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a b s t r a c t

LetH be a simple graph. A graph G is called anH-saturated graph ifH is not a subgraph of G,
but adding any missing edge to G will produce a copy of H . Denote by SAT (n,H) the set of
all H-saturated graphs G with order n. Then the saturation number sat(n,H) is defined as
minG∈SAT (n,H) |E(G)|, and the extremal number ex(n,H) is defined as maxG∈SAT (n,H) |E(G)|. A
natural question is that of whether we can find an H-saturated graph withm edges for any
sat(n,H) ≤ m ≤ ex(n,H). The set of all possible values m is called the edge spectrum for
H-saturated graphs. In this paperwe investigate the edge spectrum for Pi-saturated graphs,
where 2 ≤ i ≤ 6. It is trivial for the case of P2 that the saturated graph must be an empty
graph.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and notation

In this paper we only consider graphs without loops or multiple edges. For terms not defined here see [3]. For a graph G
we use G to represent the vertex set V (G) and the edge set E(G) when the meaning is clear from the context. Furthermore,
|V (G)| = n, unless otherwise specified. Also, Kp denotes the complete graph on p vertices. A graph G is termed an (n,m)
graph if |V (G)| = n and |E(G)| = m.

A fixed graph G is called an H-saturated graph if the graph H is not a subgraph of G, but adding any missing edge to
G will produce a copy of H . The collection of all H-saturated graphs of order n is denoted by SAT(n, H), and the saturation
number, denoted as sat(n,H), is the minimum number of edges of a graph in the set SAT(n, H). The graphs in SAT(n, H)with
the minimum number of edges will be denoted by SAT (n,H). The saturation number was introduced by Erdős, Hajnal, and

Moon in [4] in which the authors proved sat(n, Kp) =


p−2
2


+ (n−p+2)(p−2) and SAT (n, Kp) = {Kp−2 ∨K n−p+2}, where

∨ is the standard graph joining operation. Themaximumnumber of edges of a graph from SAT(n, H) is the well known Turán
extremal number (see [9]), and is usually denoted by ex(n,H). The parameters sat(n,H) and ex(n,H) have been investigated
for a range of graphs H . Generalizations to hypergraphs also exist (see [7]).

A natural aim is to find, if possible, an H-saturated graph withm edges for any integerm between the saturation number
and extremal number. Barefoot et al. [2] studied the edge spectrum of K3-saturated graphs and proved the following result.

Theorem 1.1 ([2]). Let n ≥ 5 and m be nonnegative integers. There is an (n,m) K3-saturated graph if and only if 2n−5 ≤ m ≤

⌊(n − 1)2/4⌋ + 1 or m = k(n − k) for some positive integer k.

Theorem 1.1 says that a K3-saturated graph is either a complete bipartite graph or its size falls in the given range and all
values in this range are possible.
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Fig. 1. Description of P4-saturated graphs.

Later Amin [1] extended this result from K3-saturated graphs to any complete graph Kp in her Ph.D. thesis, which is the
starting point of this paper. In Section 2, we present the known results on saturation numbers and extremal numbers for
paths, and then investigate the properties of connected P5-saturated graphs and connected P6-saturated graphs. In Sections 3
and 4 we shall give a complete characterization of the edge spectrum for P5-saturated graphs and P6-saturated graphs
respectively.

2. Known results

In [6] Kászonyi and Tuza proved several general results concerning saturated graphs including an upper bound for
sat(n,H) for any connected graph H by constructing an H-saturated graph.

Theorem 2.1 ([6]). Saturation numbers for paths:

(a) For n ≥ 3, sat(n, P3) = ⌊n/2⌋.
(b) For n ≥ 4, sat(n, P4) =


n/2 if n is even,
(n + 3)/2 if n is odd.

(c) For n ≥ 5, sat(n, P5) = ⌈
5n−4

6 ⌉.

(d) Let ak =


3 · 2t−1

− 2 if k = 2t,
4 · 2t−1

− 2 if k = 2t + 1.
If n ≥ ak and k ≥ 6, then sat(n, Pk) = n − ⌊

n
ak

⌋.

In this paper, we will mainly consider the cases of P5 and P6. By Theorem 2.1 we have sat(n, P6) = ⌈9n/10⌉ for any
n ≥ 10.

Next let us recall a result concerning the Turán extremal number, which was proved by Faudree and Schelp [5]
in 1975.

Theorem 2.2 ([5]). If G is a graph with |V (G)| = kt + r, 0 ≤ r < k, containing no path on k + 1 vertices, then |E(G)| ≤

t


k
2


+
 r
2


with equality if and only if G is either (tKk)∪Kr or ((t − l−1)Kk)∪ (K(k−1)/2 ∨K (k+1)/2+lk+r) for some l, 0 ≤ l < t,

where k is odd, t > 0, and r = (k ± 1)/2.

Corollary 2.3 ([8]). For all integer n, n ≥ 3,

(a) ex(n, P4) =


n n ≡ 0 (mod 3)
n − 1 n ≡ 1, 2 (mod 3)

(b) ex(n, P5) =


3n/2 n ≡ 0 (mod 4)
3n/2 − 2 n ≡ 2 (mod 4)
3(n − 1)/2 n ≡ 1, 3 (mod 4)

(c) ex(n, P6) =


2n n ≡ 0 (mod 5)
2n − 2 n ≡ 1, 4 (mod 5)
2n − 3 n ≡ 2, 3 (mod 5).

Considering the fact that for any P3-saturated graph G, no two edges can be incident to each other and G contains at most
one isolated vertex, therefore, sat(n, P3) = ex(n, P3) = ⌊n/2⌋. As for the case of P4-saturated graphs, the following figures
clearly show how we can evolve a P4-saturated graph with the least edges to one with the most edges.

From the Fig. 1 we can evolve a P4-saturated graph, a perfect matching or a matching union a triangle to one with n − 1
edges for any integer n. In addition, when n = 3p we can take G = pK3 and find one more P4-saturated graph of size n.
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Fig. 2. Two possible structures for a connected P5-saturated graph.

3. Edge spectra of P5-saturated graphs

IfG is a P5-saturated graphwith order less than 5, thenGmust be a complete graph. Furthermore, the order of the union of
any two components of Gmust be at least 5 since otherwise we can add an edge joining those two components and have no
copies of P5 in the resulting graphs. Therefore the structure of every component of a P5-saturated graph becomes important
and we have the following lemma concerning it.

Lemma 3.1. If H is a connected P5-saturated graph with order at least 5, then each block of H is a clique of order 2 or 3.

Proof. If H is 2-connected, i.e. H consists of only one block, H cannot be a complete graph since H is P5-saturated graph.
Hence we may take two vertices u and v with uv ∉ E(H). There is no circuit with length more than 4 since otherwise a
subgraph P5 will be found. Therefore, we can find a circuit of length 4. Considering that n ≥ 5, there is a vertexw connecting
to some vertex on this circuit and forming a path P5. Thus H cannot be 2-connected.

Let B be a block of H , then the order of B must be less than 4 since otherwise we may find a circuit of length at least
4 within block B, which forms a P5 with any one edge outside B. Thus the order of each block in H is either 3 or 2, as we
desired. �

Let H be a connected P5-saturated graph. It is trivial for the case |V (H)| ≤ 4 that H must be a complete graph. Hence we
may assume that |V (H)| ≥ 5. If H contains two triangles T1 and T2, which are connected by a path Q , then a path of order
at least 5 is naturally contained as a subgraph. Hence H contains at most one triangle. Therefore, by Lemma 3.1 either G is a
tree or a graph obtained by adding exactly one edge to a star (see Fig. 2). Then we get the following lemmas.

Lemma 3.2. If H is a component of a P5-saturated graph other than K4, then the size of H is either n′
−1 or n′, where n′

= |V (H)|.

Let G be a P5-saturated graph and S+
µ be a graph obtained from the star Sµ by adding one edge. If we denote by α1 the

number of acyclic components of G, by α2 the number of S+
µ ’s, and by α3 the number of K ′

4s in G, then by applying the above
lemma we have the next lemma immediately.

Lemma 3.3. If G ∈ SAT (n, P5), then |E(G)| = n − α1 + 2α3, where α1, α3 are defined above.

The key idea of our method is constructing a new P5-saturated graph from an existing smaller P5-saturated graph. Our
main result on P5 is heavily dependent on the following lemmas.

Lemma 3.4. Let m ≥ n ≥ 5. There is an (n,m) graph G in SAT (n, P5) if and only if there exists an (n + 4,m + 6) graph G′ in
SAT (n + 4, P5).

Proof. It is trivial that G ∈ SAT (n, P5) implies G′
= G ∪ K4 ∈ SAT (n + 4, P5), where ∪ is the graph union operation and

V (G′) = V (G)∪V (K4), E(G′) = E(G)∪E(K4). For the necessity, we assume thatG′′ is an (n+4,m+6) graph in SAT (n+4, P5).
If there exists a component K4 in G′′, then G = G′′

− K4 will be an (n,m) graph in SAT (n, P5). Hence, we may suppose that
G′′ contains no K4’s, i.e. α3 = 0. By Lemma 3.3, m + 6 = |E(G′′)| = |V (G′′)| − α1 ≤ |V (G′′)| = n + 4, contradicting that
m ≥ n. �

So far we have figured out P5-saturated graphs with m ≥ n. The next lemma will tell us more information about
P5-saturated graphs with fewer edges.

Lemma 3.5. Let n be an integer that is at least 5 and ⌈
5n−4

6 ⌉ ≤ m ≤ n − 1. There exists a P5-saturated (n,m) graph.

Proof. If n = 5, then ⌈
5n−4

6 ⌉ = n − 1 = 4 and we take G = K2 ∪ K3 ∈ SAT (n, P5). Next we assume that n > 5 and write
n = 6k + i, where 0 ≤ i ≤ 5.

First we construct a P5-saturated graph of size m = ⌈
5n−4

6 ⌉. Let Ta,b be a graph obtained from two stars Sa and Sb by
adding an edge joining the two centers (see Fig. 2). We can construct the following graphs: kT2,2, (k− 1)T2,2 ∪ T2,3, kT2,2 ∪

K2, (k − 1)T2,2 ∪ T2,3 ∪ K2, (k − 1)T2,2 ∪ T3,3 ∪ K2, (k − 1)T2,2 ∪ T4,3 ∪ K2 in line with the i-values. For example, we can
take G = T2,2 ∪ T4,3 ∪ K2 if n = 17.

Then for the values of m ∈ (⌈ 5n−4
6 ⌉, n), we can build a P5-saturated (n,m) graph by the following process starting with

saturated graphs with ⌈
5n−4

6 ⌉ edges: Ta,b + Tx,y ⇒ Tx+a+1,y+b+1 or Tx,y + K2 ⇒ Tx+1,y+1. This process is shown in Fig. 3. At
the end of this process we shall get a P5-saturated with n − 1 edges, namely Ta,n−a−2. �
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Ta, b Tx, y

Fig. 3. The evolution of P5-saturated trees.

Now we are ready to give the edge spectra of P5-saturated graphs and present one of the main theorems. The interval
[A, B] = [sat(n, P5), ex(n, P5)] can be obtained from Theorem 2.1 and Corollary 2.3. We want to determine whether this
interval is the spectrum of P5—or are there any missing values within this interval?

It is worth noting here that at each induction process stage we jump four steps. First we give the results for four initial
values of n, which are listed in the table, and then apply the induction process to get results for the next four n values.

Theorem 3.1. Let n ≥ 5 and sat(n, P5) ≤ m ≤ ex(n, P5) be integers. There exists an (n,m) graph G ∈ SAT (n, P5) if and only if
n = 1, 2 (mod 4), or

m ∉



3n − 5

2


if n ≡ 3 (mod 4)

3n
2

− 3,
3n
2

− 2,
3n
2

− 1


if n ≡ 0 (mod 4).

Proof. The proof of this result follows from Lemma 3.1 through Lemma 3.5 and the next table, by induction on n.

n [A, B] SAT (n, P5) n [A, B] SAT (n, P5)

5 [4, 6]
4: K3 ∪ K2

6 [5, 7]
5: T2,2

5: S+

4 6: 2K3

6: K4 ∪ K1 7: K4 ∪ K2

7 [6, 9]

6: T2,3

8 [6, 12]

6: T2,2 ∪ K2

7: 2K3 7: T3,3
8: ∅ 8: K3 ∪ S+

4
9: K4 ∪ K3 9–11: ∅

12: 2K4

In the above table, the symbol ′
∅

′ stands for no (n,m)P5-saturated graph existing and A = sat(n, P5), B = ex(n, P5). The
nonexistence of P5-saturated graphs comes from Lemma 3.3 by counting the edges.

The initial results for n = 5, 6, 7, 8 are listed in the above table. By the induction hypothesis, suppose that we have
the result for n; then we shall apply Lemma 3.4 to get a result for n + 4. Once we have determined all possible P5-saturated
graphswith n vertices, we can also determine the P5-saturated graphswith n+4 vertices according to Lemma 3.4. Therefore
we can cover the interval [sat(n, P5) + 6, ex(n, P5) + 6] which is exactly the interval [sat(n, P5) + 6, ex(n+ 4, P5)]. In order
to finish the argument that we can determine all integers between sat(n+4, P5) and ex(n+4, P5), we also need to deal with
the subinterval [sat(n+4, P5), sat(n, P5)+5], which is fortunately covered by Lemma 3.5 since sat(n, P5)+5 ≤ (n+4)−1
for any integer n ≥ 9. �

4. Edge spectra of P6-saturated graphs

If G is a P6-saturated graph with order less than 6, then Gmust be a complete graph. Furthermore, the order of the union
of any two components of G must be at least 6. Let Bn denote the book graph, the union of n triangles sharing one edge. A
θ-graph is the union of three internally disjoint (simple) paths that have the same two distinct end vertices. As we did for
the case of P5-saturated graph, we shall pay attention to each connected component of G.

Lemma 4.1. Let H be a (2)-connected P6-saturated graph of order at least (6). Then H must be a book.

Proof. Let C be the longest circuit in H . The length of C must be less than 5 since otherwise P6 would be found in a subgraph
obtained from C and any other edge touching it. On the other hand, the length of C cannot be less than 4 since H is
2-connected and every vertex outside of the circuit C is connected to C by two edge-disjoint paths. Therefore C is a circuit of
length 4 and we define C = uxvy with e = uv ∉ E(H) the missing edge in H , since otherwise this K4 plus any other vertex
would contain a larger circuit in H .
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Hv Hv

(a) Case 1: |Hv | = 4. (b) Case 2: |Hv | ≥ 5.

Fig. 4. The local structure of Hv .

B4 F4 T4 T4' T2,2,2

Fig. 5. All possible structures for connected P6-saturated graphs.

Considering the fact that every edge in H must have an endpoint in C , then the vertex set HC = H − C is an independent
set. Take w ∈ HC ; then w is adjacent to at least two vertices in C from the fact that H is 2-connected, and w cannot be
connected to two consecutive vertices in C since otherwise we can find a circuit larger than C . Thus w is connected to either
u and v or x and y. Since we need to avoid the appearance of P6, all vertices from HC must be connected to either u and v or
x and y.

C cannot be an induced 4-circuit since no matter how we connect HC to C , we can add a new edge—either e or f—back
to H . Thus f = xy ∈ E(H), and all vertices in HC must connect to x and y. Therefore the resulting graph is a book graph with
common edge f = xy. �

Lemma 4.2. If H is a connected P6-saturated graph with cut vertices, then each block of H must be a clique. Furthermore, if H1
and H2 are two blocks in H, then |V (H1)| + |V (H2)| ≤ 6.

Proof. The result is trivial if H is a tree. Let v be the cut vertex and Hv be one of nontrivial blocks containing v in H . If
|Hv| = 3, then Hv is complete.

Let |Hv| = 4; it contains a Hamilton circuit since Hv is 2-connected. Then Hv must be a clique if it is a leaf-block. Hence
we may suppose now that Hv is not a leaf-block. And every pair of cut vertices contained in Hv are not joined by a Hamilton
path P4 of Hv for otherwise, H has a P6. Therefore, Hv has precisely two cut vertices u and v (see Fig. 4(a)) which are not next
to each other along the 4-cycle of Hv . It is also clear that Hv is not a 4-cycle, for otherwise, H + uv does not have a P6 since
H does not. So, Hv = K4 − e (see Fig. 4(a)). Now we may add a new edge e′ joining x ∈ N(v) − V (Hv) and u (see Fig. 4(a))
into H . But H + e′ does not have P6 since H does not. Therefore Hv must be a clique.

Nowwemay assume that |Hv| ≥ 5. Following the same arguments aswere used to prove Lemma4.1 (but not the corollary
of it), we obtain that the structure of Hv is a book with common edge e. If v ∈ e, then all edges connecting neighbors of v not
in Hv to u can be added to H . In the resulting graph, v is not a cut vertex any more. If v ∉ e, then H has the above structure
(see Fig. 4(b)) and contains P6 as a subgraph, a contradiction. �

According to the above lemmas, any connected P6-saturated graph with order at least 6 is either a book or one of the
following types, where Bn is the book with n triangles sharing one common edge, Fn is obtained from K4 by gluing to the
center of star Sn, Tn is the union of n triangles obtained by sharing one common vertex and T ′

n is obtained from Tn by adding
one more edge; Ti,j,k is a rooted three-level tree.

Let G be a P6-saturated graph (Fig. 5). Denote by a, b, c, α, β1, β2, γ , δ the numbers of components isomorphic to the
various structures K3, K4, K5, Fi, Tj, T ′

j′ , trees and books in G for the remainder of this section. For any graph G, we denote by
r(G) = |E(G)| − |V (G)| the rank of G. Thus r(K4) = r(Fi) = 2, r(K5) = 5.

Lemma 4.3. Let m = 2n − 4 and n ≥ 10 be positive integers. There exists an (n,m) graph in SAT (n, P6) if and only if n ≡

1, 3 (mod 5).

Proof. Let n ≡ 1 (mod 5) and m = 2n − 4. We can construct an (n,m) graph G = F2 ∪ αK5, where α = (n − 6)/5. Then
|V (G)| = 5α + 6 and |E(G)| = 10α + 8 = 2n − 4. If n ≡ 3 (mod 5), we build an (n,m) graph G = 2K4 ∪ αK5, where
α = (n − 8)/5. Then |V (G)| = 5α + 8 and |E(G)| = 10α + 12 = 2n − 4.

Next we shall prove by contradiction that there is no (n,m) graph in SAT (n, P6) with m = 2n − 4 if n ≢ 1, 3 (mod 5).
Suppose G is such a graph with components H1,H2, . . . ,Hl and h1 ≤ h2 ≤ · · · ≤ hl, where hi = |Hi|. If h1 = 1, then each
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component Hi would be K5 for every i ≠ 1. Therefore we have n = 1 (mod 5), a contradiction. If c1 = 2, the remaining
components of Gwould be either K4, K5, Fi or a book Bj. Then we have

n = 2 + 4b + 5c +

α
i=1

|V (Fi)| +

δ
j=1

|V (Bj)|

and

m = 1 + 6b + 10c +

α
i=1

(|V (Fi)| + 2) +

δ
j=1

(2|V (Bj)| − 3),

where |V (Fi)|, |V (Bj)| ≥ 6. Hence 4 = 2n − m = 3 + 2b +
α

i=1(|V (Fi)| − 2) + 3δ. Simplifying this we have

2b +

α
i=1

(|V (Fi)| − 2) + 3δ = 1.

It is easy to see that there is no integer solution to this equation.
So far we may suppose that h1 ≥ 3, and the remaining components of G are K3, K4, K5, Fi, Tj, T ′

j′ , trees T
(k) and books Bl.

By counting the number of vertices and edges of each component, we obtain

n = 3a + 4b + 5c +

α
i=1

|V (Fi)| +

β1
j=1

|V (Tj)| +

β2
j′=1

|V (T ′

j′)| +

γ
k=1

|V (T (k))| +

δ
l=1

|V (Bl)|

and

m = 3a + 6b + 10c +

α
i=1

(|V (Fi)| + 2) +

β1
j=1

3(|V (Tj)| − 1)
2

+

β2
j′=1


3|V (T ′

j′)|

2
− 2



+

γ
k=1

(|V (T (k))| − 1) +

δ
l=1

(2|V (Bl)| − 3),

where |V (Fi)|, |V (Tj)|, |V (T ′

j′)|, |V (Bl)| ≥ 6 and |V (T (k))| ≥ 10. Then we have

4 = 2n − m = 3a + 2b +

α
i=1

(|V (Fi)| − 2) +

β1
j=1

|V (Tj)| + 3
2

+

β2
j′=1


|V (T ′

j′)|

2
+ 2


+

γ
k=1

(|V (T (k))| + 1) + 3δ

which implies that β1 = β2 = γ = 0, and α ≤ 1. Plugging into the above equation we obtain 4 = 2b + 3(a + δ) +

α(|V (F)| − 2). The integer solution to this equation is either α = 1, |V (F)| = 6, a = b = δ = 0 or b = 2, a = δ = α = 0.
The first case implies that G is F2 with six vertices and eight edges, a contradiction. For the latter case, G is the union of two
K4’s and some K5’s, implying that n = 8 + 5c , contradicting the assumption that n ≢ 1, 3 (mod 5). �

By a similar argument we have the following lemma.

Lemma 4.4. If n is an integer and divisible by (5), then there is no (n,m) graph in SAT (n, P6) with m = 2n− 2 or m = 2n− 1.
Proof. We prove this by contradiction. Suppose G is such an (n,m) graph in SAT (n, P6) with 2n − m ∈ {1, 2}. Then h1 ≥ 2.
If h1 = 2, then 2n − m = 3 + 2b +

α
i=1(|V (Fi)| − 2) + 3β ≥ 3, a contradiction. Hence we may assume that h1 ≥ 3.

Arguing as we did in the previous lemma we have

2n − m = 3a + 2b +

α
i=1

(|V (Fi)| − 2) +

β1
j=1

|V (Tj)| + 3
2

+

β2
j′=1


|V (T ′

j′)|

2
+ 2


+

γ
k=1

(|V (T (k))| + 1) + 3δ.

The constraint 2n−m ∈ {1, 2} implies that b = 1, a = α = β1 = β2 = γ = δ = 0 and hence G is the union of K4 and some
K ′

5s. Therefore we have n = 4 + 5c , contradicting the fact that 5|n. �

Lemma 4.5. Let n be an integer that is at least (15); then there is a P6-saturated (n,m) graph for all ⌈ 9n
10⌉ ≤ m ≤ n + 5.

Proof. For those values ofm in [n, n+5], we can construct P6-saturated graphs as follows: T ′

2∪T2,2,n−14, K2∪Fn−6, Fn−4, K2∪

K4 ∪ Fn−10, K4 ∪ Fn−8, B4 ∪ Fn−10.
Let n = 10k + i, where i = 0, 1, . . . , 9. We can construct an (n,m) graph in SAT (n, P6) as follows: G0 = (k −

1)T2,2,2 ∪ T2,2,2+i, and then m = |E(G)| = 9(k − 1) + 9 + i = 9k + i = ⌈
9n
10⌉. Next we shall define an operation as

follows: Ta,b,c + Tx,y,z ⇒ Tx,y,z+a+b+c+4. Under this operation we build a new P6-saturated graph Tx,y,z+a+b+c+4 from a given
P6-saturated graph Ta,b,c ∪ Tx,y,z with one more edge. Continuing this process starting from G0, we can end this process with
T2,2,n−8, which has n − 1 edges. Hence we find P6-saturated graphs withm edges for ⌈

9n
10⌉ ≤ m ≤ n − 1. �
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Combining Lemma 4.1 through 4.5 we shall get the next main theorem concerning the edge spectrum of P6. But this time
we jump five steps at each induction process stage.

Theorem 4.1. Let n ≥ 10 be an integer. There is a P6-saturated (n,m) graph with (n,m) ≠ (11, 14) if and only if m is in the
following interval:

2n-22n-4 2n-1
n=0 (mod 5)

n=3 (mod 5)

n=2 (mod 5)

n=1 (mod 5)

n=4 (mod 5)

sat(n, P6)

2n-4

2n-4

n
ex(n, P6)

where the triangle ‘‘△’’ means the existence of a P6-saturated (n, n) graph only for n ≥ 15, and a blue dot stands for a missing
value.

Proof. The proof is by induction on n based on the following table, where A = sat(n, P6) and B = ex(n, P6). The initial
results for 10 ≤ n ≤ 14 are listed in the table. One exception in this table is n = 11,m = 14. There is no such kinds of
P6-saturated graphs, but for the next induction set we do have a (16, 24)-graph 4K4, which is a P6-saturated graph. For the
base case of the induction process, it is easy to check the graph listed in the table, while for those not listed in the table we
can count all possible combinations of basic structures of P6-saturated graphs for the corresponding (n,m)-values.

By the induction hypothesis, suppose we have the result for n ≤ 14. By adding a complete graph K5, we may get some
partial results for n + 5. For the missing values on the interval [A, B], we shall refer to Lemma 4.3 up to Lemma 4.5. So far
we have covered the interval [sat(n, P6) + 10, B] since ex(n, P6) + 10 = B. The remaining interval [A, sat(n, P6) + 9] will
be covered by Lemma 4.6 since sat(n, P6) + 9 ≤ (n + 5) + 5 = n + 10 for any integer n.

n [AB] SAT (n, P6) n [A, B] SAT (n, P6)

10 [9, 20]

9: T2,2,2

11 [10, 20]

10: T2,2,3
10: ∅ 11: ∅
11: K2 ∪ F4 12: K2 ∪ F5
12: F6 13: F7
13: T ′

4 14: ∅
14: K2 ∪ B6 15: K3 ∪ 2K4

15: K4 ∪ B4 16: 2K3 ∪ K5

16: ∅ 17: T ′

2 ∪ K5

17: B8 18: K5 ∪ F2
18–19: ∅ 19: B9

20: 2K5 20: 2K5 ∪ K1

12 [11, 21]

11: T2,3,3

13 [12, 23]

12: T3,3,3
12: 4K3 13: ∅
13: F6 ∪ K2 14: K2 ∪ F7
14: F8 15: F9
15: F2 ∪ K4 ∪ K2 16: F3 ∪ K4 ∪ K2

16: K4 ∪ F4 17: K4 ∪ F5
17: F2 ∪ B4 18: T6
18: K2 ∪ B8 19: F2 ∪ B5

19: K3 ∪ K4 ∪ K5 20: K2 ∪ B9

20: ∅ 21: K4 ∪ B7

21: 2K5 ∪ K2 22: 2K4 ∪ K5

23: K3 ∪ 2K5

14 [13, 19]

13: T3,3,4

14 [20, 26]

20: F3 ∪ B5

14: ∅ 21: F5 ∪ K5

15: K2 ∪ F8 22: K2 ∪ B10

16: F10 23: K4 ∪ B8

17: T ′

2 ∪ F4 24: ∅
18: K3 ∪ T5 25: B12

19: T ′

6 26: 2K5 ∪ K4

�



R.J. Gould et al. / Discrete Mathematics 312 (2012) 2682–2689 2689

References

[1] Kinnari P. Amin, The Edge Spectrum of Kt -Saturated Graphs, Ph.D. Thesis, Emory University, August, 2010.
[2] C. Barefoot, K. Casey, D. Fisher, K. Fraughnaugh, Size in maximal triangle-free graphs and minimal graphs of diameter 2, Dis. Math. 138 (1995) 93–99.
[3] G. Chartand, L. Lesniak, Graphs and Digraphs, third ed., Chapman and Hall, 1996.
[4] P. Erdős, A. Hajnal, J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964) 1107–1110.
[5] R.J. Faudree, R.H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory, Ser. B 19 (1975) 150–160.
[6] L. Kászonyi, Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (2) (1986) 203–210.
[7] Oleg Pikhurko, Results and open problems on minimum saturated hypergraphs, Ars. Combin. 72 (2004) 111–127.
[8] Z. Shao, X. Xu, X. Shi, L. Pan, Some three-color Ramsey numbers, European J. Combin. 30 (2009) 396–403.
[9] Paul Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941) 436–452.


	The edge spectrum of the saturation number for small paths
	Introduction and notation
	Known results
	Edge spectra of  P5 -saturated graphs
	Edge spectra of  P6 -saturated graphs
	References


