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For d ≥ 1 and m ≥ 1, a graph has property Pd ,m if there
exist at least m vertex-disjoint paths of length at most d
between each pair of vertices. Property Pd ,m , which has
a strong connection to wide diameter, is one way of mea-
suring the reliability of a network. In this article, we first
examine the relationship of Pd ,m to other similar prop-
erties and then we prove several results regarding the
extremal number for property Pd ,m (the minimum num-
ber of edges needed for a graph to have the property). In
particular, we find (i) the extremal number for graphs of
certain orders when d = 2, (ii) several extremal graphs
when d ≥ 3, (iii) a new lower bound on the extremal
number when d ≥ 3, m ≥ 3, and (iv) a new upper
bound on the extremal number when d , m are even with
d = 4k + 2 (k ≥ 1) and m ≥ 4. © 2012 Wiley Periodicals, Inc.
NETWORKS, Vol. 60(3), 167–178 2012
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1. INTRODUCTION

Connectivity is frequently the basis for measuring relia-
bility in networks. Whitney’s Theorem, based on Menger’s
Theorem [14], provides the link between these ideas:

Theorem 1.1 (Whitney’s Theorem). [19] A graph G of
order n ≥ 2 is k-connected (1 ≤ k ≤ n − 1) if and only
if for each pair u, v of distinct vertices there are at least k
internally disjoint u–v paths in G.

Thus, a graph representing a highly connected network
can be seen as reliable since even after several vertex failures,
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each vertex can still communicate to any of the other work-
ing vertices through the remaining paths. Several properties
have been introduced to precisely describe this measure of
reliability. One such property is property Pd,m, which has the
added benefit of providing many short paths. A graph G has
property Pd,m if there exist at least m vertex-disjoint paths
of length at most d between any pair of vertices. Note that
a graph with property Pd,m has a very specific type of con-
tainer between each pair of vertices. For vertices x, y in G, an
(x, y)-container is a set of internally disjoint paths between
x and y. So a graph with property Pd,m has a (x, y)-container
with at least m paths of length d or less between every pair
of vertices x, y in the graph.

These sort of containers provide the basis for several com-
mon parameters in the study of the reliability of networks. In
particular, property Pd,m provided the basis for the concept
of w-diameter, which was introduced by Flandrin and Li [9].
The w-diameter is also more commonly known as the wide
diameter, which was the term used by Hsu [10] when he inde-
pendently introduced the same concept. For a m-connected
graph G, the wide diameter of G is essentially the minimum
number l for which there exist m internally disjoint paths in G
of length at most l between every pair of vertices. Note that,
for some number d, an m-connected graph has wide diam-
eter less than or equal to d if and only if the graph satisfies
property Pd,m.

The wide diameter of a graph is a frequently studied net-
work parameter. In many recent papers involving the wide
diameter, the focus has been on finding or bounding the wide
diameter of particular classes of graphs. See [13, 21, 22] for
examples. Several other measures of recent interest such as
the Rabin number, the fault tolerant diameter, and the edge
wide diameter also share a strong relation to the concept of
property Pd,m as they bring together the ideas of diameter and
containers between vertices in an attempt to measure the reli-
ability of networks. See [11, 12, 22] for examples of studies
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of these measures. The recent book by Xu [20] provides a
detailed look at each of these measures including links to
containers and property Pd,m.

With these connections in mind, we present several results
regarding property Pd,m in this article. We prove some basic
relationships between Pd,m and properties Dd,m and D′

d,m
(defined below) which were introduced after property Pd,m.
The majority of the article focuses on extremal questions
about graphs with property Pd,m. Instead of starting with a
particular class of graphs and then determining the appro-
priate length d so that the graph satisfies Pd,m (which is
essentially determining the wide diameter), we start with
the assumption that a graph has property Pd,m and try to
determine the minimum number of edges in the graph (or
a bound on this number) and the structure of the graph with
the minimum number of edges.

2. NOTATION AND DEFINITIONS

Unless stated otherwise, all graphs in this article are sim-
ple graphs (i.e., no multiedges and no loops). For any other
notation not defined here, see [5]. Define N(A, B) to be set of
neighbors of A inside the set B. Let N[A, B] = A∪N(A, B) be
the closed neighborhood of A in B. When A = {x}, then the
neighborhood of x in G will typically be denoted N(x, G). Let
dG(A, B) = |N(A, B)| be the degree of a set A in the set B. In
the case when A = {x}, we use dG(x, B). If the context is clear,
typically we write d(A, B) for dG(A, B). For distinct vertices
u, v ∈ V(G), let distG(u, v) denote the distance between u
and v in G. The join G1 + G2 of disjoint graphs G1 and G2 is
obtained from G1 ∪ G2 by adding an edge from every vertex
in G1 to every vertex in G2. For any positive integer m, let [m]
denote the set {1, 2, . . . , m}. For any integers a, b with a ≤ b,
let [a, b] denote the set {a, a + 1, a + 2, . . . , b}.

The origins of property Pd,m go back to several different
efforts to quantify the reliability of a network. One of the
first efforts was by Murty and Vijayan [17] who introduced
the sets GV (n, k, λ, s) and GE(n, k, λ, s). For positive integers
n, k, λ, and s such that n > λ ≥ k and n > s, denoted by
GV (n, k, λ, s), the set of graphs with n vertices and diameter
at most k with the property that the subgraph obtained by
deleting any s or fewer vertices has diameter at most λ. Let
GE(n, k, λ, s) be the corresponding set when s or fewer edges
are deleted.

The sets GV (n, k, λ, s) and GE(n, k, λ, s) contain graphs
(or networks) on n vertices which can be considered reliable.
That is, even if s vertices or s communication links fail in
the network, the remaining vertices are all within distance λ.
Limiting the postfailure diameter in the network can ensure
that data can be transmitted between any two vertices quickly
even after several failures and ensure that the probability of
error introduction is low. Thus, a short distance λ might act
as a way to keep the data error-free even after s failures.

In 1966, Murty posed the following question:

Problem 2.1 ([15]). Given n centers of communication
x1, x2, . . . , xn and an n × n matrix C = {cij}, which describes

the cost of connecting center xi with center xj in the net-
work, what is the optimum set of links which minimizes the
total establishment cost when it is required that the resulting
network be either a member of GV (n, k, λ, s)or GE(n, k, λ, s)?

Because of the very difficult nature of Problem 2.1, nearly
all the early research focused on the case when cij = c for
all i �= j and for some constant c. In this case, Problem 2.1 is
equivalent to finding a graph in GV (n, k, λ, s) or GE(n, k, λ, s)
which has the fewest number of edges. Such graphs are called
extremal graphs. However, despite this simplification of the
problem, extremal graphs could be found only in limited cases
such as (i) k = 2, λ = 2 for large n, (ii) k = 2, λ > 2,
and (iii) k ≥ 3 and s = 1. For an extensive overview of
these results and their extremal graphs, see [3] and Chapter 4
of [2].

In 1986, Ordman introduced the aforementioned property
Pd,m in [18]. We formally state the definition:

Definition 2.2. For d ≥ 2 and m ≥ 2, a graph G has
property Pd,m if there exist at least m vertex-disjoint paths of
length at most d between any pair of vertices.

This property provides another way to quantify reliabil-
ity. As before, a network which satisfies property Pd,m has
the property that if m − 1 vertices or m − 1 links fail,
then the remaining vertices are less than distance d apart.
The benefits of this were mentioned in the discussion of
GV (n, k, λ, s) and GE(n, k, λ, s). However, a network which
satisfies Pd,m has an additional property. In such a network,
if there are no failures, then data can be sent quickly and
error free in parallel using the guaranteed m short paths.
Although it is not obvious that this characteristic distin-
guishes graphs which satisfy property Pd,m from the graphs
in GV (n, d, d, m − 1) or GE(n, d, d, m − 1), we will prove
that the set of graphs which satisfy Pd,m is not, in general, the
same set as GV (n, d, d, m−1) or GE(n, d, d, m−1). However,
in 1990, an equivalent notion to being in one of these latter
sets was introduced in [4]:

Definition 2.3. Let d ≥ 1 and m ≥ 0 be integers, G be a
graph of order n, and for each m′ ≤ m, let Vm′ = {vi|1 ≤
i ≤ m′} and Em′ = {ei|1 ≤ i ≤ m′} be arbitrary collections
of m′ vertices and edges of G, respectively. We say G satisfies
property Dd,m if for each m′ ≤ m and for each choice of Vm′ ,
the graph G − Vm′ has a path of length at most d between
each pair of vertices. We say G satisfies property D′

d,m if for
each m′ ≤ m and each choice of Em′ , the graph G − Em′ has
a path of length at most d between each pair of vertices.

Note that G has property Dd,m−1 if and only if G ∈
GV (n, d, d, m − 1), and G has property D′

d,m−1 if and only
if G ∈ GE(n, d, d, m − 1). As the results of interest to us
regarding GV (n, k, λ, s) and GE(n, k, λ, s) all have k = λ = d
and s = m − 1, we will use the simpler notation of Dd,m−1

and D′
d,m−1, respectively.
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We now turn our attention to property Pd,m. In Refs. [7,8],
various combinations of connectivity, minimum degree,
degree sum, and neighborhood conditions which imply that a
graph satisfies Pd,m were studied. We will primarily be inter-
ested in the minimum size of a graph on n vertices which
satisfies Pd,m. To present these results, some additional nota-
tion will be helpful. For a graph property P, let ext(n; P) be
the minimum number of edges in a graph G on n vertices
which satisfies property P. Note that if G satisfies Pd,m, then
G must be m-connected and so every vertex must have at least
m edges incident to it. Thus, we get the following easy lower
bound:

Observation 2.4. For n ≥ m + 1,

ext(n; Pd,m) ≥
⌈nm

2

⌉
.

This simple observation will prove useful particularly as
we focus on finding extremal graphs.

3. PROPERTY COMPARISONS

In this section, we prove several results regarding the rela-
tionships between the properties Pd,m, Dd,m−1, and D′

d,m−1.
We begin with a definition.

Definition 3.1. For two graph properties, Property A and
Property B, we say Property A implies Property B, writ-
ten A =⇒ B, if every graph with Property A also has
Property B.

Theorem 3.2. Pd,m =⇒ D′
d,m−1 and Pd,m =⇒ Dd,m−1.

Proof. If G satisfies property Pd,m, then there exist m
vertex-disjoint paths of length d or less between each pair of
vertices. The removal of either m − 1 vertices or m − 1 edges
could destroy at most m−1 of the m short paths between any
pair of vertices. Thus, after the removal of m − 1 vertices or
edges, the resulting graph has the property that every vertex
is within distance d. Thus, G satisfies properties Dd,m−1 and
D′

d,m−1. ■

Thus, the set of graphs which satisfies Pd,m is contained in
the set of graphs which satisfy Dd,m−1 and the set of graphs
which satisfy D′

d,m−1. When d = 2, we can say more with
regard to D′

d,m−1.

Theorem 3.3. P2,m ⇐⇒ D′
2,m−1.

Proof. Theorem 3.2 gives the forward implication. For
the reverse implication, suppose G is a graph which does not
satisfy P2,m but does satisfy D′

2,m−1. Then for some x, y ∈
V(G), there exist m edge-disjoint paths of length two or less
between them but there do not exist m vertex-disjoint paths
of length two or less between them. However, this implies
that G must be a multigraph, which is a contradiction. ■

FIG. 1. Construction for Theorems 3.4 and 3.5.

The next theorem shows that this equivalence does not
hold for d ≥ 3.

Theorem 3.4. For d ≥ 3, D′
d,m−1 �=⇒ Pd,m.

Proof. Assume n ≥ m + 3, and let d ≥ 3. Let G1 =
Km+1 and G2 = Kn−m−1. Let T be a set of m − 1 of the
vertices of G1. Now, let G be the graph consisting of G1 and
G2 where every vertex in G2 is adjacent to every vertex of T
(see Fig. 1). Now, G satisfies D′

d,m−1. However, as G is clearly
(m − 1)-connected, there do not exist m vertex-disjoint paths
between x and y for every x ∈ V(G2) and y ∈ V(G1) − T .
Thus, G does not satisfy Pd,m. ■

Not only are D′
d,m−1 and Pd,m not equivalent for d ≥ 3 but

also D′
d,m−1 and Dd,m−1 are not equivalent for d ≥ 3.

Theorem 3.5. For d ≥ 3, D′
d,m−1 �=⇒ Dd,m−1.

Proof. Let d ≥ 3 and n ≥ m + 3. The graph in Figure
1 satisfies D′

d,m−1. However, since G is not m-connected, it
does not satisfy Dd,m−1. ■

Other relationships involving Dd,m−1 are more difficult to
determine, partially because very little is known about graphs
which satisfy Dd,m−1 for d ≥ 3. However, a relationship
can be established when d = 2. First, however, we state the
following result by Murty:

Theorem 3.6 ([17]). If n ≥ 2m, then ext(n; D2,m−1) =
m(n − m) and the unique extremal graph is Km,n−m (Fig. 2).

Due to Theorem 3.6, we get the following two results.

Theorem 3.7. D2,m−1 �=⇒ D′
2,m−1.

Proof. Let n ≥ 2m, and consider G = Km,n−m (see
Fig. 2). By Theorem 3.6, G satisfies D2,m−1. Assume the
vertices of the Km are v1, v2, . . . , vm, and the vertices of
the Kn−m are x1, x2, . . . , xn−m. Note that if the m − 1
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FIG. 2. Km,n−m for Theorems 3.6, 3.7, 3.8, and 6.1.

edges x1v1, x1v2, . . . , x1vm−1 are removed, then x1 and v1 are
distance three apart. Thus, G does not satisfy D′

2,m−1. ■

Theorem 3.8. D2,m−1 �=⇒ P2,m.

Proof. Consider the graph from Theorem 3.7 (Fig.
2). By Theorem 3.6, G satisfies D2,m−1. However, it is
straightforward to see that G does not satisfy P2,m. ■

Note that Theorem 3.8 can also be proven by assuming
the result is not true and applying Theorem 3.2 to reach a
contradiction to Theorem 3.7.

4. NEW CONSTRUCTION FOR d = 2

For n sufficiently large relative to m, the value of
ext(n; P2,m) is known. In [16], Murty proved the following:

Theorem 4.1 ([16]). For any m ≥ 2, ext(n; P2,m) = m(n −
m)+(m

2

)
provided that n ≥ m(3+√

5)
2 . Furthermore, the graph

Km + Kn−m is the unique extremal graph.

Murty’s original theorem involves GE(n, 2, 2, m−1). Note
that we have used the equivalence in Theorem 3.3 to update
the terminology of Theorem 4.1. The unique extremal graph
is illustrated in Figure 3.

In [1], Bollobás and Erdős investigated whether or not
the bound on n in Theorem 4.1 could be lowered. They were
able to show that the graph in Figure 3 is essentially never the
extremal graph when n is smaller than the bound in Theorem
4.1. In addition, they were able to find the order of magnitude
of ext(n; P2,m) for smaller n:

Theorem 4.2 ([1]). Let c be in the range 1 ≤ c ≤ (3+√
5)

2
and let n = �cm�. Then

ext(n; P2,m) = 1

2
c

3
2 m2 + o(m2).

In this section, we present a new construction and deter-
mine ext(n; P2,m) for many cases when n = m + 2k + 1. To
describe the construction, we need the following lemma. The
proof can be found in many graph theory texts (such as Ch.
2 of [6]):

Lemma 4.3. Suppose n ≥ 2k. Then, there exists a k-regular
graph on n vertices if and only if nk is even.

Using Lemma 4.3, we now present a new construction and
in the process, determine an upper bound for ext(n; P2,m).

Theorem 4.4. Let n = m + 2k + 1 where nk is even. Then,

ext(n; P2,m) ≤ (m + 2k + 1)(m + k)

2
.

Proof. Let B be a k-regular graph of order n. We know
that such a graph exists by Lemma 4.3. Consider the graph
D = Km+2k+1 − E(B). Let x and y be two vertices of D. In
Km+2k+1, these vertices are adjacent and have m + 2k − 1
common neighbors. As each vertex loses exactly k edges on
the removal of E(B), then in D either (i) xy /∈ E(D) and x and
y have at least m common neighbors or (ii) xy ∈ E(D) and x
and y have at least m − 1 common neighbors. So, D satisfies
P2,m and |E(D)| = (m+2k+1)(m+k)

2 . ■

With the upper bound determined, we now proceed to
show that the same number in Theorem 4.4 is also a lower
bound.

Theorem 4.5. Let n = m + 2k + 1 where nk is even. Then
for m > 2k2 + 2k + 3,

ext(n; P2,m) ≥ (m + 2k + 1)(m + k)

2
.

Proof. Let G be a graph on n = m + 2k + 1 vertices
which satisfies P2,m and has ext(n; P2,m) edges where m >

2k2 + 2k + 3. If k = 0, then G has m + 1 vertices and must
be the complete graph to satisfy P2,m. In this case, the lower
bound is proven. Assume now that k > 0 and δ(G) < m + k.
Recall that δ(G) ≥ m.

Let H = G. Thus, �(H) = k + t for some t where 1 ≤
t ≤ k. Let ni be the number of vertices of H of degree i, and
let u, v be two vertices of H. Note that if d(v, H) = k + t
and d(u, H) = (k − t) + r for some r, then u is adjacent to
at least r − 1 vertices of N(v, H). To see this, suppose the
opposite is true. That is, assume there exist u and v where
u is adjacent to less than r − 1 vertices of N(v, H). Thus,
|N(v, H) ∩ N(u, H)| = d < r − 1. Then, there are two cases.

FIG. 3. Extremal graph Km + Kn−m for Theorem 4.1.
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If uv /∈ E(H), then the number of common neighbors of
u and v in G is

|V(H) − (N[v, H] ∪ N[u, H])|
= m + 2k + 1 − (k + t + 1 + k − t + r + 1 − d)

= m − 1 − (r − d)

< m − 2.

So, in this case, u and v have at most m − 3 common
neighbors in G and, since uv ∈ E(G), there can exist at most
m − 2 paths of length two or less between these two vertices
in G. However, this contradicts our assumptions on G.

If uv ∈ E(H), then the number of common neighbors of
u and v in G is

|V(H) − (N[v, H] ∪ N[u, H])|
= m + 2k + 1 − (k + t + k − t + r − d)

= m + 1 − (r − d)

< m.

So, in this case, u and v have at most m − 1 common
neighbors in G and, as uv /∈ E(G), there can exist at most
m − 1 paths of length two or less between these two vertices
in G. Once again, this contradicts our assumptions on G.

Therefore, as these are the only two cases, u must be
adjacent to at least r − 1 vertices in N(v, H).

With this in mind, we will now consider the number of
edges incident to N(v, H) where d(v, H) = �(H) = k + t
for some 1 ≤ t ≤ k. Assume first that t ≥ 2. We know from
the work above that each vertex of degree (k − t) + r has at
least r − 1 edges into N(v, H) where, as �(H) = k + t, we
have 0 ≤ r ≤ 2t. So the number of edges from vertices of
degree (k − t) + r into N(v, H) is at least

2t∑
r=0

(r − 1)nk−t+r =
k+t∑

i=k−t

(i − k + t − 1)ni.

However, as �(H) = k + t, the number of edges incident
to the vertices in N(v, H) is less than or equal to (k + t)2.
Thus, we have

k+t∑
i=k−t

(i − k + t − 1)ni ≤ (k + t)2.

Rearranging the terms, we get the following useful expres-
sion:

k+t∑
i=k−t

ini ≤ (k + t)2 + (k − t + 1)

k+t∑
i=k−t

ni. (4.1)

By Theorem 4.4, |E(G)| ≤ (m+2k+1)(m+k)
2 and so

|E(H)| ≥ k(m+2k+1)
2 . Therefore,

k+t∑
i=0

ini ≥ (m + 2k + 1)k. (4.2)

Now by breaking the sum of the ini’s in (4.2) at i = k − t − 1
and applying (4.1), we get

k−t−1∑
i=0

ini + (k + t)2 + (k − t + 1)

k+t∑
i=k−t

ni ≥ (m + 2k + 1)k.

In the first sum, the largest i is i = k − t − 1. So,

(k − t − 1)

k−t−1∑
i=0

ni + (k + t)2

+ (k − t + 1)

k+t∑
i=k−t

ni ≥ (m + 2k + 1)k. (4.3)

Recall that n = m + 2k + 1. Let x be the number of vertices
which have degree greater than k − t − 1 in H. Note that
x ≤ n. Then, inequality (4.3) becomes

(k − t − 1)(n − x) + (k + t)2 + (k − t + 1)x ≥ nk.

Hence,

n(k − t − 1) + (k + t)2 + 2x ≥ nk,

or

(k + t)2 + 2x ≥ nk − n(k − t − 1).

Thus, as n ≥ x,

(k + t)2 + 2n ≥ n(t + 1),

and so

(k + t)2 ≥ n(t − 1).

As t ≥ 2, we get

n ≤ (k + t)2

t − 1
.

If we let f (t) = 1
t−1 (k + t)2, then

f ′(t) = (t + k)(t − k − 2)

(t − 1)2
.

So, f (t) is a decreasing function of t over the interval [2, k]
and, consequently, is maximized when t = 2. Therefore,
n ≤ (k + 2)2. Then,

n ≤ (k + 2)2 =⇒ m + 2k + 1 ≤ k2 + 4k + 4

=⇒ m ≤ k2 + 2k + 3.

However, this is a contradiction to our assumption that m >

2k2 + 2k + 3.
Therefore, it must be the case that t = 1. Assume that

v ∈ V(G) with d(v, H) = �(H) = k + t = k + 1. Note that
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as |E(H)| ≥ k(m+2k+1)
2 and �(H) = k + 1, there can be at

most n
2 vertices of degree k − 1 or less in H.

Now, if T is the set of all vertices of degree k or k + 1,
then every non-neighbor of v in H in the set T has at least
one neighbor in N(v, H). To see this, assume that uv /∈ E(H)

and u ∈ T with N(v, H) ∩ N(u, H) = ∅. Let J be the set of
vertices of V(H)− (N[v, H]∪N[u, H]) and let j = |J|. Then,

n = j + d(v, H) + d(u, H) + 2

= j + k + 3 + d(u, H)

Now, since n = m + 2k + 1, we have

m + 2k + 1 = j + k + 3 + d(u, H)

which implies that

j = m + k − 2 − d(u, H).

As d(u, H) is either k or k + 1, then j is either m − 2 or
m − 3, respectively. However, since J is essentially the set
of common neighbors of u and v in G, this means that u and
v have at most m − 2 common neighbors in G. Even though
uv ∈ E(G), we do not have m paths of length two or less in G
between these vertices and this contradicts our assumptions
on G. Therefore, every non-neighbor of v in H in the set T
has at least one neighbor in N(v, H).

We now wish to consider the edges in H which have
exactly one endpoint in N(v, H). As d(v, H) = k + 1 and
�(H) = k + 1, the number of edges with one endpoint
in N(v, H) is at most (k + 1)2. Now, there are at least
(n − 1) − (k + 1) − n

2 vertices in V(H) − {v} which are
non-neighbors of v and have degree k or greater. Each of
these vertices has at least one edge into N(v, H). So, along
with the k+1 edges from v into N(v, H), the number of edges
with one endpoint in N(v, H) is at least

(k + 1) +
[
(n − 1) − (k + 1) − n

2

]
.

Thus,

(k + 1) +
[
(n − 1) − (k + 1) − n

2

]
≤ (k + 1)2

which implies that n ≤ 2k2 + 4k + 4. As n = m + 2k + 1,
we have m ≤ 2k2 +2k+3, which contradicts our assumption
on m.

As these are the only possibilities for t, we have δ(G) ≥
m + k and |E(G)| ≥ 1

2 (m + 2k + 1)(m + k). ■

Theorems 4.4 and 4.5 give us the following:

Corollary 4.6. Suppose that n = m + 2k + 1 where nk is
even. Then, for m > 2k2 + 2k + 3,

ext(n; P2,m) = (m + 2k + 1)(m + k)

2
.

5. SOME BEST-POSSIBLE CONSTRUCTIONS
WHEN d ≥ 3

In this section, we present several best-possible construc-
tions for d ≥ 3, where best-possible means that the trivial
lower bound in Observation 2.4 is achieved. We first focus
on n ≤ (d − 1)m. To describe the constructions, we need
another definition.

Definition 5.1. For k ≥ 1, the kth power Gk of a connected
graph G is the graph with V(Gk) = V(G) and with uv ∈
E(Gk) if and only if 1 ≤ distG(u, v) ≤ k.

The next two theorems use graph powers for their con-
structions which depend on the parity of m. We present first
the result for even m.

Theorem 5.2. If d ≥ 3, m is an even integer with m ≥ 2,
and m + 1 ≤ n ≤ dm

2 + 1, then

ext(n; Pd,m) = nm

2
.

Proof. As we have the lower bound in Observation 2.4,
we prove the upper bound. Consider G = (Cn)

m
2 . Note that

|E(G)| = nm
2 . We now wish to show that G satisfies Pd,m.

Let x, y ∈ V(G) = {x1, x2, . . . , xn}, where the indices corre-
spond to their clockwise cyclic order. Assume without loss
of generality that x = x1 and y = xj for some j ≤ � n+1

2 �.
Let T be the set of neighbors of xj. We now define a special

type of path. We call a path from x1 to xj a largest jump pos-
sible (LJP-T) path from x1 to xj through xk if it is of the form
x1xkxk+ m

2
. . . xtxj or x1xkxk− m

2
. . . xtxj where each step after

the first step is either to that vertex’s farthest neighbor along
the cycle or, in the case of xt , that vertex’s farthest neighbor
in T which is not already used by a previously constructed
path. We will call an LJP-T path where the indices of the path
vertices increase a forward LJP-T path. An LJP-T path where
the indices decrease will be called a backward LJP-T path.

As we are taking the largest step possible from each vertex,
we can ensure that these LJP-T paths are vertex-disjoint. That
is, if x1 is adjacent to x2, x3, x4, then the vertices distance
two away from x1 on each forward LJP-T path from x1 to xj

through x2, x3, and x4 are distinct. For each step until xj is
reached, the vertices on each of these different paths will be
unique.

Note that in the paths below, consecutive vertices may be
the same. That is, the path x1x2x3 may have x2 = x3 but in
this event, the actual path is x1x3.

Suppose first that 2 ≤ j ≤ m
2 + 1. In particular, suppose

j = m
2 +1− i for some i. Then, we can find m paths of length

d or less by taking:

• the m
2 paths of the form x1xkxj for k ∈ [2, m

2 + 1],
• the i paths of the form x1xkxj for k ∈ [n − i + 1, n], and
• the m

2 − i backward LJP-T paths from x1 to xj through xk

for k ∈ [n − m
2 + 1, n − i].

Note that since LJP-T paths are used in this system, the paths
should be constructed in the order listed above.
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Suppose now that j > m
2 + 1; then, we find m paths of

length d or less by taking:

• the m
2 forward LJP-T paths from x1 to xj through xk for

k ∈ [2, m
2 + 1], and

• the m
2 backward LJP-T paths from x1 to xj through xk for

k ∈ [n − m
2 + 1, n].

For any of the LJP-T paths x1xk . . . xj, we have

|k − j| ≤ n −
(m

2
+ 1

)
≤ dm

2
+ 1 −

(m

2
+ 1

)
= m

2
(d − 1).

So, none of the LJP-T paths have length greater than d.
Therefore, the paths above show that G satisfies Pd,m. ■

Note that the graph constructed in Theorem 5.2 is a type
of circulant graph.

When m is odd and n is even, we use a modification of the
construction in Theorem 5.2. This modification allows us to
increase the upper bound on n.

Theorem 5.3. If d ≥ 3, m is an odd integer with m ≥ 3,
and n is even integer with 2m ≤ n ≤ (d − 1)(m − 1) + 2,
then

ext(n; Pd,m) = nm

2
.

Proof. Consider the graph (Cn)
m−1

2 . Label the vertices
x1, x2, . . . , xn. Now add the edge xixi+ n

2
for 1 ≤ i ≤ n

2 and
call this new graph H. An example of this construction is
given in Figure 4. Note that |E(H)| = nm

2 . We now wish to
show that H satisfies Pd,m. Let x, y be two vertices of H.
Assume without loss of generality that x = x1 and y = xj for
some j ≤ n

2 + 1. Let T = N(xj, H) and T ′ = N(xj+ n
2
, H).

Suppose that 2 ≤ j < m+1
2 . In particular, suppose j =

m−1
2 + 1 − i for some i. Then, we find m paths of length d or

less by taking:

• the m−1
2 paths of the form x1xkxj for k ∈ [2, m+1

2 ],
• the i paths of the form x1xkxj for k ∈ [n − i + 1, n],
• the m−1

2 − i paths of the form x1xkP where P is a backward
LJP-T path from xk to xj through xk− n

2
for k ∈ [n−( m−1

2 −
1), n − i],

• the one path of the form x1Pxj where P is forward LJP-T ′
path from x1 to xj+ n

2
through x1+ n

2
.

Note that since LJP-T paths are used in this system, the paths
should be constructed in the order listed above. This applies
also to the cases outlined below that use LJP-T paths.

Suppose now that j ≥ m+1
2 but j ≤ � n

4�. Then, we find m
paths of length d or less by taking:

• the m−1
2 forward LJP-T paths from x1 to xj through xk for

k ∈ [2, m+1
2 ],

• the m−1
2 paths of the form x1xkP where P is a back-

ward LJP-T path from xk to xj through xk− n
2

for k ∈
[n − ( m−3

2 ), n], and

FIG. 4. Construction from Theorem 5.3 with m = 5, n = 12.

• the one path of the form x1Pxj where P is a forward LJP-T ′
path from x1 to xj+ n

2
through x1+ n

2
.

Suppose now that j ≥ m+1
2 , j > � n

4�, and xj+ n
2

∈ N(x1, H).

In particular, suppose that xj+ n
2

is xn−i for some i ∈ [0, m−3
2 ].

Then, we can find m paths of length d or less by taking:

• the m−1
2 paths of the form x1xkxk− n

2
xj for k ∈ [n −

( m−3
2 ), n],

• the m−1
2 − i paths of the form x1xkxk+ n

2
xj for k ∈ [1, m−1

2 −
i], and

• the i + 1 forward LJP-T paths from x1 to xj through xk for
k ∈ [ m+1

2 − i, m+1
2 ].

Last, suppose that j ≥ m+1
2 , j > � n

4�, and xj+ n
2

/∈ N(x1, H).
Then, we can find m paths of length d or less by taking:

• the m−1
2 paths of the form x1xkPxj where P is a back-

ward LJP-T path from xk to xj through xk− n
2

for k ∈
[n − ( m−3

2 ), n],
• the m−1

2 forward LJP-T paths from x1 to xj through xk for
k ∈ [2, m+1

2 ], and
• the one path of the form x1Pxj where P is a forward LJP-T

path from x1+ n
2

to xj which contains xj+ n
2
.

This takes care of all possibilities.
Note first that the lower bound on n ensures that no chord

of the form xixi+ n
2

for 1 ≤ i ≤ n
2 is adjacent to more than one

vertex of N(x1, H). This allows for the construction of the
path systems above. We also need to make sure that all these
paths have length d or less. The farthest two vertices that must
be joined by a path occur in the case when j = m−1

2 + 1 − i
for some i, and the path is x1xn−iP where P is a backward
LJP-T path from xn−i to xj through xn−i− n

2
. Note that there

can be at most d − 2 steps of length m−1
2 from xn−i− n

2
to xj.
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If we subtract the indices, we get the distance along the cycle
we must travel. Thus, we need

(
n − i − n

2

)
−

(
m + 1

2
− i

)
≤ m − 1

2
(d − 2).

However, this holds as long as n ≤ (m − 1)(d − 1) + 2.
Thus, all the paths constructed above have length d or less
and, consequently, H satisfies Pd,m. ■

When n = m + x = rx for some r, x, we can also find a
best-possible construction when d ≥ 3.

Theorem 5.4. Suppose n = m + x = rx for some integers
x, r, and d with d ≥ 3. Then

ext(n; Pd,m) = nm

2
.

Proof. Consider Kn. Remove edges of r vertex-disjoint
copies of Kx from the Kn. The resulting graph is m-regular,
and it is straightforward to check that the graph satisfies P3,m,
and consequently Pd,m, for any d ≥ 3. ■

When n = 2m and d = 3, Theorem 5.4 tells us that Km,m

is an extremal graph. Note that the graph K2 × Km (Fig. 5),
where “×” denotes the Cartesian product of the graphs, is
also m-regular and satisfies P3,m. However, K2 × Km is not
isomorphic to Km,m. Thus, in these cases, the extremal graph
may not be unique.

We now turn our attention to the case d ≥ 4. In this final
best-possible construction, we assume m is even and n = tm
where t ∈ [3, d − 1]. Consider the graph G = Ct × Km. We
will refer to the copies of Km as levels. Assume the levels are
labeled from 1 to t and that the vertices of the kth level are
labeled {xk,1, xk,2, . . . , xk,m}. We will be removing a matching
from each level but the type of matching will depend on the
location of the level on the cycle. For Level k, define the
following types of matchings:

• An M1 matching consists of the edges

xk,1xk,2; xk,3xk,4; . . . ; xk,m−1xk,m.

• An M2 matching consists of the edges

xk,1xk,m; xk,2xk,3; . . . ; xk,m−2xk,m−1.

FIG. 5. K2 × Km from discussion following Theorem 5.4.

FIG. 6. Construction from Theorem 5.5 with m = 6, n = 18.

• An M3 matching consists of the edges

xk,1xk,m′+1; xk,2xk,m′+2; . . . ; xk,m′ xk,m

where m′ = m
2 .

Now, we remove from G a matching from each level. From
Level 1, remove an M1 matching and from Level 2, remove
an M2 matching. Continue alternating in this manner until
you reach Level t. If t is even, remove an M2 matching from
Level t. Otherwise, remove an M3 matching.

Note that the removal of these matchings ensures that no
consecutive copies of Km on the cycle are missing the same
edge. Let M be the set of all edges removed. Consider G−M.
An example when m = 6 and n = 18 is given in Figure 6,
and it shows a different type of matching removed from each
level.

Overall, for this construction, note that G−M is m-regular,
and so |E(G − M)| = nm

2 . More importantly, G − M satisfies
Pd,m as illustrated in the following theorem.

Theorem 5.5. If d ≥ 4, m is even with m ≥ 4, and n = tm
for some t ∈ [3, d − 1], then

ext(n; Pd,m) = nm

2
.

Proof. We wish to show that the graph G − M con-
structed above satisfies Pd,m. Choose two vertices x, y ∈
V(G − M) where x is in Level r and y is in Level s. Relabel
the graph so that x = xr,1 and so that its non-neighbor in the
level is labeled xr,2. That is, relabel so that an M1 matching has
been removed from Level r. Assume further that the label-
ing of the graph is such that individual copies of the cycle
go through vertices with the same last index number (e.g.,
x1,1x2,1x3,1 . . . xt,1 go through the same copy of Ct). Assume
that y = xs,a and its non-neighbor in its level is xs,b.

We will call a path a standard path if it is of the form
xr,1xr,uxr+1,u . . . xs,uxs,a or xr,1xr,uxr−1,u . . . xs,uxs,a for some
u. The path systems we find in G−M will consist of standard
paths for some set of indices u along with several nonstandard
paths. Two standard paths are illustrated in Figure 7.
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FIG. 7. Standard path for u = 4, 5.

Assume that for the first index of each vertex, the addition
is performed modulo t. Also assume that the standard paths go
through the graph in the direction that minimizes the distance
between the target and destination levels. As before, in the
paths below, consecutive vertices may be the same. That is,
the path xx1x2x3 may have x1 = x2, but in this event, the
actual path is xx1x3.

Suppose first that r = s. Then,

• For a = 2: Take the m − 2 standard paths for u ∈
[m] − {1, 2} along with the paths xr,1xr+1,1xr+1,2xs,a and
xr,1xr−1,1xr−1,2xs,a to complete the system.

• For a �= 2: Take the m − 3 standard paths for u ∈ [m] −
{1, 2, b} along with xr,1xr+i,1 . . . xr+j,1xr+j,axr+j−i,a . . . xs,a

where j is the least number in absolute value so that
xr+j,1xr+j,a ∈ E(G) and i ∈ {−1, 1} has the same sign as j.
Assume without loss of generality that j is negative. Then,
take xr,1xr+1,1xr+1,2xr,2xs,a and xr,1xr,bxr+1,bxr+1,axs,a to
complete the system.

Suppose now that r �= s but that Level s had an M1 matching
removed from it. Then,

• For a = 1: Take the m − 2 standard paths for u ∈ [m] −
{1, 2} along with xr,1xr+1,1 . . . xs,a and xr,1xr−1,1 . . . xs,a.

• For a = 2: Take the m − 2 standard paths for u ∈
[m] − {1, 2} along with xr,1xr+1,1xr+1,2 . . . xs−1,2xs,a and
xr,1xr−1,1 . . . xs+1,1ss+1,2xs,a.

• For a �= 1, 2: Take the m − 3 standard paths for u ∈
[m] − {1, 2, b} along with xr,1xr,bxr+1,b . . . xs−1,bxs−1,axs,a;
xr,1xr+1,1xr+1,2xr+2,2 . . . xs,2xs,a; and xr,1xr−1,1 . . .

xs+1,1xs,1xs,a.

Suppose now that r �= s but Level s had an M2 matching
removed from it. Assume that |{r, r + 1, . . . , s}| ≥ |{s, s +
1, . . . , r}|. Then,

• For a = 1: Take the m − 3 standard paths for
u ∈ [m] − {1, 2, m} along with xr,1xr+1,1xr+1,2 . . . xs,2xs,a;
xr,1xr,mxr+1,mxr+2,m . . . xs−1,mxs−1,1xs,a; and xr,1xr−1,1 . . .

xs,a.
• For a = 2: Take the m − 3 standard paths for

u ∈ [m] − {1, 2, 3} along with xr,1xr,3xr,2xr−1,2 . . . xs,a;
xr,1xr−1,1 . . . xs,1xs,a; and xr,1xr+1,1xr+1,2xr+2,2 . . . xs,a.

• For a = 3: Take the m − 2 standard paths for u ∈ [m] −
{1, 2} along with xr,1xr+1,1xr+1,2xr+2,2 . . . xs−1,2xs−1,axs,a;
and xr,1xr−1,1 . . . xs,1xs,a.

• For a = m: Take the m − 2 standard paths for u ∈
[m] − {1, 2} along with xr,1xr−1,1 . . . xs+1,1xs,1xs,2xs,a; and
xr,1xr+1,1 . . . xs−1,1xs−1,mxs,a.

• For a /∈ {1, 2, 3, m}: Take the m − 3 standard paths for
u ∈ [m] − {1, 2, b} along with xr,1xr+1,1xr+1,2 . . . xs,2xs,a;
xr,1xr,bxr+1,b . . . xs−1,bxs−1,axs,a; and xr,1xr−1,1 . . . xs,1xs,a.

Suppose now that r �= s but Level s had an M3 matching
removed from it. Again, assume that |{r, r + 1, . . . , s}| ≥
|{s, s + 1, . . . , r}|. Then,

• For a = 1: Take the m − 3 standard paths for u ∈
[m] − {1, 2, b} along with xr,1xr+1,1xr+1,2xr+2,2 . . . xs,2xs,a;
xr,1xr,bxr+1,b . . . xs−1,bxs−1,1xs,a; and xr,1xr−1,1 . . .

xs+1,1xs,a.
• For a = 2: Take the m − 3 standard paths for u ∈ [m] −

{1, 2, b} along with xr,1xr+1,1xr+1,2xr+2,2 . . . xs−1,2xs,a;
xr,1xr−1,1 . . . xs+1,1xs,1xs,a; and xr,1xr,bxr,2xr−1,2 . . .

xs+1,2xs,a.
• For a = m′ + 1: Take the m − 2 standard paths for

u ∈ [m] − {1, 2} along with xr,1xr−1,1 . . . xs,1xs,2xs,a and
xr,1xr+1,1 . . . xs−1,1xs−1,axs,a.

• For a = m′ + 2: Take the m − 2 standard paths for
u ∈ [m] − {1, 2} along with xr,1xr−1,1 . . . xs+1,1xs,1xs,a and
xr,1xr+1,1 . . . xs−1,1xs−1,axs,a.

• For a /∈ {1, 2, m′ + 1, m′ + 2}: Take the m − 3
standard paths for u ∈ [m] − {1, 2, b} along with
xr,1xr−1,1 . . . xs,1xs,a; xr,1xr+1,1xr+1,2xr+2,2 . . . xs,2xs,a; and
xr,1xr,bxr+1,b . . . xs−1,bxs−1,axs,a.

Note that in each of the paths, at most two intralevel edges
were used. So, each path has length d or less. Therefore,
G − M satisfies Pd,m. ■

6. NEW BOUNDS FOR d ≥ 3

In this final section, we present several new upper and
lower bounds for ext(n; Pd,m) when d ≥ 3. First, consider
the case d = 3. Unlike d = 2, there is no theorem similar to
Theorem 4.1 for ext(n; P3,m) where n is large. However, we
can use an earlier construction to get an easy upper bound for
ext(n; P3,m).

Theorem 6.1. For n ≥ 2m,

ext(n; P3,m) ≤ m(n − m).

Proof. The graph Km,n−m (see Fig. 2) satisfies P3,m and
has m(n − m) edges. ■

We now turn our attention to new bounds for ext(n; Pd,m)

when n is large and d ≥ 3. Note that if a graph is to satisfy
Pd,m and be C-regular for some constant C, then there is an
upper bound on the number of vertices that graph can contain.
The following result gives an upper bound for the number of
vertices a graph which satisfies Pd,m can contain based on the
minimum and maximum degree of G.
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Theorem 6.2. Suppose G is a graph on n vertices with
maximum degree � = �(G) and minimum degree δ = δ(G)

where � ≥ δ ≥ m > 2 for some m. If G satisfies Pd,m, then

n ≤ 1 + δ(� − 1)d−1(m + � − 2) − mδ

m(� − 2)
.

Proof. Suppose G is a graph on n vertices which satisfies
Pd,m and has minimum degree δ ≥ m. Let x be a vertex of
G of degree δ. Consider the subtree rooted at the vertex x
where the vertices in the ith level are distance i from x in G.
Then, level i can contain at most δ(� − 1)i−1 vertices for
1 ≤ i ≤ d − 1.

We can get a better bound on the number of vertices in the
dth level of the tree. There are at most δ(� − 1)d−2 vertices
in the (d − 1)st level, and there are at most �− 1 edges from
each of those vertices to the dth level. Now, each vertex in
level d must have at least m of these edges. Thus, the number
of vertices in the dth level is bounded from above by

(� − 1) · δ · (� − 1)d−2 ·
(

1

m

)
= δ

m
(� − 1)d−1.

Consequently,

n ≤ 1 + δ + δ(� − 1) + · · · + δ(� − 1)d−2

+ δ

m
(� − 1)d−1

= 1 + δ[1 + (� − 1) + · · · + (� − 1)d−2]

+ δ

m
(� − 1)d−1

= 1 + δ

[
(� − 1)d−1 − 1

(� − 1) − 1

]
+ δ

m
(� − 1)d−1

= 1 + δ(� − 1)d−1(m + � − 2) − mδ

m(� − 2)
.

■

In the case when a graph is m-regular, we get the following
corollary:

Corollary 6.3. Suppose m > 2. If G is an m-regular graph
on n vertices which satisfies Pd,m, then

n ≤ 2[(m − 1)d − 1]
(m − 2)

.

Thus, the bound in Observation 2.4 cannot be sharp for
large n. We now wish to determine a lower bound for large
n which takes into account this fact. The following theorem
gives a lower bound for the number of additional edges we
need above the bound in Observation 2.4 for ext(n; Pd,m)

when n is very large.

Theorem 6.4. Suppose that G has n vertices and satisfies
Pd,m where d ≥ 3 and m ≥ 3. Then,

|E(G)| ≥ nm

2
+ 1

2

[
n(m − 2) + 2 − m(m − 1)d

(m − 1)[(m − 1)d−2 − 1] + (m − 2)

]
.

Proof. Select a vertex of G of degree exactly m. If no
such vertex exists, then as δ(G) must be greater than m, we
have |E(G)| ≥ n(m+1)

2 = mn
2 + n

2 . This is greater than the
bound in the theorem statement when

n

2
≥ 1

2

[
n(m − 2) + 2 − m(m − 1)d

(m − 1)[(m − 1)d−2 − 1] + (m − 2)

]

which is true when

n(m − 1)[(m − 1)d−2 − 1] ≥ 2 − m(m − 1)d .

As m ≥ 3 and d ≥ 3, this inequality is always satisfied, so
the result follows in this case.

Thus, assume that there does exist a vertex v ∈ V(G)

which has degree exactly m. Consider the subtree T rooted at
the vertex v where the vertices in the ith level of the tree are
distance i from v in G. Note that since G satisfies Pd,m and
hence must be connected, T is a spanning subgraph which
contains at most d levels beyond the root v. Assume that T
has k levels where k ≤ d. Let Vi be the vertices of the ith
level of the tree, so in particular V0 = {v}. We will delete
edges from T using two processes.

Process α: Examine the vertices of Vk−1. If any vertex has
degree strictly greater than m in T , then delete edges from
that vertex to the kth level until the vertex has degree exactly
m. Then, examine the vertices in Vk−2. If any vertex in that set
has degree greater than m, then delete edges from the vertex
to the (k − 1)st level until the degree is exactly m. Do this for
each Vi for 1 ≤ i ≤ k − 1.

Let Xj be the set of edges from level j to level j +1 deleted
in Process α for 0 ≤ j ≤ k − 1. Assume that |Xj| = xj. Note
that x0 = 0. After Process α, a forest remains. Let Tv be the
component of this forest which contains the vertex v.

Process β: Delete all edges from all components except
Tv.

Each edge e ∈ Xj for 1 ≤ j ≤ k − 2 deleted in Process α

leaves a new component which does not contain v and may
contain as many as

(m − 1) + (m − 1)2 + · · · + (m − 1)k−j−1

= (m − 1)((m − 1)k−j−1 − 1)

m − 2

edges. Consequently, for each edge in Xj with 1 ≤ j ≤ k − 2,
we delete as many as

(m − 1)((m − 1)k−j−1 − 1)

m − 2

edges in Process β. So, an upper bound for the total number
of edges deleted in both processes is

xk−1 +
k−2∑
j=1

(
xj

(m − 1)[(m − 1)k−j−1 − 1]
m − 2

+ xj

)
(6.1)
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We now wish to get a lower bound on the total number of
edges deleted. After the two processes, |E(Tv)| is at most

m + m(m − 1) + m(m − 1)2 + · · · + m(m − 1)k−1

= m(m − 1)k − m

(m − 1) − 1
.

Thus, at least

n − 1 −
(

m(m − 1)k − m

m − 2

)
(6.2)

edges were deleted from our original tree T .
Let

ρ =
k−1∑
j=1

xj.

So, ρ is the number of edges deleted in process α. Con-
sequently, |E(G)| ≥ mn

2 + ρ
2 . We wish to get a lower bound

on ρ.
Comparing (6.1) and (6.2), we get

n − 1 −
(

m(m − 1)k − m

m − 2

)

≤ xk−1 +
k−2∑
j=1

(
xj

(m − 1)[(m − 1)k−j−1 − 1]
m − 2

+ xj

)

≤ (ρ − xk−1)

[
(m − 1)[(m − 1)k−2 − 1]

m − 2

]
+ ρ.

As k ≤ d, we have

n − 1 −
(

m(m − 1)d − m

m − 2

)
≤ n − 1 −

(
m(m − 1)k − m

m − 2

)

≤ (ρ − xk−1)

[
(m − 1)[(m − 1)k−2 − 1]

m − 2

]
+ ρ

≤ ρ

[
(m − 1)[(m − 1)k−2 − 1]

m − 2

]
+ ρ

≤ ρ

[
(m − 1)[(m − 1)d−2 − 1]

m − 2

]
+ ρ

= ρ

[
(m − 1)[(m − 1)d−2 − 1] + (m − 2)

m − 2

]
.

Consequently,

ρ ≥ n(m − 2) + 2 − m(m − 1)d

(m − 1)[(m − 1)d−2 − 1] + (m − 2)
.

As |E(G)| ≥ nm
2 + ρ

2 , the result follows. ■

FIG. 8. H ′ from Theorem 6.5.

In order for Theorem 6.4 to provide any more information
than Observation 2.4, n must be quite large. In fact, we need

n >
m(m − 1)d − 2

m − 2
.

Although Theorem 6.4 provides an improvement in the
lower bound when n is large, it does not give any indication
of the structure of an extremal graph for large n. In our final
result, we present a construction which works for certain val-
ues of d and large n and which provides a new upper bound
on ext(n; Pd,m) in these cases.

Theorem 6.5. Assume that d = 4k +2 for k ≥ 1, m is even
with m ≥ 4, and n = m(2kt + 1) for some t. Then

ext(n; Pd,m) ≤ nm + m(2t − 1)

2
= nm

2
+ tm − m

2
.

Proof. Consider t copies of C2k+1. Now, designate one
vertex on each cycle, and identify these designated vertices so
that we have the cycles all sharing exactly one vertex v. Call
this graph H. Now consider the Cartesian product H × Km.
Let Kv

m be the copy of Km which is in the position of vertex
v. Now, for each copy of Km, except for Kv

m, remove either
an M1 or an M2 matching (as described in Theorem 5.5) so
that no two adjacent copies have the same matching removed.
Call the resulting graph H ′ (see Fig. 8).

Thus, H ′ consists of t stacks of 2k levels of copies of
Km −Mi (i = 1 or 2) each of which route through Kv

m (which
we will call the hub). Note that each copy of Km − Mi (i =
1 or 2) can be referenced using a stack and level number.
Also,

|E(H ′)| = nm + m(2t − 1)

2
.

Assume that the vertices in each copy of Km − Mi (i =
1 or 2) and Kv

m are labeled x1, x2, . . . , xm so that each copy of
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C2k+1 goes through each of the vertices labeled with the same
index number in every level. Let x be any vertex in Stack i,
Level j. Assume also without loss of generality that x = x1

and that Stack i, Level j had an M1 matching removed. Note
that there is a path of length 2k + 1 or less from x1 in Stack
i, Level j to vertex xp in Kv

m for p ∈ [m]. For p �= 2, the path
is x1xpP where P is the direct path to xp in Kv

m along one
copy of the cycle which goes through Level j − 1 or directly
to Kv

m if j ∈ {1, 2k}. For p = 2, the path is x1x′
1x′

2P where
x′

1, x′
2 are in Stack i, Level j + 1 and P is the direct path to

x2 in Kv
m along one copy of the cycle which does not pass

through Level j again. Note that these direct-to-hub paths
give m vertex-disjoint paths of length at most 2k + 1 from
any vertex in Stack i, Level j to the hub (where the endpoints
in the hub are distinct).

With this in mind, we show that H ′ satisfies Pd,m. Let x, y
be two vertices of H ′. Assume without loss of generality that
x = x1.

• Suppose x, y ∈ Kv
m. Then they are adjacent, and they clearly

have m−2 common neighbors in Kv
m. So, we can find m−1

paths of length 2 or less between x and y. The direct-to-hub
paths to x and y from any vertex in any one of the stacks
and levels supply another path of length d or less between
x and y that is disjoint from the other m − 1 paths. Thus,
we can find m paths of length d or less between x and y.

• Suppose x, y are not in the hub but are both in Stack i. Note
that the graph in Theorem 5.5, where n = (2k + 1)m, is
a subgraph of the graph induced in H ′ by Stack i and the
hub. Thus, by Theorem 5.5, we can find m paths of length
2k + 2 or less in this subgraph of H ′.

• Suppose x is Stack i but y is in the hub. Then, the direct-
to-hub paths from x along with the edges from y to every
other vertex in Kv

m give us m paths of length 2k +2 or less.
• Suppose x is in Stack i but y is in Stack j where j �= i. Then,

the direct-to-hub paths from x and the direct-to-hub paths
from y give us m vertex-disjoint paths of length 4k + 2 or
less between x and y.

Thus, H ′ has property Pd,m, and the result is proven. ■
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