The Edge Spectrum of K_{4}-Saturated Graphs

Kinnari Amin^{a}, Jill Faudree ${ }^{b}$, Ronald Gould ${ }^{c}$
${ }^{a}$ Dept. of Math, CS and Eng., Georgia Perimeter College, Clarkston, GA 30021
kinnari.v.amin@gmail.com
${ }^{b}$ Dept. of Math and Stat, University of Alaska Fairbanks, Fairbanks, AK 99709
${ }^{c}$ Dept. of Math and CS, Emory University, Atlanta, GA 30322

Abstract

Any H-free graph G is called H-saturated if the addition of any edge $e \notin E(G)$ results in H as a subgraph of G. The minimum size of an H-saturated graph on n vertices is denoted by $\operatorname{sat}(n, H)$. The edge spectrum for the family of graphs with property P is the set of all sizes of graphs with property P. In this paper, we find the edge spectrum of K_{4}-saturated graphs. We also show that if G is a K_{4}-saturated graph, then either $G \cong K_{1,1, n-2}$ or $\delta(G) \geq 3$, and we show the exact structure of a K_{4}-saturated graph with $\kappa(G)=2$ and $\kappa(G)=3$.

1 Introduction

All graphs in this paper are simple graphs, namely, finite graphs without loops or multiple edges. Notation will be standard, and generally follow the notation of [2]. Let G be a graph, and let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. Let $d(x)$ denote the degree of the vertex $x,|V(G)|$ denote the order of the graph $G,|E(G)|$ denote the size of the graph G, and $d(u, v)$ is the distance between u and v. If W is a nonempty subset of the vertex set $V(G)$, then the subgraph $\langle W\rangle$ of G induced by W is the graph having vertex set W and whose edge set consists of those edges of G incident with two vertices of W. Furthermore,
$|V(G)|=n$, unless otherwise specified. Also, K_{p} denotes the complete graph on p vertices.

A graph G is called an H-saturated graph if G does not contain H as a subgraph but the addition of any edge $e \notin E(G)$ produces H as a subgraph of G. The saturation number of a graph is the minimum number of edges in an H-saturated graph of order n and it is denoted by $\operatorname{sat}(n, H)$. This parameter was introduced by Erdős, Hajnal, and Moon in [3]. The maximum number of edges in a H-saturated graph of order n is the well known Turán extremal number and is usually denoted by $e x(n, H)$.

It is known that any K_{3}-saturated graph has at least $n-1$ edges [3] and at most $\left\lfloor n^{2} / 4\right\rfloor$ edges [5] and [6]. Furthermore, these bounds are sharp as shown in [3] and [6]. Also, any K_{4}-saturated graph has at least $2 n-3$ edges and at most $\left\lfloor n^{2} / 3\right\rfloor$ edges and these bounds are sharp. The emphasis of this paper will be on determining the sizes of K_{4}-saturated graphs of order n, that is the edge spectrum of K_{4}-saturated graphs.

2 Results on K_{4}-saturated Graphs

Barefoot et. al [1] studied the edge spectrum of K_{3}-saturated graphs and proved the following result.

Theorem 2.1 Let $n \geq 5$ and m be nonnegative integers. There is an $(n, m) K_{3}$-saturated graph if and only if $2 n-5 \leq m \leq\left\lfloor(n-1)^{2} / 4\right\rfloor+1$ or $m=k(n-k)$ for some positive integer k.

This result says that a K_{3}-saturated graph is either a complete bipartite graph or its size falls in the given range and all values in this range are possible.

In this section, we will show a similar result about K_{4}-saturated graphs. First we make two simple observations shown in the following two Propositions.

Proposition 2.2 Let G be a K_{4}-saturated graph. Then $\operatorname{diam}(G)=2$.

Proof. Let G be a K_{4}-saturated graph. Suppose $\operatorname{diam}(G) \neq 2$, that is, suppose there exists vertices $u, v \in V(G)$ such that $d(u, v)=3$. Say u, x, y, v is a $u-v$ distance 3 path. Then the addition of the edge $u v$ must produce a K_{4}. So there must exist vertices a, b such that the induced subgraph $\langle u, a, b, v\rangle \cong K_{4}$. But now we have $d(u, v)=2$, as u, a, v is such a path, a contradiction.

Proposition 2.3 Let G be a K_{4}-saturated graph. Then G is 2-connected.

Proof. Let G be a K_{4}-saturated graph. Suppose G is not 2-connected. Let u be the cut vertex and let A and B be components of $G-u$ with $x \in V(A)$ and $y \in V(B)$ (see Figure 1).

Figure 1: G

Now the addition of the edge $x y$ creates a K_{4}. So there exists a vertex $w \neq u$ such that $w x \in E(G)$ and $w y \in E(G)$. Then $G-u$ is not disconnected, a contradiction.

Next we show that there is only one K_{4}-saturated graph with minimum degree two.

Theorem 2.4 Let G be a K_{4}-saturated graph. Then either $G \cong K_{1,1, n-2}$ or $\delta(G) \geq 3$.

Proof. Let G be a K_{4}-saturated graph. Let $v \in V(G)$ such that $N(v)=$ $\{x, y\}$. Then for all the vertices $z \in V(G)-\{x, y, v\}$, the addition of the edge $v z$ must produce a K_{4} with vertex set $\{v, x, y, z\}$. Thus, $x y, x z, y z \in E(G)$. Since z was chosen arbitrarily, in fact, all vertices in $V(G)-\{x, y, v\}$ are
adjacent to both x and y. So $K_{1,1, n-2} \subseteq G$. But $K_{1,1, n-2}$ is K_{4}-saturated, so $G \cong K_{1,1, n-2}$.

Next we prove three lemmas that lead to a short proof of a result that all K_{4}-saturated graph on n vertices other than $K_{1,1, n-2}$ have at least $3 n-8$ edges. Before we prove these lemmas, we make the following two observations about K_{4}-saturated graphs G :

1. The neighborhood of every vertex contains an edge.
2. For all vertices $u, v \in V(G), u v \notin E(G)$ if and only if there exists an edge in the common neighborhood of u and v.

Lemma 2.5 If G is a K_{4}-saturated graph of order n and $\delta(G)=3$, then $|E(G)| \geq 3 n-8$.

Proof. Let $v \in V(G)$ such that $N(v)=\{x, y, z\}$. Let $W=V(G)-$ $\{v, x, y, z\}$. Note that the induced graph $\langle x, y, z\rangle$ is not isomorphic to K_{3}.

If $\langle x, y, z\rangle$ contains precisely one edge, say $x y$, then by observation 2 , every vertex $w \in W$ must also be adjacent to x, y and W is therefore independent. But this would force $N(z)$ to be independent, contradicting observation 1.

If $\langle x, y, z\rangle$ contains precisely two edges, say $x y, y z$, then by observation $2, W$ can be partitioned into three sets $W_{x y}, W_{y z}, W_{x y z}$, where $W_{x y}=\{w \in$ $W \mid N(w) \cap\{x, y, z\}=\{x, y\}\}$ with $W_{y z}$ and $W_{x y z}$ defined similarly (note that $\left.W_{x z}=\emptyset\right)$. Each of these are independent sets of vertices. Furthermore, if $w \in W_{x y z}$, then it has no adjacencies to $W_{x y}$ or $W_{y z}$. Let $w_{1} \in W_{x y}$ and $w_{2} \in W_{y z}$. Then $N\left(w_{1}\right) \cap N\left(w_{2}\right)=\{y\}$. Thus, by observation 2 , they must be adjacent. Hence, $W_{x y}$ and $W_{y z}$ must induce a complete bipartite graph. Let $\left|W_{x y z}\right|=h,\left|W_{y z}\right|=l,\left|W_{x y}\right|=n-h-l-4$. Then,

$$
\begin{aligned}
|E(G)| & =5+2 l+2(n-h-l-4)+l(n-h-l-4)+3 h \\
& =(2+l) n+(1-l) h-l^{2}-4 l-3
\end{aligned}
$$

Let $f(l)=(2+l) n+(1-l) h-l^{2}-4 l-3$. Note if $l=0$, then we are done by our previous argument. Now $f(1)=3 n-8$. Furthermore, f is
maximized at $l=\frac{n-h-4}{2}$ and is increasing between $l=1$ and $l=\frac{n-h-4}{2}$. Note this is all of the relevant interval for l, since we can assume, without loss of generality, $\left|W_{y z}\right| \leq\left|W_{x y}\right|$.

Lemma 2.6 If G is a K_{4}-saturated graph of order n and $\delta(G)=4$, then $|E(G)| \geq 3 n-8$.

Proof. Let $v \in V(G)$ such that $d(v)=4$ and $|V(G)|=n$. Let $N(v)=A=$ $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Let $W=V(G)-A-\{v\}$. Then there must exist an edge $a_{i} a_{j}$ for some $i, j, 1 \leq i, j \leq 4$ as for any vertex $w \in W$, addition of the edge $v w$ must create a K_{4}.

If $\langle A\rangle$ contains precisely one edge, say $a_{1} a_{2}$, then every vertex $w \in W$ must also be adjacent to a_{1}, a_{2} by observation 2 above and W is therefore independent. But this would force $N\left(a_{3}\right)$ and $N\left(a_{4}\right)$ to be independent, contradicting observation 1 . So $\langle A\rangle$ must contain at least two edges. So now assume that there are precisely two edges among the vertices of A. Then we have two possibilities as shown in the Figure 2.

or

Figure 2: G

Pick the vertices a_{i} and a_{j} in different components of $\langle N(v)\rangle$. The addition of the edge $a_{i} a_{j}$ must produce a K_{4} with an edge in W, say $w_{1} w_{2}$. But each vertex w_{i}, for $i=1,2$, must be adjacent to an edge in A, or else the addition of the edge $v w_{i}$ would not produce a K_{4}. Hence, w_{1} and w_{2} are adjacent to at least three vertices of A.

The count below comes from counting the degree sum in the following parts: (1) the degree sum in $v \cup A,(2)$ the degree sum from A to $W,(3)$ the degree sum of vertices in W. In the last instance we use the assumption that $\delta(G)=4$.

$$
\begin{aligned}
\sum_{x \in V(G)} d(x) & \geq(4+4+4)+(2(n-5)+2)+(4(n-5)) \\
& =6 n-16
\end{aligned}
$$

Observe that if there are three edges among the vertices of A, we also obtain the same count. Hence, $|E(G)| \geq 3 n-8$.

Lemma 2.7 If G is a K_{4}-saturated graph and $\delta(G)=5$, then $|E(G)| \geq$ $3 n-8$.

Proof. Note that $|E(G)| \geq \frac{5 n}{2}$ and $\frac{5 n}{2} \geq 3 n-8$ for $n \leq 16$.
Let $v \in V(G)$ with $d(v)=5$ and $|V(G)|=n \geq 17$. Let $N(v)=A=$ $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$. Let $W=V(G)-A-\{v\}$. We know there must exist an edge $a_{i} a_{j}$ for some i, j. In fact, as in Lemma 2.6, there must exist at least two edges. Furthermore, for any vertex $w \in W, w a_{i}$ and $w a_{j}$ must exist for some $i, j, 1 \leq i, j \leq 5$. Also, two of the vertices in W must be adjacent to at least 3 vertices in A, as shown in Lemma 2.6. Since $\delta(G)=5$ and counting as we did in the previous lemma, we have

$$
\begin{aligned}
\sum_{x \in V(G)} d(x) & \geq(5+5+4)+(2(n-6)+2)+(5(n-6)) \\
& =7 n-26
\end{aligned}
$$

So, $|E(G)| \geq \frac{7 n-26}{2} \geq 3 n-8$ for $n \geq 10$.

Theorem 2.8 Every 2-connected K_{4}-saturated graph of order n with $\delta(G) \geq 3$ has at least $3 n-8$ edges.

Proof. From Lemmas 2.5-2.7, the result holds for graphs G with $3 \leq$ $\delta(G) \leq 5$. For graphs G with $\delta(G) \geq 6,|E(G)| \geq \frac{6 n}{2}=3 n$.

In the following two theorems, we classify all K_{4}-saturated graphs G with $\kappa(G)=2$ or $\kappa(G)=3$.

Theorem 2.9 If G is a K_{4}-saturated graph of order n with $\kappa(G)=2$, then $G \cong K_{1,1, n-2}$.

Proof. Let G be a K_{4}-saturated with $\kappa(G)=2$. Let K be a minimal cut set of G and let C_{1}, C_{2} be distinct components of $G-K$. Let $x_{i} \in V\left(C_{i}\right)$ for $i=1,2$. Then the addition of the edge $x_{1} x_{2}$ produces a K_{4}. So if $u, v \in K$, then $\left\langle x_{1}, x_{2}, u, v\right\rangle \cong K_{4}$. As $x_{1}\left(x_{2}\right)$ was an arbritrary vertex of $C_{1}\left(C_{2}\right)$, each vertex in $C_{1}\left(C_{2}\right)$ is also adjacent to u and v. So $G-K$ is an independent set and the result is shown.

Now we will classify all K_{4}-saturated graphs with $\kappa(G)=3$. But first, we define the graph $W(a, b, c, d, e)$ to be a wheel on 5 sets totaling n vertices such that $a+b+c+d+e=n-1$ and each of the 5 sets of the wheel are independent sets of sizes a, b, c, d, e, respectively, and two consecutive independent sets on the wheel form a complete bipartite subgraph. For example, $W(1,3,2,1,2)$ on 10 vertices is shown in Figure 3.

Figure 3: $W(1,2,1,3,2)$

Theorem 2.10 If G is a K_{4}-saturated graph of order n with $\kappa(G)=3$, then $G \cong K_{1,2, n-3}$ or $G \cong W(1, t, 1, r, s)$.

Proof. Let K be a minimal cut set of G, say $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let C_{1}, C_{2} be distinct components of $G-K$. Let $x_{i} \in V\left(C_{i}\right)$ for $i=1,2$. Then addition of the edge $x_{1} x_{2}$ produces a K_{4}. Without loss of generality, suppose $\left\langle x_{1}, x_{2}, v_{1}, v_{2}\right\rangle \cong K_{4}$. If all the components of $G-K$ are trivial, then all are adjacent to all three vertices of K by the connectivity assumption. Now one of (but not both) v_{1} or v_{2} is adjacent to v_{3} (say v_{2}) or else inserting the edge $v_{2} v_{3}$ would not produce a K_{4}. But now G is $K_{1,2, n-3}$.

We now assume C_{1} is nontrivial. Let x_{3} be a neighbor of x_{1} in C_{1}. Inserting the edge $x_{2} x_{3}$, we know (without loss of generality) $\left\langle x_{2}, x_{3}, v_{2}, v_{3}\right\rangle \cong$
K_{4}, since x_{3} cannot be adjacent to both v_{1} and v_{2}. If there exists a vertex $x_{4} \in V\left(C_{2}\right)$ such that $x_{2} x_{4} \in E(G)$, then by a similar argument $x_{4} v_{1}, x_{4} v_{2}, x_{4} v_{3} \in E(G)$. Hence, $\left\langle x_{2}, x_{4}, v_{1}, v_{2}\right\rangle \cong K_{4}$. Hence, $V\left(C_{2}\right)=\left\{x_{2}\right\}$. In fact $G-\left\{K \cup C_{1}\right\}$ is an independent set. For every $w \in V\left(C_{1}\right), N(w) \cap K=\left\{v_{1}, v_{2}\right\}$ or $N(w) \cap K=\left\{v_{2}, v_{3}\right\}$ since w must be adjacent to an edge in K but cannot be in a K_{4}. Now partition C_{1} into two classes A and B, where vertices of A are adjacent to v_{1} and v_{2}, while vertices of B are adjacent to v_{2} and v_{3}. Clearly, A is an independent set. Similarly, B is an independent set.

We claim $\langle A \cup B\rangle$ is a complete bipartite graph. Let $a \in A, b \in B$ such that $a b \notin E(G)$. Then addition of the edge $a b$ must produce a K_{4}. Since A and B are independent sets, the edge they have in common has to be in K, a contradiction. Hence, $\langle A \cup B\rangle$ is complete bipartite. Thus, if $|A|=s$ and $|B|=r$, using v_{2} as the center of the wheel, we have $G \cong W(1, t, 1, r, s)$, where $3+t+r+s=n$.

In [4], Hanson and Toft gave the following construction. The graphs in the family \mathcal{T}_{n}^{k} are on n vertices consisting of a complete $(k-1)$-partite graph on $n-2$ vertices, with classes of independent points $C_{1}, C_{2}, \ldots, C_{k-1}$, together with two adjacent vertices x and y and where each vertex of C_{1} is joined to precisely one of x or y, x and y are each adjacent to at least one vertex of C_{1}, no vertex of C_{2} is adjacent to either x or y and all vertices of $C_{i}, i>2$ are adjacent to both x and y. For $k \geq 3$, define $T_{k-1, n}^{\prime}$ to be graphs in \mathcal{T}_{n}^{k} for which $\left|C_{1}\right|+1,\left|C_{2}\right|+2,\left|C_{3}\right|, \ldots,\left|C_{k-1}\right|$ are equal or as equal as possible. For $n \geq 3 k-4$ we can describe $T_{k-1, n}^{\prime}$ as follows: let $n+1=t(k-1)+r, 0 \leq r<k-1$ and let G denote a member of $\mathcal{T}_{n_{0}}^{k}$ on $n_{0}=n-r$ vertices and $e_{0}=e\left(T_{k-1, n-r}\right)-(t-2)$ edges where the classes C_{i} satisfy $\left|C_{1}\right|=t-1,\left|C_{2}\right|=t-2$ and $\left|C_{i}\right|=t, i>2(G$ is unique up to adjacencies of x and y to class C_{1}). Define $T_{k-1, n}^{\prime}$ to be a graph G with one vertex added to precisely r of the classes C_{1}, \ldots, C_{k-1}. Note that the graphs $T_{k-1, n}^{\prime}$ are maximal, with respect to the number of edges, in the family \mathcal{T}_{n}^{k}. Then Hanson and Toft [4] showed the following result.

Theorem 2.11 Let G be a maximal K_{k}-saturated graph on $n \geq k+2 \geq 5$ vertices with $\chi(G) \geq k$, then G is a $T_{k-1, n}^{\prime}$ graph.

Theorem 2.12 If G is a K_{4}-saturated graph of order n and G is not complete tripartite, then $|E(G)| \leq \frac{n^{2}-n+4}{3}$.

Proof. Let G be a K_{4}-saturated graph of order n. Suppose G is not a complete tripartite graph. Since G is not tripartite, $\chi(G) \geq 4=k$. Hence, by Theorem 2.11, $|E(G)| \leq\left|E\left(T_{3, n}^{\prime}\right)\right|$. For $n+1=3 t+r$, a straight forward computation shows, $\left|E\left(T_{3, n}^{\prime}\right)\right| \leq \frac{n^{2}-n+4}{3}$. In fact, when $r=0$, $\left|E\left(T_{3, n}^{\prime}\right)\right|=\frac{n^{2}-n+4}{3}$. Hence, $|E(G)| \leq \frac{n^{2}-n+4}{3}$.

Theorem 2.13 Let $n \geq 5$ and m be nonnegative integers. There is an $(n, m) K_{4}$-saturated graph G if and only if $3 n-8 \leq m \leq \frac{n^{2}-n+4}{3}$ or $m=r s+s t+r t$ for some positive integers r, s, t where $n=r+s+t$.

Proof. Let $n \geq 5$ and m be nonnegative integers. Let G be an (n, m) K_{4}-saturated graph. If G is a tripartite graph, then G must be a complete tripartite graph, otherwise an edge may be added without creating a K_{4}. Now if $G \cong K_{1,1, n-2}$, then $m=2 n-3$ and clearly $r=s=1$ while $t=n-2$, otherwise $m=r s+s t+r t$ for some positive integers r, s, t such that $n=r+s+t$.

Now let G be a nontripartite graph. Then from Theorem 2.8, Theorem 2.10, and Theorem 2.12, we have that $3 n-8 \leq m \leq \frac{n^{2}-n+4}{3}$.

It is sufficient to construct an $(n, m) K_{4}$-saturated graph for each value of m. If $m=2 n-3$, then $G \cong K_{1,1, n-2}$. If $m=r s+s t+r t$ for some positive integers r, s, t where $n=r+s+t$, then $G \cong K_{r, s, t}$ with m edges.

Now if $3 n-8 \leq m \leq \frac{n^{2}-n+4}{3}$, then consider an $(n, m) K_{4}$-saturated graph $G \cong H+\overline{K_{q}}$, where H is a K_{3}-saturated graph of order $n-q$. From Theorem 2.1, $2(n-q)-5 \leq|E(H)| \leq\left\lfloor\frac{(n-q-1)^{2}}{4}\right\rfloor+1$. Hence, $2(n-q)-5+(n-q) q \leq m \leq\left\lfloor\frac{(n-q-1)^{2}}{4}\right\rfloor+1+(n-q) q$. When $q=1$, we obtain the lower bound on $m=3 n-8$. Now let $f(q)=\left\lfloor\frac{(n-q-1)^{2}}{4}\right\rfloor+1+(n-q) q$. Then $f(q)$ is maximum when $q=\frac{n+1}{3}$ and $f\left(\frac{n+1}{3}\right)=\frac{n^{2}-n+4}{3}$.

In the above Theorem, the lower and upper bounds are achieved. For example, for the following graphs G_{1} (Figure 4) and G_{2} (Figure 5), lower and upper bounds, respectively, are achieved.

Figure 4: G_{1}

Figure 5: G_{2}

References

[1] C. Barefoot, K. Casey, D. Fisher, K. Fraughnaugh, F. Harary, Size in maximal triangle-free graphs and minimal graphs of diameter 2, Discrete Mathematics, 138 (1995), pp. 93-99.
[2] G. Chartrand, L. Lesniak, Graphs and Diagraphs, Chapman \& Hall/CRC, Boca Raton, FL, fourth edition, 2005.
[3] P. Erdős, A. Hajnal, J. W. Moon, A Problem in Graph Theory, Amer. Math. Monthly, 71 (1964), pp. 1107-1110.
[4] D. Hanson and B. Toft, k-saturated Graphs of Chromatic Number at least k, Ars Combinatoria, 31 (1991), pp. 159-164.
[5] W. Mantel, Problem 28, Wiskundige Opgaven, 10 (1907), pp. 60-61.
[6] P. Turán, On an Extremal Problem in Graph Theory, Mat. Fiz. Lapok, 48 (1941), pp. 436-452.

