be adjacent to a complete graph of order t − 4 in B. In the last
case, y will be adjacent to t −4 vertices of B, which will be a complete graph. Let i , j ,
and k be the number of vertices of A in each of the categories. We sill first consider the
case when all of the vertices are in the first category. This gives the following lower
bound for the number of edges in G:

2|E(G)| ≥ 2(t − 3) + (n − t + 2)(t − 5) + 2

(
t − 5

2

)

+(n − t + 2)(t − 2) = (2t − 7)n − t2 + 2t + 10.

However, this count assumes that all of the edges in B are in a complete graph of
order t − 5, and there are two additional vertices in B not considered. Consider the
case when a vertex z ∈ B does not have at least t − 5 adjacencies in B. Then for each
y ∈ A, either yz ∈ E(G) or y and z must have a common adjacency in A. This implies
that either z is adjacent to at least |A|/2 of the vertices of A or at least |A|/2 of the
vertices of A are adjacent to neighborhood of z in A. This implies that there are at least
(n − t +2)/2 additional edges in G, which certainly exceeds the number of additional
edges obtained by assuming that each vertex in B has at least t − 5 adjacencies in B.
Thus, we will assume that each vertex in B has at least t − 5 adjacencies in B. This
implies that G has an additional sum of degree count of at least 4(t −5)+4 = 4t −16.
Thus, 2|E(G)| ≥ (2t − 7)n − t2 + 6t − 6, and so G has more edges than R. Hence,
we can assume some of the vertices in A are in category two or three. This will give
the following count, again assuming that each vertex in B has degree at least t − 5
relative to B for the reason given above.

2|E(G)| ≥ 2(t − 3) + i(t − 5) + j (t − 4) + k(t − 4) + 2

(
t − 4

2

)
+ i(t − 2)

+( j + k)(t − 3) + 2(t − 5) + 2 = (2t − 7)n − t2 + 6t − 8.

This implies G has as many edges as R, so we can assume that δ ≥ t − 2.
Case 5: δ = t − 2.

The graph H will contain four, three, two, or one vertices of A. In the case of 4
vertices in A, the vertex y will be adjacent to at least 3 vertices of A, and will be
adjacent to a complete graph with t −5 vertices in B. In the case of three vertices in A,
y will be adjacent to a complete graph of order t − 4 in B. In the case of two vertices
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in A, y will be adjacent to at least t − 4 vertices of B, which will be a complete graph.
In the case of one vertex in A, then y could be adjacent to as few as t − 5 vertices of
B, but B will contain at least

(t−2
2

)− 4 edges and each vertex of B will have degree at
least t − 2. If this case occurs for at least one vertex of A, then there is the following
bound on the number of edges in G:

2|E(G)| ≥ 2(t − 2) + (n − t + 1)(t − 5) + 2

((
t − 2

2

)
− 4

)
+ 6

+(n − t + 1)(t − 2) = (2t − 7)n − t2 + 6t − 7.

We now consider the remaining cases collectively, and let i , j , and k be the number
of vertices in each of the first three categories respectively. This gives the following
lower bound for the number of edges in G:

2|E(G)| ≥ 2(t − 2) + i(t − 5) + ( j + k)(t − 4) + 2

((
t − 5

2

)
− 6

)
+ 6

+(n − t + 1)(t − 2) = (2t − 7)n − t2 + 6t − 11 + j + k.

Thus, if j + k ≥ 2, then G has as many edges as R, so we can assume that j + k ≤ 1.
If all of the vertices of A are in the first category with the exception of at most one,
then at least two of the vertices of A will have degree at least t − 1 or the number of
edges in B will be at least

(t−5
2

) − 4. Thus, in all of the cases G has more edges than
R, which completes the proof of Case 5 and Theorem 14. 	


Proof of Theorem 15 It is easy to check that R = Kt−4 + K n−t+4 ∈ S AT (n, Kt −
(K4 − K2)) and has (t − 4)n − (t−3

2

)
edges.

Let G ∈ S AT (n, Kt − (K4 − K2)). Since each pair of vertices in Kt − (K4 − K2)

has at least t − 4 common adjacencies, each pair of vertices of non-adjacent vertices
of G must have at least t − 5 common adjacencies and δ ≥ t − 5.
Case 1: δ ≥ t − 2.

Each vertex of A must have at least t − 5 adjacencies in B, and these vertices form
a complete graph in B. Therefore,

2|E(G)| ≥ 2δ + (t − 5)(n − δ − 1) + 2

(
t − 5

2

)
+ (n − δ − 1)δ

= (δ + t − 5)(n − δ − 1) + 2δ + (t − 5)(t − 6).

Since, δ ≥ t − 2, δ + t − 5 > 2t − 7, and since n ≥ 7t − 31, G can be shown to have
more than |E(R)| edges.
Case 2: δ = t − 5.

The graph H will contain four vertices {y, y1, y2, y3} of A, all vertices of B and
x . The copy of K4 − K2 ∈ H will contain x and the three vertices {y1, y2, y3} of A

123



Graphs and Combinatorics (2013) 29:429–448 445

in H . Thus, B forms a complete graph, y is adjacent to all of the vertices of B and at
least three vertices of A. All vertices of A have the same properties as y. Therefore,

2|E(G)| ≥ 2(t − 5) + (t − 5)(n − t + 4) + 2

(
t − 5

2

)
+ (n − t + 4)(t − 2)

= (2t − 7)n − (t − 4)(t − 2).

Since, (2t − 7) > (2t − 8), for n ≥ 7t − 31, G has more edges than R.
Case 3: δ = t − 4.

The graph H will contain either four or three vertices of A. In the case when there
are four vertices {y, y1, y2, y3} in A, y will be adjacent to at least t − 5 vertices of B,
which form a complete graph, and all of the vertices {y1, y2, y3}. If all of the vertices of
A have this property, then just as in Case 2, G will have more edges than R. In the case
when there are three vertices {y, y1, y2} in A, y will be adjacent to at least t −4 vertices
of B, which form a complete graph. Assume there are i vertices in the first category
and j vertices in the second category. We know that j ≥ 1 and i + j = n − t + 3.
Thus, we have the following:

2|E(G)| ≥ i(t − 5) + j (t − 4) + 2(t − 4) + 2

(
t − 4

2

)
+ i(t − 2) + j (t − 4)

= (2t − 8)n − (t − 3)(t − 4) + i ≥ 2|E(R)|.

This implies δ ≥ t − 3.
Case 4: δ = t − 3.

The graph H will contain four, three, or two vertices of A. In the case of 4 vertices,
the vertex y will have degree at least t − 2 and will be adjacent to a complete graph
with t − 5 vertices in B. In the other two cases y will be adjacent to a complete graph
of order t − 4 in B. Let i , j , and k be the number of vertices of A in each of the
categories. This gives the following lower bound for the number of edges in G:

2|E(G)| ≥ i(t − 5) + j (t − 4) + k(t − 4) + 2

(
t − 5

2

)
+ 2(t − 3)

+i(t − 2) + ( j + k)(t − 3)

= (n − t + 2)(2t − 7) + 2

(
t − 5

2

)
+ 2(t − 3).

Since n ≥ 7t − 31, this implies that G has more edges than R, which completes the
proof of Case 4 and Theorem 15. 	

Proof of Theorem 16 As was described earlier, let D be the graph obtained from
K t−3 ∪�(n −2t +6)/2�K2 when n is even and K t−2 ∪�(n −2t +5)/2�K2 when n is
odd by making all of the vertices of the K t−3 for even n and K t−2 for odd n adjacent
to a fixed vertex of the remaining vertices of D. Then, R is the graph obtained from
Kt−3 + D by deleting a perfect matching between Kt−3 and K t−3 when n is even,
and by deleting a deleting a matching between with t − 3 edges between Kt−3 and
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the K t−2 along with one additional edge such that each vertex in the Kt−2 is the end
vertex of a missing edge. We will show that the graph R ∈ Sat (n, Kt − 2K2), and it
is easily checked that |E(R)| = �((2t − 5)n − t (t − 3) − 1)/2� edges.

Let G ∈ S AT (n, Kt − 2K2). Since the vertices in Kt − 2K2 have degree t − 1 or
t − 2, δ ≥ t − 3 and each pair of nonadjacent vertices of G will have at least t − 5
common adjacencies. Also, |B| = δ and |A| = n − δ − 1.
Case 1: δ ≥ t .

The graph H will have either one or two vertices of A, the vertex y has at least t −4
adjacencies in B, and there will be at least a complete graph Kt−4 in the neighborhood
of y in B. Therefore,

2|E(G)| ≥ 2δ + (t − 4)(n − δ − 1) + 2

(
t − 4

2

)
+ (n − δ − 1)δ

= (δ + t − 4)(n − δ − 1) + 2δ + (t − 4)(t − 5).

Since, δ ≥ t , δ + t − 4 > 2t − 5, and so for n ≥ 8t − 25, it can be shown that G has
more than |E(R)| edges.
Case 2: δ = t − 1.

The graph H will have either one or two vertices of A. Thus, the vertex y has at
least t − 4 adjacencies in B, and H ∩ B will contain at least a nearly complete graph
Kt−3 with at most one missing edge. Also, each vertex of B has degree at least t − 5
relative to B. Therefore,

2|E(G)| ≥ 2(t − 1) + (t − 4)(n − t) + 2

((
t − 1

2

)
− 7

)
+ 8 + (n − t)(t − 1)

= (2t − 5)n − t2 + 4t − 6.

Since, (2t − 5)n − t2 + 4t − 6 ≥ (2t − 5)n − t2 + 3t − 1, for t ≥ 5, we can assume
that δ ≤ t − 2.
Case 3: δ = t − 2.

The graph H will contain either one or two vertices of A. In the case of just one
vertex y, then y will be adjacent to at least t − 3 vertices of B, and B will be nearly
complete missing a matching with at most 2 edges. Let j be the number of vertices of
A with this property. If H contains two vertices {y, y1}, then y will be adjacent to at
least t − 4 and y1 will be adjacent to at least t − 3 vertices that form a complete graph
with at most one edge missing. If the vertex y is adjacent to precisely t − 4 vertices of
B, then y is adjacent to at least two vertices of A, say {y1, z}. Let A′ be those vertices
with degree precisely 2 in B, i ′ be the number of such vertices, and i be the number
of such vertices with degree at least t − 3 in B.

If y ∈ A′, then consider any other vertex y′ ∈ A′ − {y, z}. The addition of the edge
yy′ will result in a Kt − 2K2 containing yy′. It is straightforward to check that for
this to occur, y′ will have to be adjacent to at least one of y1 or z. Thus, the sum of
the degrees of y1, z in B will be increased by at least i ′ − 2 as a result. This gives the
following count on the number of edges in G:
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2|E(G)| ≥ 2(t − 2) + 2

((
t − 2

2

)
− 2

)
+ i(t − 4) + i ′(t − 2)

+ j (t − 3) + (n − t + 2)(t − 2) + i + (i ′ − 4)

= (2t − 5)n − t2 + 6t − 16.

Since, (2t − 5)n − t2 + 6t − 16 ≥ 2((t − 3)n − t2 + 3t − 1, for t ≥ 5, this implies
δ ≤ t − 3.
Case 4: δ = t − 3.

The graph H will contain precisely two vertices of A, which we denote by y and y1.
The vertex y will be adjacent to at least t − 4 vertices of B and y1 will be adjacent to
all of the vertices of B. If dB(y) = t − 4, then B will be a complete graph. In general
B will be complete except for possibly one edge. Let A′ be the set of all vertices of
A with degree t − 4 relative to B, and let s be the number of vertices. If y has t − 3
adjacencies in B, then y has t − 2 adjacencies relative to (A − A′) ∪ B.

If A′ = ∅, then the following count results:

2|E(G)| ≥ 2(t − 3) + 2

((
t − 3

2

)
− 1

)
+ (n − t + 2)(t − 3) + (n − t + 2)(t − 2)

= (2t − 5)n − t2 + 4t − 6.

Since �((2t − 5)n − t2 + 4t − 6)/2� ≥ �(2t − 5)n − t2 + 3t − 1� for t ≥ 5, we can
assume that A �= ∅. If each vertex of A′ has degree at least t −2, then since each vertex
of A′ contributes an additional edge count to vertices in A − A′, and the vertices of
A − A′ have degree at least t − 2, the following bound exists:

2|E(G)| ≥ 2(t − 3) + 2

((
t − 3

2

))
+ s(t − 4) + (n − t + 2 − s)(t − 3)

+(n − t + 2)(t − 2) + s = (2t − 5)n − t2 + 4t − 4.

Thus, |E(G)| ≥ |E(R)| in this case.
We are left with the case when some of the vertices of A′ have degree t − 3. Note,

that if u, v ∈ A′ with uv ∈ E(G), then each of u and v have degree at least t −2. Also,
if u, v ∈ A′ are nonadjacent and have the same non-adjacency in B, then the addition
of the edge uv results in a copy of Kt − 2K2, and so each of u and v will have two
additional adjacencies in A and have degree at least t − 2. Let A′′ be the vertices of
A′ of degree t − 3, and let s′ = |A′′|. Each pair of vertices in A′′ are nonadjacent, and
each will have a distinct nonadjacency in B. The addition of an edge between a pair of
vertices in A′′ results in a Kt − 2K2, so the vertices must have a common adjacency
in A − A′. This implies there is one vertex in A − A′ adjacent to all of the vertices of
A′′. Therefore,

123



448 Graphs and Combinatorics (2013) 29:429–448

2|E(G)| ≥ 2(t − 3) + 2

((
t − 3

2

))
+ s(t − 4) + (n − t + 2 − s)(t − 3)

+(n − t + 2 − s′)(t − 2) + s

= (2t − 5)n − t2 + 4t − 4 − s′.

Since s′ ≤ t −3, �((2t −5)n − t2 +4t −4− s′)/2� ≥ �((2t −5)n − t2 +3t −1)/2� ≥
�((2t − 5)n − t2 + 3t − 1)/2�, this completes the proof of Case 3 and Theorem 16. 	


5 Concluding Remarks and Questions

The upper bound of the Kászonyi and Tuza result for the saturation number applied
to nearly complete graphs gives either an exact value or a very good approximation.
This leaves the obvious question:

Question 1 Is there a universal lower bound for the saturation number sat (n, Kt −F)

where the order of F is small compared to t? Can the bound be expressed using the
parameters used in the Kászonyi and Tuza result.

A more specialized class of graphs which could be easier to deal with is Kt − Ts ,
where Ts is a tree with s < t or s much smaller than t .

Question 2 What is the saturation for number sat (n, Kt − Ts), where s < t . In
particular what is true for trees such as paths, cycles, brooms, etc.?

Several examples have been given of graphs for which the Kászonyi and Tuza result
gives the precise value of the saturation number. It would be interesting to know if
there other classes of graphs for which this occurs.

Question 3 What are classes of graphs for which the upper bound expressed by the
Kászonyi and Tuza result is the precise saturation number of the graph.
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