

Contents lists available at SciVerse ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Minimum degree and disjoint cycles in generalized claw-free graphs

Ralph J. Faudree a, Ronald J. Gould b, Michael S. Jacobson c

- ^a University of Memphis, Memphis, TN 38152, United States
- ^b Emory University, Atlanta, GA 30322, United States
- ^c University of Colorado at Denver, Denver, CO 80217, United States

ARTICLE INFO

Article history: Received 27 March 2011 Accepted 5 November 2012 Available online 31 January 2013

ABSTRACT

For $s \geq 3$ a graph is $K_{1,s}$ -free if it does not contain an induced subgraph isomorphic to $K_{1,s}$. Cycles in $K_{1,3}$ -free graphs, called clawfree graphs, have been well studied. In this paper we extend results on disjoint cycles in claw-free graphs satisfying certain minimum degree conditions to $K_{1,s}$ -free graphs, normally called generalized claw-free graphs. In particular, we prove that if G is $K_{1,s}$ -free of sufficiently large order n=3k with $\delta(G) \geq n/2 + c$ for some constant c=c(s), then G contains k disjoint triangles. Analogous results with the complete graph K_3 replaced by a complete graph K_m for $m\geq 3$ will be proved. Also, the existence of 2-factors for $K_{1,s}$ -free graphs with minimum degree conditions will be shown. Published by Elsevier Ltd

1. Introduction

In this paper we consider only graphs without loops or multiple edges. We let V(G) and E(G) denote the sets of vertices and edges of G, respectively. The *order* of G, usually denoted by n, is |V(G)| and the *size* of G is |E(G)|. For any vertex v in G, let N(v) denote the set of vertices adjacent to v and $N[v] = N(v) \cup v$. The *degree* d(v) of a vertex v is |N(v)|, and we let $\delta(G)$ and $\Delta(G)$ denote the minimum degree and maximum degree of a vertex in G, respectively. If $U \subset V(G)$, we will use G[U] to denote the subgraph of G induced by the vertices in G and let G denote the set of edges with one end in G and one end in G.

Let G and H be graphs. We say that G is H-free if H is not an induced subgraph of G. In this paper, we are interested in determining the number of disjoint cycles possible in a $K_{1,s}$ -free graph which satisfies certain minimum degree conditions.

E-mail address: rfaudree@memphis.edu (R.J. Faudree).

0195-6698/\$ – see front matter. Published by Elsevier Ltd doi:10.1016/j.ejc.2012.12.002

Disjoint cycles in claw-free graphs have been studied in a variety of papers. For example Chen, Faudree, Gould, and Saito investigated the range of the number of cycles in a 2-factor of a 2-connected claw-free graph G of order n with minimum degree (n-2)/3 in [1].

Theorem 1. If G is a 2-connected claw-free graph with $\delta(G) \geq \frac{n-2}{3}$, then G contains a 2-factor with exactly k cycles for $1 \leq k \leq \frac{n-24}{3}$. Furthermore, this result is sharp in the sense that if we lower $\delta(G)$ we cannot obtain the full range of values for k.

Chen, Markus and Schelp studied independent cycles on the basis of edge density [2].

Theorem 2. Let $k \ge 1$ and G be a $K_{1,s}$ -free graph of order n and size q.

- (1) If s = 3 and $q \ge \frac{1}{2}(3k 1)(3k 4) + 1$, then G contains k vertex disjoint cycles.
- (2) If $s \ge 4$ and $q \ge n16sk^2$, then G contains k disjoint cycles.

The objective of this paper is to generalize the results for claw-free graphs proved in [3] to $K_{1,s}$ -free graphs for $s \ge 4$, and in particular to give analogues for the following three results.

Theorem 3. Let k be a positive integer. If G is a claw-free graph of order

$$n > 2k^4 - 2k^2 + k$$

with $\delta(G) \ge n/k$, then G contains a 2-factor with k-1 components. Further, this value of $\delta(G)$ is best possible.

Theorem 4. If G is a claw-free graph of order n with $\delta(G) \geq n/3$, then G contains a 2-factor with k disjoint cycles, for $2 \leq k \leq \lfloor n/3 - 2 \rfloor$.

Theorem 5. If G is a claw-free graph of sufficiently large order n = 3k with $\delta(G) \ge n/2$, then G contains k disjoint triangles.

We will need the following results in the proof of the main theorems. The next result, of Komlos, Sarkozy, and Szemeredi [4], verifies a conjecture of Seymour. A consequence of this result is that if G is a graph of sufficiently large order n = r(k+1) with $\delta(G) \ge kn/(k+1)$, then G contains r vertex disjoint copies of K_{k+1} .

Theorem 6. If $k \ge 1$ and G is a graph of sufficiently large order n with $\delta(G) \ge kn/(k+1)$, then G contains the kth power of a Hamiltonian cycle.

Ramsey numbers will be used in expressing the bounds on the number of vertex disjoint cycles and vertex disjoint complete graphs in a $K_{1,s}$ -free graph with varied minimum degrees. We will denote the Ramsey number $r(K_k, K_m)$ by the shorter notation r(k, m).

Theorem 7 (Li, Rousseau and Zang [5]). The Ramsey number

$$r(K_k, K_n) \le (1 + o(1)) \frac{n^{k-1}}{(\log n)^{k-2}}.$$

2. Disjoint complete graphs

The objective is to determine the number of possible disjoint complete graphs K_m for $m \geq 3$ in a $K_{1,s}$ -free graph with minimum degree at least n/k for some $k \geq 2$. The graph of Fig. 1 consists of k copies of the graph $K_{n/k}$ with an edge between two copies forming them into a ring. This graph has minimum degree n/k-1. If n/k=(t+1)m-1, then n=ktm+k(m-1), but this graph will contain at most kt disjoint copies of a K_m . However, the order of the graph will accommodate as many as $kt+\lfloor\frac{k(m-1)}{m}\rfloor$ disjoint copies of a K_m . This implies that if G is a $K_{1,s}$ -free graph of order n and minimum degree at least n/k, then the maximum number of vertex disjoint copies of a K_m in G that will always exist will be at most n/m-c for some constant c=c(s,k). It will be shown that this does, in fact, always occur.

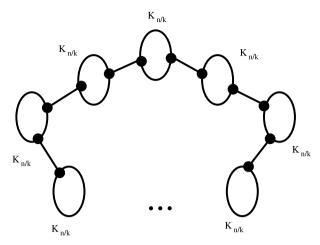


Fig. 1. $K_{1,s}$ -free graph G_1 of order n = ktm + k(m-1), $\delta \ge n/k$, but only kt disjoint K_m .

We begin with a look at disjoint triangles.

Theorem 8. For $s \ge 4$ and r = r(3, s), let G be a $K_{1,s}$ -free graph of order n. If G has minimum degree δ , then G contains at least $F_3(n) = (\frac{3(\delta - s + 1)}{3\delta + r - s - 2})\frac{n}{3}$ disjoint triangles.

Proof. Select a disjoint cycle system T composed of the maximum number, say t, of triangles. Let H = G - V(T) be the subgraph of G that remains after removing T. No vertex of H can have degree S relative to H, since H is $K_{1,S}$ -free and contains no triangles. Thus for each $H \in V(H)$, $H_{1}(H) \geq \delta - S + 1$.

Consider a triangle $L \in T$ with vertices $\{x,y,z\}$ and let $\{a,b,c\}$ be the degrees of these vertices with respect to H respectively. We can assume with no loss of generality that $a \geq b \geq c$. We will show that $a+b+c \leq r+2s-5$. Assume not. If $a \geq r$, then $|N_H(x)| \geq r$, and since G is $K_{1,s}$ -free, there is a triangle in H, a contradiction. If a < r, then $b \geq s-1$. Since G is $K_{1,s}$ -free, there is an edge in the neighborhood $N_{H \cup \{z\}}(y)$, and so there is a triangle L_1 with vertices y and two vertices of $N_{H \cup \{z\}}(y)$. Since $\lceil (r+2s-4)/3 \rceil \geq s+1$, there is an edge in the neighborhood $N_{H \cup \{z\}}(x)$ that is disjoint from the vertices in L_1 . This implies that there is a triangle L_2 with vertices x and two vertices of $N_{H \cup \{z\}}(z)$ that are disjoint from L_1 . This contradicts the maximality of T. Thus, we can conclude that the vertices of each triangle in T collectively have at most r+2s-5 adjacencies in H.

The previous observation implies that |E(T, H)| < t(r + 2s - 5), and so

$$(n-3t)(\delta-s+1) < |E(T,H)| < t(r+2s-5).$$

Thus,

$$(\delta - s + 1)n \le (r - s - 2 + 3\delta)t;$$

hence.

$$t \ge \left(\frac{3(\delta-s+1)}{3\delta+r-s-2}\right)\frac{n}{3}.$$

Consider the case when $\delta \ge n/k$ for $k \ge 2$. Thus,

$$t \ge \left(\frac{3(n/k-s+1)}{3n/k+r-s-2}\right)\frac{n}{3},$$

and so

$$t \geq \left(\frac{3n + k(r-s-2)}{3n + k(r-s-2)} - \frac{k(r+2s-5)}{3n + k(r-s-2)}\right)\frac{n}{3}.$$

Therefore.

$$t \ge \frac{n}{3} - \left\lceil \frac{(r+2s-5)k}{9} \right\rceil.$$

Corollary 1. Let $s \ge 4$, $k \ge 2$, and r = r(3, s). If G is a $K_{1,s}$ -free graph of sufficiently large order n with minimum degree $\delta(G) \ge n/k$ then G contains at least $\frac{n}{3} - \lceil \frac{(r+2s-5)k}{9} \rceil$ disjoint triangles.

Thus, for fixed s and k and n sufficiently large, a $K_{1,s}$ -free graph with minimum degree n/k has n/3 - c vertex disjoint triangles for some constant c = c(s, k). More specifically, if s = 4, then r = r(3, 4) = 9, and so we have the following bounds.

Corollary 2. If G is a $K_{1,4}$ -free graph of order n with minimum degree $\delta(G) \ge n/3$ then G contains at least n/3 - 4 disjoint triangles, and if the minimum degree $\delta(G) \ge n/2$ then G contains at least n/3 - 3 disjoint triangles.

In $K_{1,s}$ -free graphs, strong minimal degree conditions also imply the existence of many vertex disjoint copies of complete graphs K_m for $m \ge 4$. The following result, which is the analogue of Theorem 8, is an example of this.

Theorem 9. For $s \ge 4$ and $m \ge 4$ let G be a $K_{1,s}$ -free graph of order n. If G has minimum degree δ , then G contains at least $F_m(n) = (\frac{\delta - r(s,m-1) + 1}{\delta - r(s,m-1) + r(s,m)}) \frac{n}{m}$ disjoint copies of a complete graph K_m .

Proof. Select a disjoint system D composed of the maximum number, say d, of complete graphs K_m . Let H = G - V(D) be the subgraph of G that remains after removing D. No vertex of H can have degree r(s, m-1) relative to H, since H is $K_{1,s}$ -free and does contain a copy of K_m . Thus for each $h \in H$, $d_D(h) \ge \delta - r(s, m-1) + 1$.

If a vertex in D has as many as r(s,m) adjacencies in H, then there would be a K_m in H, a contradiction. Thus, the number of edges between a $K_m \in D$ and H will be no more than m(r(s,m)-1). The previous observations imply that

$$(n-dm)(\delta - r(s, m-1) + 1) \le |E(D, H)| \le dm(r(s, m) - 1).$$

Thus.

$$(\delta - r(s, m - 1) + 1)n < dm((r(s, m) - 1) + \delta - r(s, m - 1) + 1);$$

hence.

$$d \ge \left(\frac{\delta - r(s, m - 1) + 1}{\delta - r(s, m - 1) + r(s, m)}\right) \frac{n}{m}. \quad \Box$$

Consider the case when $\delta \ge n/k$ for $k \ge 2$. Then, in general from Theorem 9,

$$d \ge \left(\frac{\delta - r(s, m - 1) + 1}{\delta - r(s, m - 1) + r(s, m)}\right) \frac{n}{m},$$

and thus,

$$d \ge \left(\frac{\delta - r(s, m-1) + r(s, m)}{\delta - r(s, m-1) + r(s, n)} - \frac{r(s, m) - 1}{\delta - r(s, m-1) + r(s, m)}\right) \frac{n}{m},$$

or equivalently

$$d \ge \frac{n}{m} - \left(\frac{r(s, m)}{\delta - r(s, m - 1) + r(s, m)}\right) \frac{n}{m}.$$

Therefore, when $\delta = n/k$,

$$d \geq \frac{n}{m} - \left(\frac{nr(s,m)k}{mn - kmr(s,m-1) + kmr(s,m)}\right),$$

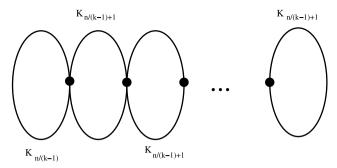


Fig. 2. G_2 composed of k-1 blocks with no 2-factor with k-2 cycles.

which implies

$$d \ge \frac{n}{m} - \left\lceil \left(\frac{r(s, m)k}{m} \right) \right\rceil,$$

since r(s, m) - r(s, m - 1) is a positive integer. \Box This results in the following corollary.

Corollary 3. For $s \ge 4$ and $k \ge 2$ let G be a $K_{1,s}$ -free graph of order n. If G has minimum degree n/k, then G contains at least $\frac{n}{m} - c$ vertex disjoint copies of K_m for some c = c(m, k, s). More specifically, G has at least $\frac{n}{m} - \lceil (\frac{r(s,m)k}{m}) \rceil$ vertex disjoint copies of K_m .

For example, a graph G of sufficiently large order n with minimum degree n/4 will have at least n/4 - 18 disjoint copies of a K_4 , since r(4, 4) = 18.

3. Disjoint cycles

The objective of this section is to determine the number of possible cycles in a 2-factor in a $K_{1,s}$ -free graph with minimum degree at least n/k for some $k \geq 2$. Consider the graph G_2 formed by taking one copy of $K_{n/(k-1)}$ and identifying a vertex with a vertex in a copy of $H_2 = K_{n/(k-1)+1}$. Now identify a new copy of H_2 with a different vertex of the last copy, and repeat this process until we have a "path" of subgraphs with k-1 blocks (see Fig. 2). The graph G_2 is $K_{1,s}$ -free and has order n, and $\delta(G_2) = n/(k-1) - 1$. Also, $n/(k-1) - 1 \geq n/k$ whenever $n \geq (k-1)k$, and G_2 clearly has a 2-factor with k-1 components, but no 2-factor with k-2 cycles.

To verify that a $K_{1,s}$ -free graph G of order n with $\delta(G) \ge n/k$ has a 2-factor with k-1 components, we will need the following lemma on the independence number of such a graph.

Lemma 1. If G is a $K_{1,s}$ -free graph with $\delta(G) \ge n/k$ for $k \ge 2$, then the independence number $\alpha(G) \le (s-1)k-1$.

Proof. Choose an independent set S with $\alpha = \alpha(G)$ vertices. Let H = G - S be the remaining subgraph of order $n - \alpha$. Any vertex of H has degree at most s - 1 in S as G is $K_{1,s}$ -free. Further, each vertex of S has all its neighbors in H. If E = E(S, H) is the set of edges between S and H, then

$$\alpha\left(\frac{n}{k}\right) \le |E| \le (s-1)(n-\alpha)$$

and so

$$\alpha \le \frac{(s-1)kn}{n+(s-1)k} = k(s-1)\left(\frac{n}{n+(s-1)k}\right) < (s-1)k;$$

hence.

$$\alpha(G) \leq (s-1)k-1$$
. \square

Theorem 10. Let k be a positive integer, and $s \ge 4$. If G is a $K_{1,s}$ -free graph of sufficiently large order n with $\delta(G) \ge n/k$, then G contains a 2-factor with k-1 components. Further, this value of $\delta(G)$ is best possible, in that $\delta(G) > n/(k+1)$ is not sufficient.

Proof. Suppose we select a vertex disjoint set system C with k-1 cycles $C_1, C_2, \ldots, C_{k-1}$, where $|\bigcup_{i=1}^{k-1} V(C_i)|$ is as large as possible. We know that such a set exists from Corollary 1. Let $H = G - \bigcup_{i=1}^{k-1} V(C_i)$.

Observe that with any one cycle C_i , a vertex $h \in V(H)$ has at most (s-1)k-1 adjacencies, for otherwise there would exist an independent set (predecessors of adjacencies along with h) of order at least (s-1)k, a contradiction to Lemma 1. Thus, $\delta(H) \ge n/k - (k-1)((s-1)k-1)$.

But the bound on $\delta(H)$ implies that H contains a cycle of length at least $\delta(H)+1$. Thus, as $\mathcal C$ is as large as possible, each cycle C_i ($1 \le i \le k-1$) contains at least $\delta(H)+1 \ge n/k-c'$ vertices for some constant c'=c'(k,s). This, in turn, implies that $V(H) \le n/k+c$ for some constant c=c(s,k). Hence, for n sufficiently large, H is dense and, in fact, H is hamiltonian connected, since 2(n/k-c') is significantly larger than n/k+c.

Claim 1. No cycle in C has two independent edges to H.

Suppose this were not the case; say, C_b has edges $w_i h_i$ and $w_j h_j$ with $w_i, w_j \in V(C_\ell)$ and $h_i, h_j \in V(H)$. Without loss of generality we can assume that $w_i, w_{i+1}, \ldots, w_j$ contains more than half of the vertices of C_b . Therefore, the cycle

$$(w_i, w_{i+1}, \ldots, w_i, h_i, P, h_i, w_i),$$

where P is a hamiltonian path connecting h_i and h_j in H, is a cycle longer than C_b , contradicting our choice of C.

Claim 2. No two cycles of *C* have three independent edges between them.

Suppose instead that C_a and C_b had three independent edges between them. Without loss of generality say that a_1b_1 , a_2b_2 and a_3b_3 are these edges with $a_i \in C_a$ and $b_i \in C_b$, i = 1, 2, 3. Also, without loss of generality, suppose that the segment (a_1, a_2) contains less than $|C_a|/3$ vertices and (b_1, b_2) contains less than $|C_b/2|$ vertices. Then, a new cycle

$$C'_a = (a_2, a_2^+, \dots, a_1, b_1, b_1^-, \dots, b_2, a_2)$$

replaces C_a and H replaces C_b to form a new system with more vertices than C, a contradiction.

By Claims 1 and 2 we see that some cycles may have a vertex of large degree to H, but then no other vertices of that cycle have any adjacencies in H.

Observe that each vertex of H has edges to C. If this were not true, and $d_C(h) = 0$ for some $h \in V(H)$, then since $d(h) \ge n/k$, this implies that $|H| \ge n/k + 1$. Since every cycle in C is at least as large as H, this gives the contradiction that $n \ge k(n/k + 1) = n + k$. By the same reasoning, no vertex of H has only one edge to C, because if this were the case then we would have $|H| \ge n/k - 1 + 1 = n/k$ and, hence, $|H| = n/k = |C_i|$ for $i = 1, 2, \ldots, k - 1$. But then every vertex of every cycle has edges to other cycles, which is in contradiction to one of the claims 1 or 2.

The previous observations imply that each of the cycles C_i and H induce dense subgraphs of order approximately n/k. That is, with the exception of a function of $c^* = c^*(k,s)$ vertices in each cycle, the vertices have degree at least $n/k - c_1$ for some $c_1 = c_1(k,s)$. Since each cycle is only of order at most $n/k + c_2$ for some $c_2 = c_2(k,s)$, these dense subgraphs will have strong hamiltonian properties. For example, even after a small number of vertices are removed, a cycle will span the rest of the dense subgraph.

Now suppose that $H = \{C_0, C_1, \dots, C_q\}$ are the cycles with edges to other cycles. If we consider these cycles as the vertices of a graph, then among these q+1 cycles there are at least q+1 independent edges, and a cycle of cycles can be formed.

Say that $\{C_{i_1}, C_{i_2}, \dots, C_{i_t}, C_{i_1}\}$ are the "vertices" of this cycle. Then, starting in C_{i_1} we may traverse all but a function of k and s vertices before we cross to C_{i_2} . In C_{i_2} we traverse all but a function of k and s vertices before we cross to C_{i_3} , where we traverse a minimum number of vertices (some function k).

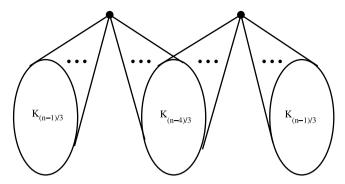


Fig. 3. Claw-free graph G_3 , with no 2-factor consisting of two cycles.

and s) before we cross to C_{i_4} . Continuing in this manner we return to C_{i_1} , completing a cycle. Now on the other subgraphs corresponding to this cycle we form new cycles using a maximum number of the remaining dense subgraphs. Thus, at most a function of k and s vertices has been lost from any of the original cycles.

We now form \mathcal{C}' to include all these new cycles, as well as H if it is not a part of these cycles, and all the unchanged cycles from \mathcal{C} . This is a system of k-1 cycles that includes all but a function of k and s vertices of G, contradicting our choice of \mathcal{C} and completing the proof. \Box

The graph G_2 in the case k=3 shows that $\delta(G) \geq n/2$ is needed to obtain a Hamiltonian cycle in a $K_{1,s}$ -free graph of order n. The graph G_3 of Fig. 4 has order n and $\delta(G_3) = \frac{n-1}{3}$, but clearly cannot be covered by two cycles. Thus $\delta(G) \geq n/3$ is required to have a 2-factor with just two cycles (see Fig. 3).

Theorem 11. If G is a $K_{1,s}$ -free graph of order n with $\delta(G) \ge n/3$, then G contains a 2-factor with k disjoint cycles for $2 \le k \le \lfloor n/3 - \frac{r(3,s) + 2s - 5}{3} \rfloor$.

Proof. When k=2, the result holds by Theorem 10. Suppose we select a disjoint cycle system $\mathcal{C}=\{C_1,C_2,\ldots,C_t\}$ for each $t\geq 3$ in the range. We know that such a system exists by Corollary 1. Assume that \mathcal{C} is chosen to contain the maximum number of vertices, and let $H=G-\mathcal{C}$.

Observe that if $d_H(h) > n/(t+1)$ for all $h \in V(H)$, then H contains a cycle of length greater than n/(t+1) and, hence, each cycle in $\mathcal C$ has length greater than n/(t+1), or we could find a system larger than $\mathcal C$. This implies |V(G)| = n > (t+1)(n/(t+1)) = n, a contradiction. Therefore, for each $t \geq 3$ there exists a vertex $h \in V(H)$ such that $d_{\mathcal C}(h) \geq n/3 - n/(t+1)$. We also have by Lemma 1 that $\alpha(G) < 3s - 4$.

Previous arguments imply that there is a vertex $x \in V(H)$ such that $d_{\mathcal{C}}(x) \ge cn$ for some constant c. Observe that x has at most 3s-5 adjacencies to any cycle of \mathcal{C} , since more adjacencies would imply an independent set with at least 3s-3 vertices using predecessors of the adjacencies of x and x. Therefore, x is adjacent to a function of n different cycles of \mathcal{C} , say q. Hence $q \ge cn/(3s-5)$.

Let $X = \{x_1, x_2, \dots, x_q\}$ be the adjacencies of x in these q cycles. Since $\alpha(X) \leq 3s - 4$, there is a subset $X_1 \subset X$ that induces a complete graph and $|X_1| \geq q^{1/3s}$. Let X_1^+ be the predecessor of the vertices of X_1 on the respective cycles. There is a subset $X_2 \subset X_1^+$ that induces a complete graph. This can be repeated with the successors of the adjacencies of x to form a subset $X_3 \subset X_2$ with at least two vertices. This implies that there are vertices $y_1, y_2 \in X$ in cycles C' and C'' respectively such that $y_1y_2 \in E(G), y_1^+y_2^+ \in E(G)$, and $y_1^-y_2^- \in E(G)$. The two cycles C' and C'' can be replaced by the cycle (x, y_1, y_2, x) and the cycle formed from $C' - \{y_1\}$ and $C'' - \{y_2\}$ using the edges $y_1^+y_2^+$ and $y_1^-y_2^-$. This contradicts the maximality of the cycle system C, and completes the proof of Theorem 4.

4. Complete graph factors

In [3] it was shown that in a claw-free graph of order n = 3k, $\delta(G) \ge n/2$ is sufficient to imply that there are k vertex disjoint triangles (Theorem 5). The minimum degree condition $\delta(G) \ge n/2$ is not sufficient if the triangle K_3 is replaced by the a complete graph K_m for $m \ge 4$ with n divisible by m.

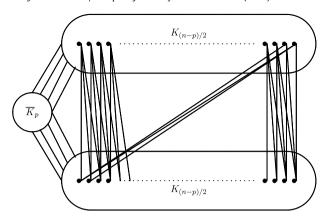


Fig. 4. G₄.

For a fixed integer p with n-p divisible by 2, consider the graph $\overline{K_p}+(K_{(n-p)/2}\cup K_{(n-p)/2})$. Let $X=\{x_1,x_2,\ldots,x_{(n-p)/2}\}$ and $Y=\{y_1,y_2,\ldots,y_{(n-p)/2}\}$ be the vertices of the two complete graphs. For $m\geq 4$ and for each i with $1\leq i\leq (n-p)/2$ add the edges $x_iy_i,x_iy_{i+1},\ldots,x_iy_{m-3}$ with the indices taken modulo (n-p)/2. Denote this graph by G_4 (see Fig. 4). There is no K_m in G_4 with vertices in both X and Y, and so all copies of a K_m will have all of its vertices in either X or Y on one vertex in Y. Therefore, if Y is divisible by Y, and there are Y or Y or

Our goal in this section is to prove the following result.

Theorem 12. Let $m \ge 4$ and $s \ge 3$. If G is a $K_{1,s}$ -free graph of sufficiently large order n = km, then there is a c = c(s, m) such that if $\delta(G) \ge n/2 + c$, G contains k disjoint copies of K_m .

Proof of Theorem. By Lemma 1, $\alpha(G) \leq 2s - 3$. Since G does not contain 2s - 3 independent vertices, Ramsey theory implies that G contains a large clique; in fact, G contains a $K_{n^{\frac{1}{2s-2}}}$. Select such a clique and denote it by A. Let $B \subseteq G - A$ be those vertices of G - A whose degree to A is at most $r^* = m(r(m, 2s - 2) - 1)$. Let $C = G - (A \cup B)$. Observe that

$$|E(A, C)| \ge |A|(n/2 + c - |A|) - r^*|B|.$$

Thus.

$$|C| \ge \frac{|A|(n/2 + c - |A|) - r^*|B|}{|A|},$$

since each vertex in *C* has at most *A* adjacencies in *A*. However, since $|A| \ge n^{\frac{1}{2s-2}}$, and *c* and r^* are constants and not a function of *n*,

$$|C| \geq n/2 - o(n)$$
.

Let

$$B_2 = \{b \in B \mid d_C(b) \ge mr(m, 2s - 2)\},\$$

and let $B_1 = B - B_2$. Note that each vertex in B_1 has at most 2(m-1)r(m, 2s-2) adjacencies in $A \cup C$ and so if B_1 is nonempty,

$$|B_1| \ge n/2 - 2mr(m, 2s - 2) \approx n/2.$$

Now we consider the partition $V(G) = B_1 \cup D$, where $D = A \cup B_2 \cup C$. Note that we have both $|B_1| \approx n/2$ and $|D| \approx n/2$. If $|B_1| \equiv 0 \mod m$, then let $B_1' = B_1$. If $|B_1| \ge n/2$, then every vertex of D must have at least C adjacencies to B_1 . Hence, as C is C is C is C is an C is an C is an C is an C in C is an C in C i

$$|B_1'| \equiv 0 \mod m$$
.

If $|B_1| < n/2$, then each vertex of B_1 has at least c adjacencies to D. As before, we can find a copy of K_m containing one vertex of B_1 and m-1 vertices of D. Remove this K_m and continue this until we get a subgraph B_1' of B_1 such that

$$|B_1'| \equiv 0 \mod m$$
.

Now, since B'_1 is very dense and has order a multiple of m, and n is sufficiently large, we may apply Theorem 6 to B'_1 to obtain an independent set of disjoint copies of K_m that covers all of B'_1 .

We can find a copy of K_m in the vertices of B_2 as long as there are at least r(m, 2s - 2) vertices remaining in B_2 . Each of the remaining vertices after the deletion of the K_m have at least mr(m, 2s - 2) adjacencies in C, so each of these remaining vertices can be placed in a K_m using m - 1 vertices in C.

We can find a copy of K_m in the vertices of C as long as there are at least r(m, 2s - 2) vertices remaining in C. Each of the remaining vertices after the deletion of the K_m have at least (m-1)r(m, 2s - 2) adjacencies in A, so each of these remaining vertices can be placed in a K_m using m-1 vertices in A. Since A is a complete graph, the remaining vertices of A can be partitioned into disjoint copies of complete graphs K_m . \square

Acknowledgment

The authors would like to thank the referee for carefully reading the manuscript and for making valuable suggestions.

References

- [1] G. Chen, J.R. Faudree, R.J. Gould, A. Saito, 2-factors in claw-free graphs, Discuss. Math. Graph Theory 20 (2) (2000) 165-172.
- [2] G. Chen, L. Markus, R.H. Schelp, Vertex disjoint cycles for star-free graphs, Australas. J. Combin. 1 (1995) 157–167.
- [3] R.J. Faudree, R.J. Gould, M.S. Jacobson, Minimum degree and disjoint cycles in claw-free graphs, Manuscript.
- [4] J. Komlos, G.N. Sarkozy, E. Szemeredi, Proof of the Seymour conjecture for large graphs, Ann. Comb. 2 (1) (1998) 4360.
- [5] Y. Li, C. Rousseau, W. Zang, Asymptotic upper bounds for Ramsey functions, Graphs Combin. 17 (2000) 123-128.