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Abstract. For a fixed (multi)graph H , a graph G is H-linked if any injection
f : V (H) → V (G) can be extended to an H-subdivision in G. The notion of an
H-linked graph encompasses several familiar graph classes, including k-linked, k-
ordered and k-connected graphs. In this paper, we give two sharp Ore-type degree
sum conditions that assure a graph G is H-linked for arbitrary H . These results ex-
tend and refine several previous results on H-linked, k-linked and k-ordered graphs.
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All graphs in this paper are finite. For notation not defined here we refer the
reader to [1]. If X ⊆ V (G) is a vertex set, we will often just write X for the induced
subgraph G[X] if the context is clear. Let δ(G) and ∆(G) denote the minimum and
maximum degree of G, respectively, and let σ2(G) denote the minimum degree sum of
nonadjacent vertices in G. Throughout the paper, we will often refer to σ2 conditions
as Ore-type conditions in light of Ore’s classical theorem on hamiltonian graphs. We
will also let ni(G) be the number of vertices of degree i in G.

Given a vertex v and set A ⊆ V (G), we let dA(v) denote the number of neighbors
of v in the set A. For A, B ⊆ V (G) we let δB(A) and ∆B(A) denote the minimum
and maximum respectively of dB(v) taken over all vertices in A. We will let EG(A, B)
denote the number of edges in G with one endpoint in A and the other in B, and
let eG(A, B) = |EG(A, B)|. We will frequently write E(A, B) and e(A, B) when the
context is clear.

Given an integer-valued graph parameter p and a graph property P, the p-threshold
for P is the minimum k = k(n) such that any graph G of order n with p(G) ≥ k
has property P. We will frequently consider p-thresholds restricted to specific graph
classes, such as sufficiently large graphs, or graphs with a prescribed number of edges.

A graph G is k-linked if for any ordered subset of 2k vertices S = {s1, t1, . . . , sk, tk}
there exist disjoint paths P1, . . . , Pk such that for each i, Pi is an si− ti path. We will
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2 Ore Conditions for H-Linked Graphs

refer to this collection of paths as an S-linkage in G. We also say that G is k-ordered
if for any list of k vertices v1, . . . , vk in G, there exists a cycle that visits these vertices
in the given order.

A subdivision of a (multi)graph H , or an H-subdivision is any simple graph obtained
by replacing the edges of H with internally disjoint paths. The vertices originally in
H are called the ground vertices or the ground set of the subdivision. For a fixed graph
H , a graph G is H-linked if any injection f : V (H) → V (G) can be extended to an
H-subdivision in G with ground vertices prescribed by f . We refer to the injection f
as an H-linkage problem (in G). The notion of an H-linked graph generalizes those
of k-linked, k-ordered and k-connected graphs, as G is kK2-linked if and only if G is
k-linked, G is Ck-linked if and only if G is k-ordered and G is k-connected if and only
if G is K1,k-linked.

1. Degree Conditions for H-Linked Graphs

Kawarabayashi, Kostochka and Yu [8] determined sharp minimum degree and de-
gree sum conditions for a graph G of order at least 2k to be k-linked.

Theorem 1. Let G be a graph on n ≥ 2k vertices. If

δ(G) ≥











n+2k−3
2

, if n ≥ 4k − 1
n+5k−5

3
, if 3k ≤ n ≤ 4k − 2

n − 1, if 2k ≤ n ≤ 3k − 1

or

σ2(G) ≥











n + 2k − 3, if n ≥ 4k − 1
2(n+5k)

3
− 3, if 3k ≤ n ≤ 4k − 2

2n − 3, if 2k ≤ n ≤ 3k − 1

then G is k-linked. These bounds are best possible.

For sufficiently large graphs, the relevant portion of these conditions were obtained
independently in [6]. Sharp minimum degree and degree sum conditions for k-ordered
graphs were determined in [2] and [9], respectively.

Theorem 2. Let G be a graph of order n and k ≥ 2 be an integer. If

(a) n ≥ 11k − 3 and δ(G) ≥
⌈

n
2

⌉

+
⌊

k
2

⌋

− 1, or

(b) n ≥ 53k2 and σ2(G) ≥ n +
⌈

3k−9
2

⌉

,

then G is k-ordered.

Turning our attention the the broader class of H-linked graphs, minimum degree
conditions that assure a graph G is H-linked for arbitrary connected H were first
given (independently) in [3] and [10]. These were subsequently strengthened in [5] to
include arbitrary multigraphs H , thereby extending Theorem 1. Similar conditions
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concerned with finding (strong) H-immersions in a graph G appear in [4]. In order
to discuss these results, we must first introduce a useful parameter.

For a (multi-)graph H , let

b(H) = max
A∪B∪C=V (H)

e(A,B)≥1

e(A, B) + |C|

where we take this maximum over all partitions A, B, C of V (H). As every graph
G has a bipartite subgraph with at least half of the edges in G, b(H) ≥ |E(H)|/2.
When H is connected, it is straightforward to see that we may choose C to be empty
in any optimal partition, so that b(H) is equal to the maximum number of edges in a
bipartite subgraph of H . As was noted in [4] and [5], when H is disconnected, b(H)
depends not only on the maximum size of a bipartite subgraph of H , but also on the
number of components of H without even cycles.

The following result of Gould, Kostochka and Yu [5] gives the δ-threshold for H-
linkedness.

Theorem 3. Let H be a (multi-)graph with c(H) components that do not contain
even cycles and G be a graph of order n ≥ 9.5(|E(H)| + c(H) + 1). If

δ(G) ≥ 1
2
(n + b(H) − 2),

then G is H-linked. This result is sharp.

Kostochka and Yu [11] gave Ore-type conditions, dependent on k, implying that a
graph G is H-linked for every graph H with k edges.

Theorem 4. Let G be a graph of order n and let H be a simple graph with k edges
and minimum degree at least two. If

σ2(G) ≥























⌈

n + 3k−9
2

⌉

n > 2.5k − 5.5

⌈

n + 3k−8
2

⌉

2k ≤ n ≤ 2.5k − 5.5

2n − 3 k ≤ n ≤ 2.5k − 1,

then G is H-linked.

In light of Theorem 2, one interesting consequence of Theorem 4 is that amongst
those graphs H with k edges, Ck has the largest σ2-threshold for H-linkedness when
n is sufficiently large.

The goal of this paper is to refine Theorem 4 by giving sharp Ore-type conditions
that assure a graph G is H-linked for an arbitrarily chosen H . We note here that the
σ2-threshold for H-linkedness is not, in general, twice the minimum degree given in
Theorem 3, as Theorem 2 demonstrates that this is not the case for H = Ck when n
is sufficiently large. Our first result demonstrates that twice the minimum degree in
Theorem 3 does suffice if we add only a mild minimum degree condition to G.
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Theorem 5. Let H be a multigraph and G be a graph with |G| ≥ 20|E(H)|+ n0(H).
If

δ(G) ≥ 4|E(H)| + n0(H), and

σ2(G) ≥ |G| + b(H) − 2,

then G is H-linked. This result is sharp.

We also utilize Theorem 5 to give a sharp σ2 bound that, without any additional
minimum degree condition, assures a graph G is H-linked for any simple graph H .
Let

a(H) = max
A∪B=V (H)

(e(A, B) + |B| − ∆B(A)) .

Theorem 6. Let H be a simple graph and G be a graph of order n > 20|E(H)|. If

σ2(G) ≥ n + a(H) − 2,

then G is H-linked. This result is sharp.

Observe that for arbitrary H , a(H) ≥ b(H). To see this, suppose that V (H) =
A ∪ B ∪ C with e(A, B) + |C| = b(H). Then, if we let B∗ = B ∪ C, it follows that

a(H) ≥ e(A, B∗) + |B∗| − ∆B∗(A) ≥ e(A, B) + |C| = b(H).

There are a number of graphs H , including Ck (k ≥ 5), for which a(H) > b(H).
As such, Theorem 6 demonstrates that there are many choices of H for which the
σ2-threshold for H-linkedness is more than twice the δ-threshold.

2. Preliminary Lemmas

A version of the following Lemma originally appears in [12], pertaining to directed
graphs. The proof for undirected graphs is analogous and, hence, omitted.

Lemma 7. Let G be a graph, k ≥ 1 and v ∈ V (G) with d(v) ≥ 2k − 1. If G − v is
k-linked, then G is k-linked.

Thomas and Wollan [14] used the following to prove that every 10m-connected
graph is m-linked, which represents the current best bound on connectivity sufficient
to assure k-linkedness.

Theorem 8. Let k ≥ 2 and G be a 2k-connected graph. If |E(G)| ≥ 5k|G|, then G
is k-linked.

Corollary 9. Let k ≥ 2 and G be a 2k-connected graph of order n. If σ2(G) ≥ n and
n ≥ 20k, then G is k-linked.

Proof. This follows from the observation that any graph G of order n with σ2(G) ≥ n

must have at least n2

4
edges. Indeed, if δ = δ(G) ≥ n

2
then there is nothing to prove
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so assume otherwise and let v be a vertex of G with d(v) = δ. Counting the degrees
of the neighbors and non-neighbors of v respectively, we have that

|E(G)| ≥
1

2
(δ(δ + 1) + (n − δ − 1)(n − δ))

which is greater than n2

4
for δ < n

2
. �

We close with the following fact and lemma, both of which are straightforward to
prove and will be useful as we proceed.

Fact 10. Let G be a graph and H a (multi-)graph with |E(H)| = m and n0(H) = 0.
If G is m-linked, then G is H-linked.

Lemma 11. Let H be a multigraph, and let G be an edge maximal non-H-linked
graph. Then for every m ≥ |E(H)| and X ⊆ V (G) with |X| ≥ 2m:

G[X] is m-linked ⇐⇒ G[X] is complete.

Proof. Assume that X is as given, that there are nonadjacent x and y in X and that
f is an H-linkage problem in G. By maximality, G + xy is H-linked, so let F be a
solution to the H-linkage problem f in G+xy. Let Pi be the path in F corresponding
to the edge ei in H for 1 ≤ i ≤ |E(G)| and when traversing P , let xi and yi be the
extreme (first and last) vertices in V (P )∩X (note that xi and yi may not be distinct).
For each i, delete all vertices of Pi that lie strictly between xi and yi to create F ′, a
partial solution to the H-linkage problem f in G. As G[X] is m-linked and xy 6∈ F ′,
we can extend F ′ to an H-linkage in G, contradicting the assumption that G is not
H-linked. �

3. Proofs of Theorems 5 and 6

We are now ready to prove our main results.

Proof of Theorem 5. Sharpness is established by the following example, which is iden-
tical to the sharpness example for Theorem 3. Let A∪B ∪C be a partition of V (H)
such that e(A, B) + |C| = b(H). Create G by first adding e(A, B) − 1 vertices to C
to obtain C∗, and then adding vertices to A and B to create sets A∗ and B∗, each of

size n−|C∗|
2

. The edges of G are all possible edges in (A∗ ∪ C∗) and (B∗ ∪ C∗). It is
straightforward to see that G is not H-linked, as there is not a sufficient number of
vertices in C∗ to create paths representing the edges in E(A, B).

Let n = |G| and m = |E(H)|. Note that the statement is trivial for m ≤ 1, so we
may also assume that m ≥ 2. For the sake of contradiction, we assume that there is
no H-linkage in G, and furthermore that Theorem 5 holds for every proper subgraph
H ′ ( H . Further, assume that G is edge maximal without an H-linkage.

If v ∈ V (H) is isolated in H , then solving the H-linkage problem in G is equivalent
to solving the (H−v)-linkage problem f |V (H)−{v} in G−v. As G−v satisfies all of the
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conditions in Theorem 5 (note that b(H − v) = b(H)− 1), this yields a contradiction,
so H does not contain any isolated vertices.

If G is 2m-connected, we are done by Corollary 9, so we may assume that there is
a minimal cut set Z in G with |Z| ≤ 2m− 1. The degree conditions on G imply that
G − Z has exactly two components, call them X and Y and we assume without loss
of generality that |X| ≤ |Y |. Let x ∈ X and y ∈ Y , then

n + b(H) − 2 ≤ d(x) + d(y) ≤ |X| + |Y | + 2|Z| − 2 ≤ n + |Z| − 2,

so
δX(X) + δY (Y ) ≥ |X| + |Y | − |Z| + b(H) − 2.

Therefore,

δX(X) ≥ max{|X| − |Z| + b(H) − 1, δ(G) − |Z|} ≥ |X| − 3
2
m.

We now wish to show that both X and Y are m-linked. If |X| ≥ 5m, then

δX(X) ≥ |X|
2

+ m, so X is m-linked by Theorem 1. Suppose then that |X| < 5m,
so 2(|X| + |Z|) < |G| and X is complete by the degree sum condition. Since |X| ≥
δ(G) + 1 − |Z| ≥ 2m + 2, the fact that X is complete implies that X is m-linked.
Analogously, we also conclude that Y is m-linked.

Let z ∈ Z, and suppose there are vertices x ∈ X and y ∈ Y such that xz, yz /∈
E(G). Then

n + |Z| + 2d(z) ≥ d(x) + 2d(z) + d(y) ≥ 2n + m − 4,

so
d(z) ≥ 1

2
(n + m − |Z| − 4) ≥ 1

2
(n − m − 4) > 6m.

Thus, for every z ∈ Z, we have dX(z) ≥ 2m or dY (z) ≥ 2m. Let V (G) = A ∪ B be a
partition with

X ⊆ A ⊆{v ∈ V (G) : dX(v) ≥ 2m − 1}, and

Y ⊆ B ⊆{v ∈ V (G) : dY (v) ≥ 2m − 1}.

Then, A and B are m-linked by Lemma 7, and therefore complete by Lemma 11. Let
AH , BH be the partition of V (H) induced by this partition of V (G).

Choose ab ∈ E(H), let H ′ = H −ab, and let F ⊆ G be a solution to the H ′-linkage
problem. As A and B are complete, we may choose F such that every path in F
corresponding to an edge in E(H ′) contains at most two vertices in A and at most
two vertices in B. In particular, as n0(H) = 0, this implies that |F ∩ A| ≤ 2m
and |F ∩ B| ≤ 2m, so A \ F 6= ∅ and B \ F 6= ∅. We conclude that a ∈ A and
b ∈ B, and in particular, E(H) = EH(A, B). We also have that |EF (A, B)| =
|EH′(A, B)| = |E(H)| − 1. There are three types of paths in F corresponding to
edges yz ∈ EH′(A, B):

1: yuvz with u ∈ A, v ∈ B,
2: yuz with u ∈ A ∪ B, and
3: yz.
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Choose F such that the number of type 1 paths is maximized.
Let w ∈ A \ F and x ∈ B \ F . If wx ∈ E(G), then we can extend F to a solution

of the H-linkage problem using the path awxb, so we conclude that wx /∈ E(G).
Similarly, if there exists an c ∈ (N(w) ∩N(x)) \ F , we can extend F to a solution of
the H-linkage problem using awcxb, so N(x) ∩ N(w) ⊆ F .

If yuvz is a path of type 1 in F , then we claim that

N(w) ∩ N(x) ∩ {y, u, v, z} ( {u, v}.

Indeed, if wz ∈ E(G), then we can replace yuvz by ywz and use the path auvb to
complete an H-linkage. If wv, xu ∈ E(G), then we can replace yuvz with yuxz and
use the path awvb to complete an H-linkage. The case where xy ∈ E(G) is handled
similarly.

Now if yuz is a path of type 2 in F , then u /∈ N(w) ∩N(x), as otherwise we could
replace yuz by yuxz or ywuz and increase the number of type 1 paths in F .

Let F1 be the edges in H ′ corresponding to type 1 paths in F , and F2 := E(H ′)\F1.
Furthermore, let H1 ⊆ V (H) be the vertices in H incident to F1, and let H2 :=
V (H) \ H1. Then

n − 2 + b(H) ≤ d(w) + d(x) ≤ n − 2 + |F1| + |H2 ∩ N(w) ∩ N(x)|. (1)

If H2 = ∅, observe that |F1| ≤ |EH(A, B)| − 1 < b(H), so (1) gives a contradiction.
Also, if F1 = ∅, note that b(H) ≥ |H|−1 = |H2|−1, and thus by (1), N(w)∩N(x)

may miss at most one vertex in V (H). Therefore, a ∈ N(x) or b ∈ N(w). But then,
we can complete the H-linkage via axb or awb, a contradiction.

Finally, suppose that F1 6= ∅ and H2 6= ∅, so that b(H) ≥ |F1|+ |H2|, with the lower
bound realized by a partition of H with all vertices of H2 in C, and the remaining
vertices partitioned according to their membership in AH and BH . Therefore by (1),
H2 ⊆ N(w) ∩ N(x) for every pair of vertices w ∈ A \ V (F ) and x ∈ B \ V (F ). If
H contains no edge between two vertices in H2, then |H2| ≤ |F2|, and |F1| + |F2| =
|EH(A, B)| − 1 < b(H), so (1) gives a contradiction. Thus, there are two vertices
y ∈ H2 ∩ A and z ∈ H2 ∩ B. As n ≥ 20m, we may assume by symmetry that
|A| ≥ 10m, and therefore since z is in N(w) ∩ N(x) for all w ∈ A \ V (F ) and
x ∈ B \ V (F ), that dA(z) ≥ 8m. By Lemma 11, z is connected to all vertices in
V (G). But now, there is an (H − z)-linkage in G − z by the minimality of H , and
this linkage can trivially be expanded to an H-linkage in G. �

Proof of Theorem 6. Sharpness follows from the following example. Starting from
a partition A ∪ B of V (H) with (e(A, B) + |B| − ∆B(A)) = a(H), add a set C of
e(A, B)−1 vertices. Blow up B to B∗ by adding n−|A|− |B|− |C| vertices to B and
then add all edges in A ∪ C, B∗ ∪ C, and all edges between A and B except for the
edges in H . This graph is not H-linked, as there is not a sufficient number of vertices
in C to create paths representing the edges in E(A, B), and has σ2 = n + a(H) − 3.

As in the proof of Theorem 5, assume that H is a minimal counterexample to the
statement, and furthermore that G is edge maximal without creating an H-linkage.
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Let m = |E(H)| and n = |G|. Again, we have n0(H) = 0 as isolated vertices in H
contribute 2 to |G| + a(H) and at most 2 to σ2(G).

If δ(G) ≥ 4m, we are done by Theorem 5 (as b(H) ≤ a(H)), so there is a vertex v
with d(v) < 4m. Let Y := V (G) \ N [v]. Then |Y | > 16m and, since for any y ∈ Y
we have that d(v) + d(y) ≥ n + a(H) − 2, it follows that

δY (Y ) > |Y | − 4m > 1
2
|Y | + m.

Therefore Y is m-linked by Theorem 1. Let B ⊇ Y be maximal such that B is m-
linked, and A := V (G) \ B ⊆ N [v]. If A = ∅ we are done, so assume that A 6= ∅. By
Lemma 7 no vertex in A has 2m neighbors in B, so since |A| ≤ |N [v]| ≤ 4m, we have
that ∆G(A) < 6m. Therefore A is complete by the degree sum condition. We now
continue in a manner similar to the proof of Theorem 5.

Let AH∪BH be the partition of V (H) induced by A and B. Note that B is complete
by Lemma 11. If there is an edge e ∈ E(H) ∩ E(G), we can extend any solution of
the (H − e)-linkage problem trivially to a solution of the H-linkage problem, so we
conclude that E(H) ∩ E(G) = ∅, and in particular, E(H) = EH(A, B).

Let a ∈ AH maximize |EH(a, B)|, and choose ab ∈ E(H). For H ′ = H − ab,
let F ⊆ G be a solution of the H ′-linkage problem of minimum order, so that in
particular |EF (A, B)| = |E(H ′)|. Further assume that |F ∩ A| is minimized.

Next, choose w ∈ B \ F . If aw ∈ E(G), then we can extend F to a solution of the
H-linkage problem using the path awb, so we conclude that aw /∈ E(G). Similarly, if
there exists an x ∈ (N(a)∩N(w))\F , we can extend F to a solution of the H-linkage
problem using axwb, so N(a) ∩ N(w) ⊆ F .

Now we consider paths P ⊂ F corresponding to edges in H ′ with types identical
to those described in the proof of Theorem 5. If P = a′uvb′ is of type 1, then
a′w, uw /∈ E(G) by the minimality of |F ∩ A|. Similarly, if P = a′ub′ is of type
2 with u ∈ A, then a′w, uw /∈ E(G). If P = a′vb′ is of type 1 with v ∈ B, and
a′w, av ∈ E(G), then we can replace av by aw in F and complete the H-linkage via
avb.

Therefore, for every path P ⊂ F corresponding to an edge in H ′, we have

|(V (P ) ∩ N(a) ∩ N(w)) \ (BH \ NH(a))| ≤ 1.

But this yields a contradiction, as then

a(H) ≤ |N(a) ∩ N(w)| ≤ |EF (A, B)| + |BH \ NH(a)|

= |E(H)| − 1 + |BH | − ∆BH (AH) ≤ a(H) − 1.

�

We note here that Theorem 6 does not extend to arbitrary multigraphs H . To
see this, let k ≥ 6, r = 2(k − 1), and let H be the disjoint union of a star having
center c and leaves `1, . . . , `r with an edge uv of multiplicity k. As defined above,
a(H) = 3k − 1 (let B consist of u and all of the `i). However, consider the following
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example. Let A = {c, u, v} be a triangle and X be a clique of order n − 3 containing
disjoint subsets L, Xu and Xv of X with |Xv| = r, |Xu| = r − 1 and L = {`1, . . . , `r}.

Construct G from A and X by adding all edges from u to Xu ∪ L, v to Xv ∪ L
and c to Xu ∪ Xv and note that σ2(G) = n + (4k − 4) − 2 > n + a(H) − 2. If we let
the vertex labels in G define an H-linkage problem ρ, then we require at least one
vertex from Xu ∪ Xv to construct the r desired paths from c to L and at least two
vertices from Xu ∪ Xv to construct each of the remaining k − 1 paths from u to v.
This is a total of at least 2k− 4 additional vertices, which exceeds the 2k− 5 vertices
in Xu ∪ Xv. Hence G is not H-linked.

Theorems 5 and 6 also allow us to obtain a number of interesting results on k-linked
and k-ordered graphs as corollaries. In particular, we obtain the degree conditions for
sufficiently large k-linked, k-ordered and H-linked graphs found in Theorems 2, 3 and
4, respectively. In most cases, our bounds on |G| are reasonable, but slightly larger
than those in the original theorems due to the more general nature of our results.

Acknowledgement: The authors would like to thank the anonymous referees,
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