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Abstract

Any H-free graph G is called H-saturated if the addition of any

edge e /∈ E(G) results in H as a subgraph of G. The minimum size

of an H-saturated graph on n vertices is denoted by sat(n,H). The

edge spectrum for the family of graphs with property P is the set

of all sizes of graphs with property P . In this paper, we find the

edge spectrum of K4-saturated graphs. We also show that if G is a

K4-saturated graph, then either G ∼= K1,1,n−2 or δ(G) ≥ 3, and we

show the exact structure of a K4-saturated graph with κ(G) = 2 and

κ(G) = 3.

1 Introduction

All graphs in this paper are simple graphs, namely, finite graphs without

loops or multiple edges. Notation will be standard, and generally follow

the notation of [2]. Let G be a graph, and let V (G) and E(G) denote the

vertex set and the edge set of G, respectively. Let d(x) denote the degree

of the vertex x, |V (G)| denote the order of the graph G, |E(G)| denote

the size of the graph G, and d(u, v) is the distance between u and v. If

W is a nonempty subset of the vertex set V (G), then the subgraph 〈W 〉

of G induced by W is the graph having vertex set W and whose edge set

consists of those edges of G incident with two vertices of W . Furthermore,
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|V (G)| = n, unless otherwise specified. Also, Kp denotes the complete

graph on p vertices.

A graph G is called an H-saturated graph if G does not contain H

as a subgraph but the addition of any edge e /∈ E(G) produces H as a

subgraph of G. The saturation number of a graph is the minimum number

of edges in an H-saturated graph of order n and it is denoted by sat(n,H).

This parameter was introduced by Erdős, Hajnal, and Moon in [3]. The

maximum number of edges in a H-saturated graph of order n is the well

known Turán extremal number and is usually denoted by ex(n,H).

It is known that any K3-saturated graph has at least n−1 edges [3] and

at most ⌊n2/4⌋ edges [5] and [6]. Furthermore, these bounds are sharp as

shown in [3] and [6]. Also, any K4-saturated graph has at least 2n−3 edges

and at most ⌊n2/3⌋ edges and these bounds are sharp. The emphasis of

this paper will be on determining the sizes of K4-saturated graphs of order

n, that is the edge spectrum of K4-saturated graphs.

2 Results on K4-saturated Graphs

Barefoot et. al [1] studied the edge spectrum of K3-saturated graphs

and proved the following result.

Theorem 2.1 Let n ≥ 5 and m be nonnegative integers. There is an

(n,m) K3-saturated graph if and only if 2n− 5 ≤ m ≤ ⌊(n− 1)2/4⌋+ 1 or

m = k(n− k) for some positive integer k.

This result says that a K3-saturated graph is either a complete bipartite

graph or its size falls in the given range and all values in this range are

possible.

In this section, we will show a similar result about K4-saturated graphs.

First we make two simple observations shown in the following two Propo-

sitions.

Proposition 2.2 Let G be a K4-saturated graph. Then diam(G) = 2.



Proof. Let G be a K4-saturated graph. Suppose diam(G) 6= 2, that is,

suppose there exists vertices u, v ∈ V (G) such that d(u, v) = 3. Say u, x, y, v

is a u− v distance 3 path. Then the addition of the edge uv must produce

a K4. So there must exist vertices a, b such that the induced subgraph

〈u, a, b, v〉 ∼= K4. But now we have d(u, v) = 2, as u, a, v is such a path, a

contradiction. 2

Proposition 2.3 Let G be a K4-saturated graph. Then G is 2-connected.

Proof. Let G be a K4-saturated graph. Suppose G is not 2-connected. Let

u be the cut vertex and let A and B be components of G−u with x ∈ V (A)

and y ∈ V (B) (see Figure 1).

x y

u

Figure 1: G

Now the addition of the edge xy creates a K4. So there exists a vertex

w 6= u such that wx ∈ E(G) and wy ∈ E(G). Then G − u is not discon-

nected, a contradiction. 2

Next we show that there is only one K4-saturated graph with minimum

degree two.

Theorem 2.4 Let G be a K4-saturated graph. Then either G ∼= K1,1,n−2

or δ(G) ≥ 3.

Proof. Let G be a K4-saturated graph. Let v ∈ V (G) such that N(v) =

{x, y}. Then for all the vertices z ∈ V (G)−{x, y, v}, the addition of the edge

vz must produce a K4 with vertex set {v, x, y, z}. Thus, xy, xz, yz ∈ E(G).

Since z was chosen arbitrarily, in fact, all vertices in V (G) − {x, y, v} are



adjacent to both x and y. So K1,1,n−2 ⊆ G. But K1,1,n−2 is K4-saturated,

so G ∼= K1,1,n−2. 2

Next we prove three lemmas that lead to a short proof of a result that

all K4-saturated graph on n vertices other than K1,1,n−2 have at least

3n − 8 edges. Before we prove these lemmas, we make the following two

observations about K4-saturated graphs G:

1. The neighborhood of every vertex contains an edge.

2. For all vertices u, v ∈ V (G), uv /∈ E(G) if and only if there exists an

edge in the common neighborhood of u and v.

Lemma 2.5 If G is a K4-saturated graph of order n and δ(G) = 3, then

|E(G)| ≥ 3n− 8.

Proof. Let v ∈ V (G) such that N(v) = {x, y, z}. Let W = V (G) −

{v, x, y, z}. Note that the induced graph 〈x, y, z〉 is not isomorphic to K3.

If 〈x, y, z〉 contains precisely one edge, say xy, then by observation 2,

every vertex w ∈ W must also be adjacent to x, y and W is therefore

independent. But this would force N(z) to be independent, contradicting

observation 1.

If 〈x, y, z〉 contains precisely two edges, say xy, yz, then by observation

2, W can be partitioned into three sets Wxy,Wyz,Wxyz, where Wxy = {w ∈

W |N(w) ∩ {x, y, z} = {x, y}} with Wyz and Wxyz defined similarly (note

thatWxz = ∅). Each of these are independent sets of vertices. Furthermore,

if w ∈ Wxyz, then it has no adjacencies to Wxy or Wyz. Let w1 ∈ Wxy and

w2 ∈ Wyz. Then N(w1)∩N(w2) = {y}. Thus, by observation 2, they must

be adjacent. Hence, Wxy and Wyz must induce a complete bipartite graph.

Let |Wxyz| = h, |Wyz| = l, |Wxy| = n− h− l − 4. Then,

|E(G)| = 5 + 2l + 2(n− h− l − 4) + l(n− h− l − 4) + 3h

= (2 + l)n+ (1− l)h− l2 − 4l − 3.

Let f(l) = (2 + l)n + (1 − l)h − l2 − 4l − 3. Note if l = 0, then we are

done by our previous argument. Now f(1) = 3n − 8. Furthermore, f is



maximized at l = n−h−4
2 and is increasing between l = 1 and l = n−h−4

2 .

Note this is all of the relevant interval for l, since we can assume, without

loss of generality, |Wyz| ≤ |Wxy|. 2

Lemma 2.6 If G is a K4-saturated graph of order n and δ(G) = 4, then

|E(G)| ≥ 3n− 8.

Proof. Let v ∈ V (G) such that d(v) = 4 and |V (G)| = n. Let N(v) = A =

{a1, a2, a3, a4}. Let W = V (G)− A− {v}. Then there must exist an edge

aiaj for some i, j, 1 ≤ i, j ≤ 4 as for any vertex w ∈ W , addition of the

edge vw must create a K4.

If 〈A〉 contains precisely one edge, say a1a2, then every vertex w ∈ W

must also be adjacent to a1, a2 by observation 2 above and W is therefore

independent. But this would force N(a3) and N(a4) to be independent,

contradicting observation 1. So 〈A〉 must contain at least two edges. So

now assume that there are precisely two edges among the vertices of A.

Then we have two possibilities as shown in the Figure 2.

a

v

aa aa aaa
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v
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Figure 2: G

Pick the vertices ai and aj in different components of 〈N(v)〉. The

addition of the edge aiajmust produce a K4 with an edge in W , say w1w2.

But each vertex wi, for i = 1, 2, must be adjacent to an edge in A, or else

the addition of the edge vwi would not produce a K4. Hence, w1 and w2

are adjacent to at least three vertices of A.

The count below comes from counting the degree sum in the following

parts: (1) the degree sum in v∪A, (2) the degree sum from A to W , (3) the

degree sum of vertices in W . In the last instance we use the assumption

that δ(G) = 4.



∑

x∈V (G)

d(x) ≥ (4 + 4 + 4) + (2(n− 5) + 2) + (4(n− 5))

= 6n− 16.

Observe that if there are three edges among the vertices of A, we also

obtain the same count. Hence, |E(G)| ≥ 3n− 8. 2

Lemma 2.7 If G is a K4-saturated graph and δ(G) = 5, then |E(G)| ≥

3n− 8.

Proof. Note that |E(G)| ≥ 5n
2 and 5n

2 ≥ 3n− 8 for n ≤ 16.

Let v ∈ V (G) with d(v) = 5 and |V (G)| = n ≥ 17. Let N(v) = A =

{a1, a2, a3, a4, a5}. Let W = V (G)−A−{v}. We know there must exist an

edge aiaj for some i, j. In fact, as in Lemma 2.6, there must exist at least

two edges. Furthermore, for any vertex w ∈ W , wai and waj must exist

for some i, j, 1 ≤ i, j ≤ 5. Also, two of the vertices in W must be adjacent

to at least 3 vertices in A, as shown in Lemma 2.6. Since δ(G) = 5 and

counting as we did in the previous lemma, we have

∑

x∈V (G)

d(x) ≥ (5 + 5 + 4) + (2(n− 6) + 2) + (5(n− 6))

= 7n− 26

So, |E(G)| ≥ 7n−26
2 ≥ 3n− 8 for n ≥ 10. 2

Theorem 2.8 Every 2-connected K4-saturated graph of order n with

δ(G) ≥ 3 has at least 3n− 8 edges.

Proof. From Lemmas 2.5 - 2.7, the result holds for graphs G with 3 ≤

δ(G) ≤ 5. For graphs G with δ(G) ≥ 6, |E(G)| ≥ 6n
2 = 3n. 2

In the following two theorems, we classify all K4-saturated graphs G

with κ(G) = 2 or κ(G) = 3.



Theorem 2.9 If G is a K4-saturated graph of order n with κ(G) = 2, then

G ∼= K1,1,n−2.

Proof. Let G be a K4-saturated with κ(G) = 2. Let K be a minimal cut

set of G and let C1, C2 be distinct components of G −K. Let xi ∈ V (Ci)

for i = 1, 2. Then the addition of the edge x1x2 produces a K4. So if

u, v ∈ K, then 〈x1, x2, u, v〉 ∼= K4. As x1 (x2) was an arbritrary vertex of

C1 (C2), each vertex in C1 (C2) is also adjacent to u and v. So G −K is

an independent set and the result is shown. 2

Now we will classify all K4-saturated graphs with κ(G) = 3. But first,

we define the graph W (a, b, c, d, e) to be a wheel on 5 sets totaling n vertices

such that a + b + c + d + e = n − 1 and each of the 5 sets of the wheel

are independent sets of sizes a, b, c, d, e, respectively, and two consecutive

independent sets on the wheel form a complete bipartite subgraph. For

example, W (1, 3, 2, 1, 2) on 10 vertices is shown in Figure 3.
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Figure 3: W (1, 2, 1, 3, 2)

Theorem 2.10 If G is a K4-saturated graph of order n with κ(G) = 3,

then G ∼= K1,2,n−3 or G ∼= W (1, t, 1, r, s).

Proof. Let K be a minimal cut set of G, say {v1, v2, v3}. Let C1, C2 be

distinct components of G − K. Let xi ∈ V (Ci) for i = 1, 2. Then addi-

tion of the edge x1x2 produces a K4. Without loss of generality, suppose

〈x1, x2, v1, v2〉 ∼= K4. If all the components of G−K are trivial, then all are

adjacent to all three vertices of K by the connectivity assumption. Now

one of (but not both) v1 or v2 is adjacent to v3 (say v2) or else inserting

the edge v2v3 would not produce a K4. But now G is K1,2,n−3.

We now assume C1 is nontrivial. Let x3 be a neighbor of x1 in C1. In-

serting the edge x2x3, we know (without loss of generality) 〈x2, x3, v2, v3〉 ∼=



K4, since x3 cannot be adjacent to both v1 and v2. If there exists a

vertex x4 ∈ V (C2) such that x2x4 ∈ E(G), then by a similar argu-

ment x4v1, x4v2, x4v3 ∈ E(G). Hence, 〈x2, x4, v1, v2〉 ∼= K4. Hence,

V (C2) = {x2}. In fact G − {K ∪ C1} is an independent set. For every

w ∈ V (C1), N(w) ∩K = {v1, v2} or N(w) ∩K = {v2, v3} since w must be

adjacent to an edge in K but cannot be in a K4. Now partition C1 into

two classes A and B, where vertices of A are adjacent to v1 and v2, while

vertices of B are adjacent to v2 and v3. Clearly, A is an independent set.

Similarly, B is an independent set.

We claim 〈A ∪B〉 is a complete bipartite graph. Let a ∈ A, b ∈ B such

that ab /∈ E(G). Then addition of the edge ab must produce a K4. Since A

and B are independent sets, the edge they have in common has to be in K,

a contradiction. Hence, 〈A∪B〉 is complete bipartite. Thus, if |A| = s and

|B| = r, using v2 as the center of the wheel, we have G ∼= W (1, t, 1, r, s),

where 3 + t+ r + s = n. 2

In [4], Hanson and Toft gave the following construction. The graphs

in the family T k
n are on n vertices consisting of a complete (k − 1)-partite

graph on n−2 vertices, with classes of independent points C1, C2, ..., Ck−1,

together with two adjacent vertices x and y and where each vertex of C1 is

joined to precisely one of x or y, x and y are each adjacent to at least one

vertex of C1, no vertex of C2 is adjacent to either x or y and all vertices

of Ci, i > 2 are adjacent to both x and y. For k ≥ 3, define T ′

k−1,n to

be graphs in T k
n for which |C1|+ 1, |C2|+ 2, |C3|, ..., |Ck−1| are equal or as

equal as possible. For n ≥ 3k − 4 we can describe T ′

k−1,n as follows: let

n + 1 = t(k − 1) + r, 0 ≤ r < k − 1 and let G denote a member of T k
n0

on

n0 = n− r vertices and e0 = e(Tk−1,n−r)− (t− 2) edges where the classes

Ci satisfy |C1| = t − 1, |C2| = t − 2 and |Ci| = t, i > 2 (G is unique up to

adjacencies of x and y to class C1). Define T ′

k−1,n to be a graph G with

one vertex added to precisely r of the classes C1, ..., Ck−1. Note that the

graphs T ′

k−1,n are maximal, with respect to the number of edges, in the

family T k
n . Then Hanson and Toft [4] showed the following result.

Theorem 2.11 Let G be a maximal Kk-saturated graph on n ≥ k+2 ≥ 5

vertices with χ(G) ≥ k, then G is a T ′

k−1,n graph.



Theorem 2.12 If G is a K4-saturated graph of order n and G is not com-

plete tripartite, then |E(G)| ≤ n2
−n+4
3 .

Proof. Let G be a K4-saturated graph of order n. Suppose G is not a

complete tripartite graph. Since G is not tripartite, χ(G) ≥ 4 = k. Hence,

by Theorem 2.11, |E(G)| ≤ |E(T ′

3,n)|. For n + 1 = 3t + r, a straight

forward computation shows, |E(T ′

3,n)| ≤ n2
−n+4
3 . In fact, when r = 0,

|E(T ′

3,n)| =
n2

−n+4
3 . Hence, |E(G)| ≤ n2

−n+4
3 . 2

Theorem 2.13 Let n ≥ 5 and m be nonnegative integers. There is an

(n,m) K4-saturated graph G if and only if 3n − 8 ≤ m ≤ n2
−n+4
3 or

m = rs+ st+ rt for some positive integers r, s, t where n = r + s+ t.

Proof. Let n ≥ 5 and m be nonnegative integers. Let G be an (n,m)

K4-saturated graph. If G is a tripartite graph, then G must be a complete

tripartite graph, otherwise an edge may be added without creating a K4.

Now if G ∼= K1,1,n−2, then m = 2n − 3 and clearly r = s = 1 while

t = n− 2, otherwise m = rs+ st+ rt for some positive integers r, s, t such

that n = r + s+ t.

Now let G be a nontripartite graph. Then from Theorem 2.8, Theo-

rem 2.10, and Theorem 2.12, we have that 3n− 8 ≤ m ≤ n2
−n+4
3 .

It is sufficient to construct an (n,m) K4-saturated graph for each value

of m. If m = 2n − 3, then G ∼= K1,1,n−2. If m = rs + st + rt for some

positive integers r, s, t where n = r + s+ t, then G ∼= Kr,s,t with m edges.

Now if 3n − 8 ≤ m ≤ n2
−n+4
3 , then consider an (n,m) K4-saturated

graph G ∼= H + Kq, where H is a K3-saturated graph of order n − q.

From Theorem 2.1, 2(n − q) − 5 ≤ |E(H)| ≤ ⌊ (n−q−1)2

4 ⌋ + 1. Hence,

2(n−q)−5+(n−q)q ≤ m ≤ ⌊ (n−q−1)2

4 ⌋+1+(n−q)q. When q = 1, we obtain

the lower bound on m = 3n− 8. Now let f(q) = ⌊ (n−q−1)2

4 ⌋+1+ (n− q)q.

Then f(q) is maximum when q = n+1
3 and f(n+1

3 ) = n2
−n+4
3 . 2

In the above Theorem, the lower and upper bounds are achieved. For

example, for the following graphs G1 (Figure 4) and G2 (Figure 5), lower

and upper bounds, respectively, are achieved.
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Figure 5: G2
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