NEW ORE-TYPE CONDITIONS FOR H-LINKED GRAPHS

MICHAEL FERRARA¹, RONALD GOULD², MICHAEL JACOBSON³, FLORIAN PFENDER⁴, JEFFREY POWELL⁵, THOR WHALEN⁶

ABSTRACT. For a fixed (multi)graph H, a graph G is H-linked if any injection $f: V(H) \to V(G)$ can be extended to an H-subdivision in G. The notion of an H-linked graph encompasses several familiar graph classes, including k-linked, k-ordered and k-connected graphs. In this paper, we give two sharp Ore-type degree sum conditions that assure a graph G is H-linked for arbitrary H. These results extend and refine several previous results on H-linked, k-linked and k-ordered graphs. Keywords: H-linked graph, k-linked graph, k-ordered graph

All graphs in this paper are finite. For notation not defined here we refer the reader to [1]. If $X \subseteq V(G)$ is a vertex set, we will often just write X for the induced subgraph G[X] if the context is clear. Let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degree of G, respectively, and let $\sigma_2(G)$ denote the minimum degree sum of nonadjacent vertices in G. Throughout the paper, we will often refer to σ_2 conditions as *Ore-type* conditions in light of Ore's classical theorem on hamiltonian graphs. We

will also let $n_i(G)$ be the number of vertices of degree i in G. Given a vertex v and set $A \subseteq V(G)$, we let $d_A(v)$ denote the number of neighbors of v in the set A. For $A, B \subseteq V(G)$ we let $\delta_B(A)$ and $\Delta_B(A)$ denote the minimum and maximum respectively of $d_B(v)$ taken over all vertices in A. We will let $E_G(A, B)$ denote the number of edges in G with one endpoint in A and the other in B, and let $e_G(A, B) = |E_G(A, B)|$. We will frequently write E(A, B) and e(A, B) when the context is clear.

Given an integer-valued graph parameter p and a graph property \mathcal{P} , the *p*-threshold for \mathcal{P} is the minimum k = k(n) such that any graph G of order n with $p(G) \ge k$ has property \mathcal{P} . We will frequently consider *p*-thresholds restricted to specific graph classes, such as sufficiently large graphs, or graphs with a prescribed number of edges.

A graph G is k-linked if for any ordered subset of 2k vertices $S = \{s_1, t_1, \ldots, s_k, t_k\}$ there exist disjoint paths P_1, \ldots, P_k such that for each i, P_i is an $s_i - t_i$ path. We will

¹⁹⁹¹ Mathematics Subject Classification. 05C38, 05C83.

Key words and phrases. H-linked Graph, k-linked Graph, Degree Conditions.

¹University of Colorado Denver, Denver CO, michael.ferrara@ucdenver.edu

²Emory University, Atlanta GA, rg@mathcs.emory.edu

³University of Colorado Denver, Denver CO, michael.jacobson@ucdenver.edu

⁴Universität Rostock, Rostock, Germany, Florian.Pfender@uni-Rostock.de

⁵Samford University, Birmingham, AL, jspowel1@samford.edu

⁶Methodic Solutions, Inc., thorwhalen@gmail.com

refer to this collection of paths as an *S*-linkage in *G*. We also say that *G* is *k*-ordered if for any list of *k* vertices v_1, \ldots, v_k in *G*, there exists a cycle that visits these vertices in the given order.

A subdivision of a (multi)graph H, or an H-subdivision is any simple graph obtained by replacing the edges of H with internally disjoint paths. The vertices originally in H are called the ground vertices or the ground set of the subdivision. For a fixed graph H, a graph G is H-linked if any injection $f : V(H) \to V(G)$ can be extended to an H-subdivision in G with ground vertices prescribed by f. We refer to the injection fas an H-linkage problem (in G). The notion of an H-linked graph generalizes those of k-linked, k-ordered and k-connected graphs, as G is kK_2 -linked if and only if G is k-linked, G is C_k -linked if and only if G is k-ordered and G is k-connected if and only if G is $K_{1,k}$ -linked.

1. Degree Conditions for *H*-Linked Graphs

Kawarabayashi, Kostochka and Yu [8] determined sharp minimum degree and degree sum conditions for a graph G of order at least 2k to be k-linked.

Theorem 1. Let G be a graph on $n \ge 2k$ vertices. If

$$\delta(G) \ge \begin{cases} \frac{n+2k-3}{2}, & \text{if } n \ge 4k-1\\ \frac{n+5k-5}{3}, & \text{if } 3k \le n \le 4k-2\\ n-1, & \text{if } 2k \le n \le 3k-1 \end{cases}$$

or

$$\sigma_2(G) \ge \begin{cases} n+2k-3, & \text{if } n \ge 4k-1\\ \frac{2(n+5k)}{3}-3, & \text{if } 3k \le n \le 4k-2\\ 2n-3, & \text{if } 2k \le n \le 3k-1 \end{cases}$$

then G is k-linked. These bounds are best possible.

For sufficiently large graphs, the relevant portion of these conditions were obtained independently in [6]. Sharp minimum degree and degree sum conditions for k-ordered graphs were determined in [2] and [9], respectively.

Theorem 2. Let G be a graph of order n and $k \ge 2$ be an integer. If

(a)
$$n \ge 11k - 3$$
 and $\delta(G) \ge \left|\frac{n}{2}\right| + \left\lfloor\frac{k}{2}\right\rfloor - 1$, or
(b) $n \ge 53k^2$ and $\sigma_2(G) \ge n + \left\lceil\frac{3k-9}{2}\right\rceil$,
then G is k-ordered.

Turning our attention the the broader class of H-linked graphs, minimum degree conditions that assure a graph G is H-linked for arbitrary connected H were first given (independently) in [3] and [10]. These were subsequently strengthened in [5] to include arbitrary multigraphs H, thereby extending Theorem 1. Similar conditions concerned with finding (strong) H-immersions in a graph G appear in [4]. In order to discuss these results, we must first introduce a useful parameter.

For a (multi-)graph H, let

$$b(H) = \max_{\substack{A \cup B \cup C = V(H)\\e(A,B) > 1}} e(A,B) + |C|$$

where we take this maximum over all partitions A, B, C of V(H). As every graph G has a bipartite subgraph with at least half of the edges in $G, b(H) \ge |E(H)|/2$. When H is connected, it is straightforward to see that we may choose C to be empty in any optimal partition, so that b(H) is equal to the maximum number of edges in a bipartite subgraph of H. As was noted in [4] and [5], when H is disconnected, b(H)depends not only on the maximum size of a bipartite subgraph of H, but also on the number of components of H without even cycles.

The following result of Gould, Kostochka and Yu [5] gives the δ -threshold for *H*-linkedness.

Theorem 3. Let H be a (multi-)graph with c(H) components that do not contain even cycles and G be a graph of order $n \ge 9.5(|E(H)| + c(H) + 1)$. If

$$\delta(G) \ge \frac{1}{2}(n+b(H)-2),$$

then G is H-linked. This result is sharp.

Kostochka and Yu [11] gave Ore-type conditions, dependent on k, implying that a graph G is H-linked for *every* graph H with k edges.

Theorem 4. Let G be a graph of order n and let H be a simple graph with k edges and minimum degree at least two. If

$$\sigma_2(G) \ge \begin{cases} \left\lceil n + \frac{3k-9}{2} \right\rceil & n > 2.5k - 5.5 \\ \left\lceil n + \frac{3k-8}{2} \right\rceil & 2k \le n \le 2.5k - 5.5 \\ 2n - 3 & k \le n \le 2.5k - 1, \end{cases}$$

then G is H-linked.

In light of Theorem 2, one interesting consequence of Theorem 4 is that amongst those graphs H with k edges, C_k has the largest σ_2 -threshold for H-linkedness when n is sufficiently large.

The goal of this paper is to refine Theorem 4 by giving sharp Ore-type conditions that assure a graph G is H-linked for an arbitrarily chosen H. We note here that the σ_2 -threshold for H-linkedness is not, in general, twice the minimum degree given in Theorem 3, as Theorem 2 demonstrates that this is not the case for $H = C_k$ when n is sufficiently large. Our first result demonstrates that twice the minimum degree in Theorem 3 does suffice if we add only a mild minimum degree condition to G. **Theorem 5.** Let H be a multigraph and G be a graph with $|G| \ge 20|E(H)| + n_0(H)$. If

$$\delta(G) \ge 4|E(H)| + n_0(H), \text{ and}$$

 $\sigma_2(G) \ge |G| + b(H) - 2,$

then G is H-linked. This result is sharp.

We also utilize Theorem 5 to give a sharp σ_2 bound that, without any additional minimum degree condition, assures a graph G is H-linked for any simple graph H. Let

$$a(H) = \max_{A \cup B = V(H)} (e(A, B) + |B| - \Delta_B(A)).$$

Theorem 6. Let H be a simple graph and G be a graph of order n > 20|E(H)|. If

$$\sigma_2(G) \ge n + a(H) - 2,$$

then G is H-linked. This result is sharp.

Observe that for arbitrary H, $a(H) \ge b(H)$. To see this, suppose that $V(H) = A \cup B \cup C$ with e(A, B) + |C| = b(H). Then, if we let $B^* = B \cup C$, it follows that

 $a(H) \ge e(A, B^*) + |B^*| - \Delta_{B^*}(A) \ge e(A, B) + |C| = b(H).$

There are a number of graphs H, including C_k $(k \ge 5)$, for which a(H) > b(H). As such, Theorem 6 demonstrates that there are many choices of H for which the σ_2 -threshold for H-linkedness is more than twice the δ -threshold.

2. Preliminary Lemmas

A version of the following Lemma originally appears in [12], pertaining to directed graphs. The proof for undirected graphs is analogous and, hence, omitted.

Lemma 7. Let G be a graph, $k \ge 1$ and $v \in V(G)$ with $d(v) \ge 2k - 1$. If G - v is k-linked, then G is k-linked.

Thomas and Wollan [14] used the following to prove that every 10m-connected graph is m-linked, which represents the current best bound on connectivity sufficient to assure k-linkedness.

Theorem 8. Let $k \ge 2$ and G be a 2k-connected graph. If $|E(G)| \ge 5k|G|$, then G is k-linked.

Corollary 9. Let $k \ge 2$ and G be a 2k-connected graph of order n. If $\sigma_2(G) \ge n$ and $n \ge 20k$, then G is k-linked.

Proof. This follows from the observation that any graph G of order n with $\sigma_2(G) \ge n$ must have at least $\frac{n^2}{4}$ edges. Indeed, if $\delta = \delta(G) \ge \frac{n}{2}$ then there is nothing to prove

so assume otherwise and let v be a vertex of G with $d(v) = \delta$. Counting the degrees of the neighbors and non-neighbors of v respectively, we have that

$$|E(G)| \ge \frac{1}{2} \left(\delta(\delta+1) + (n-\delta-1)(n-\delta) \right)$$

which is greater than $\frac{n^2}{4}$ for $\delta < \frac{n}{2}$.

We close with the following fact and lemma, both of which are straightforward to prove and will be useful as we proceed.

Fact 10. Let G be a graph and H a (multi-)graph with |E(H)| = m and $n_0(H) = 0$. If G is m-linked, then G is H-linked.

Lemma 11. Let H be a multigraph, and let G be an edge maximal non-H-linked graph. Then for every $m \ge |E(H)|$ and $X \subseteq V(G)$ with $|X| \ge 2m$:

$$G[X]$$
 is m-linked $\iff G[X]$ is complete

Proof. Assume that X is as given, that there are nonadjacent x and y in X and that f is an H-linkage problem in G. By maximality, G + xy is H-linked, so let F be a solution to the H-linkage problem f in G + xy. Let P_i be the path in F corresponding to the edge e_i in H for $1 \le i \le |E(G)|$ and when traversing P, let x_i and y_i be the extreme (first and last) vertices in $V(P) \cap X$ (note that x_i and y_i may not be distinct). For each i, delete all vertices of P_i that lie strictly between x_i and y_i to create F', a partial solution to the H-linkage problem f in G. As G[X] is m-linked and $xy \notin F'$, we can extend F' to an H-linkage in G, contradicting the assumption that G is not H-linked.

3. Proofs of Theorems 5 and 6

We are now ready to prove our main results.

Proof of Theorem 5. Sharpness is established by the following example, which is identical to the sharpness example for Theorem 3. Let $A \cup B \cup C$ be a partition of V(H)such that e(A, B) + |C| = b(H). Create G by first adding e(A, B) - 1 vertices to C to obtain C^* , and then adding vertices to A and B to create sets A^* and B^* , each of size $\frac{n-|C^*|}{2}$. The edges of G are all possible edges in $(A^* \cup C^*)$ and $(B^* \cup C^*)$. It is straightforward to see that G is not H-linked, as there is not a sufficient number of vertices in C^* to create paths representing the edges in E(A, B).

Let n = |G| and m = |E(H)|. Note that the statement is trivial for $m \leq 1$, so we may also assume that $m \geq 2$. For the sake of contradiction, we assume that there is no *H*-linkage in *G*, and furthermore that Theorem 5 holds for every proper subgraph $H' \subsetneq H$. Further, assume that *G* is edge maximal without an *H*-linkage.

If $v \in V(H)$ is isolated in H, then solving the H-linkage problem in G is equivalent to solving the (H-v)-linkage problem $f|_{V(H)-\{v\}}$ in G-v. As G-v satisfies all of the

conditions in Theorem 5 (note that b(H-v) = b(H) - 1), this yields a contradiction, so H does not contain any isolated vertices.

If G is 2m-connected, we are done by Corollary 9, so we may assume that there is a minimal cut set Z in G with $|Z| \leq 2m - 1$. The degree conditions on G imply that G - Z has exactly two components, call them X and Y and we assume without loss of generality that $|X| \leq |Y|$. Let $x \in X$ and $y \in Y$, then

$$n + b(H) - 2 \le d(x) + d(y) \le |X| + |Y| + 2|Z| - 2 \le n + |Z| - 2,$$

 \mathbf{SO}

$$\delta_X(X) + \delta_Y(Y) \ge |X| + |Y| - |Z| + b(H) - 2.$$

Therefore,

$$\delta_X(X) \ge \max\{|X| - |Z| + b(H) - 1, \delta(G) - |Z|\} \ge |X| - \frac{3}{2}m.$$

We now wish to show that both X and Y are m-linked. If $|X| \ge 5m$, then $\delta_X(X) \ge \frac{|X|}{2} + m$, so X is m-linked by Theorem 1. Suppose then that |X| < 5m, so 2(|X| + |Z|) < |G| and X is complete by the degree sum condition. Since $|X| \ge \delta(G) + 1 - |Z| \ge 2m + 2$, the fact that X is complete implies that X is m-linked. Analogously, we also conclude that Y is m-linked.

Let $z \in Z$, and suppose there are vertices $x \in X$ and $y \in Y$ such that $xz, yz \notin E(G)$. Then

$$n + |Z| + 2d(z) \ge d(x) + 2d(z) + d(y) \ge 2n + m - 4,$$

 \mathbf{SO}

$$d(z) \ge \frac{1}{2}(n+m-|Z|-4) \ge \frac{1}{2}(n-m-4) > 6m.$$

Thus, for every $z \in Z$, we have $d_X(z) \ge 2m$ or $d_Y(z) \ge 2m$. Let $V(G) = A \cup B$ be a partition with

$$X \subseteq A \subseteq \{v \in V(G) : d_X(v) \ge 2m - 1\}, \text{ and}$$
$$Y \subseteq B \subseteq \{v \in V(G) : d_Y(v) \ge 2m - 1\}.$$

Then, A and B are m-linked by Lemma 7, and therefore complete by Lemma 11. Let A^H, B^H be the partition of V(H) induced by this partition of V(G).

Choose $ab \in E(H)$, let H' = H - ab, and let $F \subseteq G$ be a solution to the H'-linkage problem. As A and B are complete, we may choose F such that every path in Fcorresponding to an edge in E(H') contains at most two vertices in A and at most two vertices in B. In particular, as $n_0(H) = 0$, this implies that $|F \cap A| \leq 2m$ and $|F \cap B| \leq 2m$, so $A \setminus F \neq \emptyset$ and $B \setminus F \neq \emptyset$. We conclude that $a \in A$ and $b \in B$, and in particular, $E(H) = E_H(A, B)$. We also have that $|E_F(A, B)| =$ $|E_{H'}(A, B)| = |E(H)| - 1$. There are three types of paths in F corresponding to edges $yz \in E_{H'}(A, B)$:

1: yuvz with $u \in A, v \in B$, 2: yuz with $u \in A \cup B$, and 3: yz. Choose F such that the number of type 1 paths is maximized.

Let $w \in A \setminus F$ and $x \in B \setminus F$. If $wx \in E(G)$, then we can extend F to a solution of the *H*-linkage problem using the path awxb, so we conclude that $wx \notin E(G)$. Similarly, if there exists an $c \in (N(w) \cap N(x)) \setminus F$, we can extend F to a solution of the *H*-linkage problem using awcxb, so $N(x) \cap N(w) \subseteq F$.

If yuvz is a path of type 1 in F, then we claim that

$$N(w) \cap N(x) \cap \{y, u, v, z\} \subsetneq \{u, v\}.$$

Indeed, if $wz \in E(G)$, then we can replace yuvz by ywz and use the path auvb to complete an *H*-linkage. If $wv, xu \in E(G)$, then we can replace yuvz with yuxz and use the path awvb to complete an *H*-linkage. The case where $xy \in E(G)$ is handled similarly.

Now if yuz is a path of type 2 in F, then $u \notin N(w) \cap N(x)$, as otherwise we could replace yuz by yuzz or ywuz and increase the number of type 1 paths in F.

Let F_1 be the edges in H' corresponding to type 1 paths in F, and $F_2 := E(H') \setminus F_1$. Furthermore, let $H_1 \subseteq V(H)$ be the vertices in H incident to F_1 , and let $H_2 := V(H) \setminus H_1$. Then

$$n - 2 + b(H) \le d(w) + d(x) \le n - 2 + |F_1| + |H_2 \cap N(w) \cap N(x)|.$$
(1)

If $H_2 = \emptyset$, observe that $|F_1| \leq |E_H(A, B)| - 1 < b(H)$, so (1) gives a contradiction.

Also, if $F_1 = \emptyset$, note that $b(H) \ge |H| - 1 = |H_2| - 1$, and thus by (1), $N(w) \cap N(x)$ may miss at most one vertex in V(H). Therefore, $a \in N(x)$ or $b \in N(w)$. But then, we can complete the *H*-linkage via axb or awb, a contradiction.

Finally, suppose that $F_1 \neq \emptyset$ and $H_2 \neq \emptyset$, so that $b(H) \geq |F_1| + |H_2|$, with the lower bound realized by a partition of H with all vertices of H_2 in C, and the remaining vertices partitioned according to their membership in A^H and B^H . Therefore by (1), $H_2 \subseteq N(w) \cap N(x)$ for every pair of vertices $w \in A \setminus V(F)$ and $x \in B \setminus V(F)$. If H contains no edge between two vertices in H_2 , then $|H_2| \leq |F_2|$, and $|F_1| + |F_2| =$ $|E_H(A, B)| - 1 < b(H)$, so (1) gives a contradiction. Thus, there are two vertices $y \in H_2 \cap A$ and $z \in H_2 \cap B$. As $n \geq 20m$, we may assume by symmetry that $|A| \geq 10m$, and therefore since z is in $N(w) \cap N(x)$ for all $w \in A \setminus V(F)$ and $x \in B \setminus V(F)$, that $d_A(z) \geq 8m$. By Lemma 11, z is connected to all vertices in V(G). But now, there is an (H - z)-linkage in G - z by the minimality of H, and this linkage can trivially be expanded to an H-linkage in G.

Proof of Theorem 6. Sharpness follows from the following example. Starting from a partition $A \cup B$ of V(H) with $(e(A, B) + |B| - \Delta_B(A)) = a(H)$, add a set C of e(A, B) - 1 vertices. Blow up B to B^* by adding n - |A| - |B| - |C| vertices to B and then add all edges in $A \cup C$, $B^* \cup C$, and all edges between A and B except for the edges in H. This graph is not H-linked, as there is not a sufficient number of vertices in C to create paths representing the edges in E(A, B), and has $\sigma_2 = n + a(H) - 3$.

As in the proof of Theorem 5, assume that H is a minimal counterexample to the statement, and furthermore that G is edge maximal without creating an H-linkage.

Let m = |E(H)| and n = |G|. Again, we have $n_0(H) = 0$ as isolated vertices in H contribute 2 to |G| + a(H) and at most 2 to $\sigma_2(G)$.

If $\delta(G) \ge 4m$, we are done by Theorem 5 (as $b(H) \le a(H)$), so there is a vertex v with d(v) < 4m. Let $Y := V(G) \setminus N[v]$. Then |Y| > 16m and, since for any $y \in Y$ we have that $d(v) + d(y) \ge n + a(H) - 2$, it follows that

$$\delta_Y(Y) > |Y| - 4m > \frac{1}{2}|Y| + m.$$

Therefore Y is m-linked by Theorem 1. Let $B \supseteq Y$ be maximal such that B is mlinked, and $A := V(G) \setminus B \subseteq N[v]$. If $A = \emptyset$ we are done, so assume that $A \neq \emptyset$. By Lemma 7 no vertex in A has 2m neighbors in B, so since $|A| \leq |N[v]| \leq 4m$, we have that $\Delta_G(A) < 6m$. Therefore A is complete by the degree sum condition. We now continue in a manner similar to the proof of Theorem 5.

Let $A^H \cup B^H$ be the partition of V(H) induced by A and B. Note that B is complete by Lemma 11. If there is an edge $e \in E(H) \cap E(G)$, we can extend any solution of the (H - e)-linkage problem trivially to a solution of the H-linkage problem, so we conclude that $E(H) \cap E(G) = \emptyset$, and in particular, $E(H) = E_H(A, B)$.

Let $a \in A^H$ maximize $|E_H(a, B)|$, and choose $ab \in E(H)$. For H' = H - ab, let $F \subseteq G$ be a solution of the H'-linkage problem of minimum order, so that in particular $|E_F(A, B)| = |E(H')|$. Further assume that $|F \cap A|$ is minimized.

Next, choose $w \in B \setminus F$. If $aw \in E(G)$, then we can extend F to a solution of the H-linkage problem using the path awb, so we conclude that $aw \notin E(G)$. Similarly, if there exists an $x \in (N(a) \cap N(w)) \setminus F$, we can extend F to a solution of the H-linkage problem using axwb, so $N(a) \cap N(w) \subseteq F$.

Now we consider paths $P \subset F$ corresponding to edges in H' with types identical to those described in the proof of Theorem 5. If P = a'uvb' is of type 1, then $a'w, uw \notin E(G)$ by the minimality of $|F \cap A|$. Similarly, if P = a'ub' is of type 2 with $u \in A$, then $a'w, uw \notin E(G)$. If P = a'vb' is of type 1 with $v \in B$, and $a'w, av \in E(G)$, then we can replace av by aw in F and complete the H-linkage via avb.

Therefore, for every path $P \subset F$ corresponding to an edge in H', we have

$$|(V(P) \cap N(a) \cap N(w)) \setminus (B^H \setminus N_H(a))| \le 1.$$

But this yields a contradiction, as then

$$a(H) \le |N(a) \cap N(w)| \le |E_F(A, B)| + |B^H \setminus N_H(a)|$$

= |E(H)| - 1 + |B^H| - \Delta_{B^H}(A^H) \le a(H) - 1.

We note here that Theorem 6 does not extend to arbitrary multigraphs H. To see this, let $k \ge 6$, r = 2(k - 1), and let H be the disjoint union of a star having center c and leaves ℓ_1, \ldots, ℓ_r with an edge uv of multiplicity k. As defined above, a(H) = 3k - 1 (let B consist of u and all of the ℓ_i). However, consider the following example. Let $A = \{c, u, v\}$ be a triangle and X be a clique of order n - 3 containing disjoint subsets L, X_u and X_v of X with $|X_v| = r, |X_u| = r - 1$ and $L = \{\ell_1, \ldots, \ell_r\}$.

Construct G from A and X by adding all edges from u to $X_u \cup L$, v to $X_v \cup L$ and c to $X_u \cup X_v$ and note that $\sigma_2(G) = n + (4k - 4) - 2 > n + a(H) - 2$. If we let the vertex labels in G define an H-linkage problem ρ , then we require at least one vertex from $X_u \cup X_v$ to construct the r desired paths from c to L and at least two vertices from $X_u \cup X_v$ to construct each of the remaining k - 1 paths from u to v. This is a total of at least 2k - 4 additional vertices, which exceeds the 2k - 5 vertices in $X_u \cup X_v$. Hence G is not H-linked.

Theorems 5 and 6 also allow us to obtain a number of interesting results on k-linked and k-ordered graphs as corollaries. In particular, we obtain the degree conditions for sufficiently large k-linked, k-ordered and H-linked graphs found in Theorems 2, 3 and 4, respectively. In most cases, our bounds on |G| are reasonable, but slightly larger than those in the original theorems due to the more general nature of our results.

Acknowledgement: The authors would like to thank the anonymous referees, whose careful reading of this paper resulted in a much improved final product.

References

- 1. R. Diestel, "Graph Theory," Springer Verlag, Heidelberg, 2005.
- J. Faudree, R. Faudree, R. Gould, M. Jacobson and L. Lesniak, On k-ordered graphs, J. Graph Theory 35 (2000), 69–82.
- M. Ferrara, R. Gould, G. Tansey and T. Whalen, On H-linked graphs, Graphs. Combin. 22 (2006), 217-224.
- M. Ferrara, R. Gould, G. Tansey and T. Whalen, On H-immersions, J. Graph Theory 57 (2008), 245-254.
- R. Gould, A. Kostochka, G. Yu, On minimum degree implying that a graph is *H*-linked, SIAM J. Discrete Math. 20 (2006), 829–840.
- R. Gould and T. Whalen, Distance between two k-sets and path-systems extendibility, Ars Combin. 79 (2006), 211-228.
- H. A. Jung, Eine verallgemeinrung des n-fachen zusammenhangs für graphen, Math. Ann. 187 (1970), 95-103.
- K. Karawabayashi, A. Kostochka and G. Yu, On sufficient degree conditions for a graph to be k-linked, Combin. Probab. Comput. 15 (2006), 685–694.
- H. Kierstead, G. Sárközy and S. Selkow, On k-ordered Hamiltonian graphs, J. Graph Theory 32, 17-25.
- A. Kostochka and G. Yu, Minimum degree conditions for *H*-linked graphs, *Discrete Appl. Math.* 156 (2008), 1542–1548.
- A. Kostochka and G. Yu, Ore-type degree conditions for H-linked graphs, J. Graph Theory 58 (2008), 14–26.
- 12. Y. Manoussakis, k-linked and k-cyclic digraphs, J. Comb. Theory Ser. B 48 (1990), 216-226.
- 13. O. Ore, A Note on Hamilton Circuits, Amer. Math. Monthly 67 (1960), 55.
- R. Thomas and P. Wollan, An improved linear edge bound for graph linkage. European J. Combin. 26 (2005), 309–324.