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Abstract: Let G be a graph of order n and 3≤ t≤n /4 be an integer.
Recently, Kaneko and Yoshimoto [J Combin Theory Ser B 81(1) (2001),
100–109] provided a sharp �(G) condition such that for any set X of t
vertices, G contains a hamiltonian cycle H so that the distance along H
between any two vertices of X is at least n /2t. In this article, minimum
degree and connectivity conditions are determined such that for any graph
G of sufficiently large order n and for any set of t vertices X ⊆V (G),
there is a hamiltonian cycle H so that the distance along H between
any two consecutive vertices of X is approximately n / t. Furthermore,
the minimum degree threshold is determined for the existence of a
hamiltonian cycle H such that the vertices of X appear in a prescribed order
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at approximately predetermined distances along H. � 2011 Wiley Periodicals, Inc.
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1. INTRODUCTION

In this paper, we use the following notation. For a graph G, let �(G) be the minimum
degree, �(G) be the connectivity of G, N(v) be the set of neighbors of a vertex v∈V(G),
d(v)=|N(v)| and dA(v) be |N(v)∩A| for any set A⊆V(G). Also let G[A] denote the
induced subgraph of G on A. For two subsets of vertices A,B⊆G, let e(A,B) be the
number of edges between A and B.

We denote a path from u to v by P[u,v] or (u, . . . ,v), while a path from u to v, along
a path or cycle A, is denoted by (u,v)A. When the context is clear, we may simply
use the notation P. Within a path (v1.v2, . . .), the vertex vi−1 is called the predecessor
(likewise vi+1 is called the successor) of the vertex vi.

The distance between u and v is denoted by dist(u,v), while the distance, along a
path or cycle A, is denoted by distA(u,v). For any subgraph H ⊆G, we define the order
of H as the number of vertices in H, that is, |H|. All other notation may be found
in [2].

In 2001, Kaneko and Yoshimoto [6] proved the following result.

Theorem 1. Let G be a graph of order n, d≤n /4 a positive integer and A a set of
at most n / (2d) vertices. If �(G)≥n /2, then there exists a hamiltonian cycle in G with
the distance, along the cycle, between any pair of vertices of A at least d.

The key restriction here is that �(G)≥n /2 only guarantees that G is 2-connected.
Consider the graph G0 = (A∪B)+{u,v} where A=B=K(n−2)/2 and suppose we select
n / (2d) vertices in A (see Fig. 1). This graph has minimum degree n /2, but the chosen
vertices cannot be spread evenly around a hamiltonian cycle.

In 1984, El-Zahar [5] conjectured the following.

FIGURE 1. Sharpness of Theorem 1.
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Conjecture 1. Any graph G on n vertices and minimum degree at least � 1
2 n1	+· · ·+

� 1
2 nk	, where n1 +·· ·+nk =n, has a 2-factor with cycle lengths n1, . . . ,nk.

This conjecture is known to be true for large values of n (see S. Abbasi’s disserta-
tion [1]). Our results combine the ideas of Conjecture 1 and Theorem 1.

A graph is said to be k-linked if for every choice of 2k vertices x1, . . . ,xk and y1, . . . ,yk,
there exists a collection of vertex disjoint paths Pi = (xi,yi) for all i. We use, in our
proofs, the following result of Thomas and Wollan [7].

Theorem 2. If a graph G is 10k-connected, then G is k-linked.

A graph G is said to be panconnected if for each pair of vertices u,v∈V(G), there
exists a path of length l in G for each l satisfying distG(u,v)≤ l≤n−1. Finally, we also
make use of the following result of Williamson [8].

Theorem 3. If �(G)≥ (n+2) /2, then the graph G is panconnected.

2. MAIN RESULTS

For a given integer t, for ease of notation, we consider all indices modulo t. Using the
above results, we prove the following theorems.

Theorem 4. Let t≥3 be an integer and let 0<�<1/ (2t). For n≥7t6 ×1010 /�6, let G be
a graph of order n having �(G)≥n /2 and �(G)≥2�t /2	. For every X ={x1,x2, . . . ,xt}⊆
V(G), there exists a hamiltonian cycle H such that distH(xi,xj)≥ (1 / t−�)n for
all 1≤ i<j≤ t. Furthermore, the minimum degree and connectivity conditions are
sharp.

The lower bound on n in this and all of our results comes from Lemma 2. One may
easily verify that this particular bound dominates all bounds from other inequalities.
By choosing �′ =� / t, the following corollary to Theorem 4 becomes obvious.

Corollary 5. Let t≥3 be an integer and let 0<�<1/ (2t2). For n≥7t12 ×1010 /�6,
let G be a graph of order n having �(G)≥n /2 and �(G)≥2�t /2	. For every X =
{x1,x2, . . . ,xt}⊆V(G), there exists a hamiltonian cycle H and an ordering of the elements
of X such that (1 / t−�)n≤distH(xi,xj)≤ (1 / t+�)n for all 1≤ i≤ t. Furthermore, the
minimum degree and connectivity conditions are sharp.

We also consider the case in which we would like the chosen vertices {x1, . . . ,xt}
to appear in order along the hamiltonian cycle and at approximately predetermined
distances.

Theorem 6. Let t≥3 be an integer and �,�1,�2, . . . ,�t positive real numbers
having

∑t
i=1 �i =1 and 0<�<min{�2

i /2}. For n≥7t12 ×1010 /�6, let G be a graph
of order n having �(G)≥ (n+ t−1) /2 or �(G)≥n /2 and �(G)≥3t /2. For every
X ={x1,x2, . . . ,xt}⊆V(G), there exists a hamiltonian cycle H containing the vertices of
X in order such that (�i −�)n≤distH(xi,xi+1)≤ (�i +�)n for all 1≤ i≤ t. Furthermore,
the minimum degree and connectivity conditions are sharp.
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The sharpness of Theorems 4 and 6 are established, along with the proofs, in
Section 4. Aside from placing vertices on one long cycle, we also place chosen vertices
on different cycles of a 2-factor with prescribed cycle lengths. The following theorem
finds such a 2-factor.

Theorem 7. Let t≥3 be an integer and �,�1,�2, . . . ,�t be positive real numbers having∑t
i=1 �i =1 and 0<�<min{�i /2}. For n≥7t6 ×1010 /�6, let G be a graph of order

n having �(G)≥ (n+ t−1) /2. For every set X ={x1,x2, . . . ,xt}⊆V(G), there exists a
spanning collection C of vertex disjoint cycles Ci with xi ∈Ci such that (�i −�)n≤|Ci|≤
(�i +�)n for all 1≤ i≤ t. Furthermore, the minimum degree condition is sharp for many
choices of �1, . . . ,�t and �.

The degree condition in this theorem is sharp because of the following example. Let
G1 =Kt +(K(n−t)/2∪K(n−t)/2) when n− t divisible by 2. Clearly �(G1)= (n+ t) /2−1. If
we choose S to be the vertices of the Kt and we choose �1,�2, . . . ,�t so there is no
subset I0 ⊂ [t] of the index set such that 1

2 −�t≤∑
i∈I0

�i ≤ 1
2 +�t, then this graph cannot

contain the desired collection of cycles.
Also similar to the above results, the following theorem finds a spanning linkage

with approximately prescribed lengths on the paths of the linkage.

Theorem 8. Let t≥3 be an integer and �,�1,�2, . . . ,�t be positive real numbers having∑t
i=1 �i =1 and 0<�<min{�i /2}. For n≥7t6 ×1010 /�6, let G be a graph of order n

having �(G)≥ (n+2t−1) /2. For every set X ={x1,x2, . . . ,xt,y1,y2, . . . ,yt}⊆V(G) of 2t
vertices, there exists a spanning collection P of vertex disjoint paths Pi = (xi, . . . ,yi)
such that (�i −�)n≤|Pi|≤ (�i +�)n for all 1≤ i≤ t. Furthermore, the minimum degree
condition is sharp for many choices of �1, . . . ,�t and �.

The sharpness of Theorem 8 is given by the following construction. Let G2 =
K2t +(K(n−2t)/2 ∪K(n−2t)/2) when n−2t divisible by 2. Clearly �(G1)= (n+2t) /2−1.
If we choose S to be the vertices of the K2t and we choose �1,�2, . . . ,�t so there is
no subset I0 ⊂ [t] of the index set such that 1

2 −�tn≤∑
i∈I0

�i ≤ 1
2 +�tn, then this graph

cannot contain the desired linkage.
The following is an easy corollary to Theorem 8. The sharpness is also given by the

same example as above.

Corollary 9. Let t≥3 be an integer and �,�1,�2, . . . ,�t be positive real numbers having∑t
i=1 �i =1 and 0<�<min{�i /2}. For n≥7t6 ×1010 /�6, let G be a graph of order

n having �(G)≥ (n+2t−3) /2. For every set X ={x1,x2, . . . ,xt}⊆V(G) and Y ⊆V(G)
with t≤|Y|≤n /8, there exists a spanning collection P of vertex disjoint paths Pi =
(xi, . . . ,yi) where yi ∈Y such that (�i −�)n≤|Pi|≤ (�i +�)n for all 1≤ i≤ t. Furthermore,
the minimum degree condition is sharp for many choices of �1, . . . ,�t and �.

Given a subgraph H ⊂G with 2t chosen vertices X =x1,x2, . . . ,xt, y1,y2, . . . ,yt ⊆H,
the following corollary to Theorem 8 constructs a spanning collection of vertex disjoint
paths from xi to yi in G\H of lengths within the prescribed range.

Corollary 10. Let t≥3 be an integer and �,�1,�2, . . . ,�t be positive real numbers
having

∑t
i=1 �i =1 and 0<�<min{�i /2}. For n≥7t6 ×1010 /�6, let G be a graph

of order n and let H ⊂G with |H|=r. Suppose �(G)≥ (n+r−3) /2. For every set
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X={x1,x2, . . . ,xt,y1,y2, . . . ,yt}⊆V(H) of 2t vertices, there exists a spanning collec-
tion P of vertex disjoint paths Pi = (xi, . . . ,yi)⊂ (G\H) such that (�i −�)(n−r)≤|Pi|≤
(�i +�)(n−r) for all 1≤ i≤ t. Furthermore, the minimum degree condition is sharp for
many choices of �1, . . . ,�t and �.

In particular, this corollary implies that one may place a linear forest on a hamiltonian
cycle in a prescribed order with a given orientation on each path and with approximately
given distances between the paths of the linear forest. Similar work may be found
in [3].

The main work of the proofs is contained in the four lemmas presented in the next
section. In Section 4, we bring together the lemmas to prove Theorems 4 and 6. The
proofs of Theorems 7 and 8 are omitted since they are almost identical to the proof of
Theorem 6.

Each proof begins with the application of a Setup Lemma (see Lemma 4) which
provides a hamiltonian cycle similar to the desired cycle but with only rough bounds
on the distances between vertices. With the structure provided by the Setup Lemma, if
certain conditions are satisfied, we then apply a Swapping Lemma (see Lemma 2) to
adapt the structure to make it closer to the desired cycle. If the above conditions are
not satisfied, we ignore the structure previously built and apply a Rebuilding Lemma
(see Lemma 3) to build the desired cycle directly. We also make use of a technical
Absorbing Lemma (see Lemma 1), within the proofs of the other lemmas, to clean up
any vertices that are “misbehaving”.

3. LEMMAS

We now provide lemmas which are necessary for the proofs of Theorems 4 and 6.
The first lemma tells how to absorb vertices into a long cycle. By “absorbing” we
mean making a cycle larger by including more vertices. Since adding vertices to a
cycle sometimes involves removing other vertices, we must be careful in the absorbing
process.

Lemma 1 (Absorbing). Let t≥1, n≥5t be integers, and let G be a graph of order n
having �(G)≥n /2 and let X ={x1, . . . ,xt} be an ordered set of t vertices in G. If there
exists a cycle C of order at least 3n /4+ t containing the vertices of X in the given
order, then there exists a hamiltonian cycle H containing the vertices of X in the given
order such that distH(xi,xi+1)≥distC(xi,xi+1) for all 1≤ i≤ t.

Proof. Proceed by contradiction. Let J be a smallest collection of vertices that
cannot be absorbed into C while maintaining distC(xi,xi+1) for all i. Let J′ be a
component of smallest order in J. If J′ is the single vertex v, then since �(G)≥n/2 it
follows that dC(v)≥n /2. Since |C|≤n−1, it follows that v is adjacent to two consecutive
vertices u and u+ of C; hence v can be absorbed into C, a contradiction. Thus, |J′|≥2.

If |J′|=2 with J′ ={u,v}, then since we have assumed J′ is connected, G[J′]
contains the edge uv. If one of u or v is adjacent to consecutive vertices along
the cycle, then we can make the same insertion as above. Also if u and v are
adjacent to vertices u′ and v′, respectively, with u′v′ ∈E(C), then we may replace
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u′v′ with u′uvv′ to absorb u and v into C. Both cases lead to a contradiction as
before.

Since dC(u),dC(v)≥n /2−1 and |C|≤n−2=2(n /2−1), and N(u) and N(v) satisfy
neither of the above cases, we know u and v must both be adjacent to every other
vertex along C and NC(u)=NC(v). Therefore, since n≥5t, there must exist some
vertex w∈C−(N(u)∪N(v)) with w /∈X. Let w− and w+ be the vertices adjacent to w
along C and, without loss of generality, select the edges uw− and vw+. Then C′ =
(. . . ,w−,u,v,w+, . . .) contradicts the maximality of C.

Finally, suppose |J′|≥3. Then there exists a path (v1,v2,v3) on three vertices in J′.
Clearly dC(vi)>n /2−|J′| for all i. Also note that 3n /4+ t≤|C|≤n−|J′|. Therefore,
since |J′|≤|J|≤n /4− t, we get:

dC(v1)+dC(v2)+dC(v3)>
3n

2
−3|J′|>n−|J′|+ t≥|C|+ t.

From the previous cases, we may assume vi, and similarly vi and vj together are
not adjacent to consecutive vertices for any 1≤ i<j≤3. Therefore, there must exist
at least t+1 vertices, wk such that viw

+
k ,vjw

−
k ∈E(G) for some i �= j and for 1≤k≤

t+1. Hence, there exists at least one vertex w∈G\X with viw+,vjw− ∈E(G). We may
now replace the path (w1,w,w2) with the path (w1,P,w2) (where P is any subpath of
(v1,v2,v3) of order at least 2) to again contradict the choice of J′ and finish the proof of
Lemma 1. �

The next two lemmas are the main components of our proofs. This first lemma
explains how to move path segments from one subpath of H to another. We will use
A, B, A∗ and B∗ to denote both paths and the vertex set of the corresponding path.
The context will make the usage clear to the reader.

The function f (c,c′) is given by

f (c,c′)=max

{
64

c′c2
,
16

c3

}
.

Lemma 2 (Swapping). Given constants c,c′>0, let G be a graph of order n>f (c,c′).
If A[a,a′] and B[b,b′] are disjoint paths with e(A,B)≥cn2, then there exist two other
disjoint paths A∗[a,a′], B∗[b,b′]⊆G[A∪B] such that |B|<|B∗|<|B|+c′n and |A∗|+
|B∗|≥|A|+|B|−64/c2.

The lower bound on n comes from inequalities (3) and (4), respectively.

Proof. Let A′ ⊆A denote the set of vertices v∈A with dB(v)≥cn2 / (2|A|). Since
e(A,B)≥cn2, we find

|A′| ≥
cn2 −(|A|−|A′|)

(
cn2

2|A|
)

|B|

≥ cn2

2|B| .

Assign a labeling l(v) to the vertices of A (and B) given by their distance from a
(or b), respectively, along A (or B). Define a crossing pair to be a pair of edges uy
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FIGURE 2. Swapping.

and vz with u,v∈A and y,z∈B such that l(u)<l(v) and l(z)<l(y). We call the vertices
u,v∈A of a crossing pair the base of the pair and y,z∈B the terminal vertices of the
pair. Define the gap of a crossing pair to be l(y)− l(z)>0. We will concern ourselves
only with crossing pairs with gap length at most 4 /c.

Consider Figure 2 consisting of two crossing pairs u1y1,v1z1 and u2y2,v2z2 where
d= l(v1)− l(u1)>0, e= l(u2)− l(v1)>0, f = l(v2)− l(u2)>0, g= l(y1)− l(z1)>0, h=
l(z2)− l(y1)≥0, and j= l(y2)− l(z2)>0. The goal of this lemma is to find two such
crossing pairs with

g+h+ j≤e≤c′n−(g+h+ j) (1)

and

d+ f +g+ j≤ 64

c2
. (2)

Within this structure, the new paths A∗ =a, . . . ,u1,y1, . . . ,z2,v2, . . . ,a′ and B∗ =
b, . . . ,z1,v1, . . . ,u2,y2, . . . ,b′ yield the desired pair of paths.

Partition the vertices of A′ into collections of �4/c	 consecutive (within A′ but
not necessarily consecutive within A) vertices. Notice there are at least c2n /8 such
collections. Call each such collection a chunk.

Claim 1. Given a chunk C, there are at least c|B| /2 crossing pairs based in C, whose
corresponding pairs of terminal vertices are pairwise disjoint in B, with gap length at
most 4/c.

Proof of Claim 1. Given a crossing pair, removing all edges incident to the terminal
vertices of this pair decreases �B(C) by at most 2. Using the fact that �B(C)≥cn2 /
(2|A|)≥2c|B|, it suffices to prove that as long as �B(C)≥c|B|, there exists a crossing
pair with gap length at most 4 /c. This would imply that there exist at least c|B| /2
crossing pairs with gap length at most 4 /c. Since all edges from the terminal pairs are
removed as the pairs are being chosen, the pairs are vertex disjoint within B.

Suppose Claim 1 is not true. By the above arguments, we may assume �B(C)≥c|B|
and there exists no crossing pair with gap length at most 4 /c. Index the vertices of C
as v1,v2, . . . such that l(vi)<l(vj) for all i<j. We know dB(v1)≥c|B| but no vertex of
C\v1 may be adjacent to any vertex that is the immediate predecessor of an adjacency
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of v1. Therefore, there are at least c|B|−1 vertices of B to which none of the vertices
of C\v1 may be adjacent.

For any i and j with i<j, dB(vi)≥c|B|, but we claim that vi can share at most
|B| / (4 /c)=c|B| /4 neighbors with vj. If vi and vj share c|B| /4+1 neighbors in B, then
two such neighbors u1 and u2 must have distB(u1,u2)≤4/c. Hence, {vi,u1,vj,u2} form
a crossing pair with gap length at most 4 /c which is a contradiction.

Therefore, vi has at least c|B|−c|B| /4=3c|B| /4 unshared adjacencies. This implies
that each vertex vi of C (aside from v1) forces at least 3c|B| /4−1 vertices of B to have
no adjacencies in C\{v1,v2, . . . ,vi}.

Recall that n≥ f (c,c′)≥16/c3 and |B|≥cn≥16/c2. After considering �4/ (3c)	
vertices of C, there remain at most

|B|−(c|B|−1)−
(

4

3c
−1

)(
3c|B|

4
−1

)
≤0 (3)

vertices of B remaining to which a vertex of C may be adjacent. Because |C|=4/c>4/
(3c), this is a contradiction and completes the proof of Claim 1. �

Given two crossing pairs u1y1,v1z1 and u2y2,v2z2, we say these pairs form a swapping
structure if l(ui)>l(vj) and l(zi)>l(yj) for some choice of i, j∈{1,2}. For this choice of
i and j, define the gap of the swapping structure to be l(zi)− l(yj) (i.e. the distance in
B between the vertices of the crossing pairs).

Claim 2. Any collection of �8/c	 chunks contains a swapping structure with gap h
for some 0≤h≤16/c2.

Proof of Claim 2. This claim employs a proof almost identical to that of Claim 1.
A chunk C is said to be to the right of another chunk C′ if the maximum index of a
vertex in C′ is smaller than the minimum index of a vertex in C.

First consider the left-most chunk R∗. The chunk R∗ has at least c|B| /2 crossing
pairs and consequently at least c|B| /2 “y”-vertices of these crossing pairs. It follows
that at least c|B| /2−1 vertices of B cannot be “z”-vertices of any crossing pairs from
other chunks, since this would create a swapping structure.

Suppose some number of chunks have been considered and, as before, consider the
left-most chunk R of the remaining collection. For every segment of length 16/c2 in B,
we claim that R may share at most 4 /c “y”-vertices with chunks to its right. Otherwise,
there exists a desired swapping structure within such a segment.

Therefore, this chunk may share a total of at most (4 /c)(|B| / (16 /c2))=c|B| /4
“y”-vertices with chunks to its right. This implies that at least c|B| /4 “y”-vertices are
unshared.

Recall that n≥ f (c,c′)≥64/ (c′c2), so |B|≥cn≥64/ (c′c). Hence, after considering
4/c chunks, there are

|B|−
(

c|B|
2

−1

)
−

(
4

c
−1

)(
c|B|

4

)
≤0 (4)

vertices available in B for “z”-vertices of crossing pairs, which is again a contradiction
completing the proof of Claim 2. �

Given a chunk C, define the span of C to be the number of vertices v∈A with
l(v1)≤ l(v)≤ l(v2) for some v1,v2 ∈C. Since the chunks are subsets of A′ of order 4 /c
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and |A′|≥ (c /2)|A|, the average span of the chunks is at most 8 /c2. Recall that there are
at least (c2 /2)|A| chunks. From this, we see that the number of chunks of span at most
16/c2 is at least (c2 /16)|A|. We call a chunk good if its span is at most 16/c2. Since
there are many good chunks, we will only consider good chunks for the remainder of
this proof.

Our goal is to mark good chunks that are a particular distance apart within A. Start
at the beginning of A (in terms of the original labeling) and mark the first good chunk.
Since (g+h+ j)≤ [2(4 /c)+16/c2] (recall our goal is inequality (1)), we skip the next
32(c+1) /c2>[2(4 /c)+16/c2] vertices of A. This bounds the distance between marked
chunks. We then mark the next (complete) good chunk and repeat this process until
we have crossed the entire length of A.

Since at most 8 /c+9 chunks may intersect each skipped segment, there are at
least c2|A| / (16((8 /c)+9)) marked chunks. Consider any segment of c′n /2 consecutive
vertices of A. The average number of marked chunks that we see in such a segment is
(c2c′ / (32((8 /c)+9)))n; so if n is sufficiently large, there must exist a segment containing
at least 8 /c marked chunks.

By Claim 2, there exists a swapping structure within these marked chunks. This
is the desired swapping structure (see inequality (1)) since, using the notation from
Figure 2, we have shown that d, f ,g, j≤4/c and h≤16/c2 in Claims 1 and 2. Our
bounds on e give us

e ≥
[

32(c+1)

c2

]

≥ (g+h+ j)

and

e ≤ c′n
2

≤ c′n−
(

16

c2

)
−2

(
4

c

)

≤ c′n−(g+h+ j)

for n sufficiently large. Also we have shown that d+ f +g+ j≤64/c2 which proves
inequality (2). This completes the proof of Lemma 2. �

If there exists a partition of G into two sets with very few edges from one set to the
other, the following lemma constructs the desired hamiltonian cycle directly.

Lemma 3 (Rebuilding). Let t≥3 be an integer and �1,�2, . . . ,�t positive real numbers
having

∑t
i=1 �i =1 and 0<�<min{�i /2}. For sufficiently large n, let G be a graph

of order n having �(G)≥ (n+ t−1) /2 or �(G)≥n /2 and �(G)≥3t /2. If there exists
a partition of V(G) into sets A and B with |A|, |B|≥�n and e(A,B)<�2n2 /1600, then
for every X ={x1,x2, . . . ,xt}⊆V(G), there exists a hamiltonian cycle H containing the
vertices of X in the given order such that (�i −�)n≤distH(xi,xi+1)≤ (�i +�)n for all
1≤ i≤ t.

Journal of Graph Theory DOI 10.1002/jgt



DISTRIBUTING VERTICES ON HAMILTONIAN CYCLES 37

Proof. Let DA (or DB) be the set of vertices in A (respectively B) with each vertex of
DA (or DB) having more than (� /40)n edges into B (respectively A) and let D=DA ∪DB.
From the hypotheses of the lemma, |DA|, |DB|<(� /40)n.

Claim 1. For any set A′ ⊆ (A\DA) with |A′|≥ (� /5) /n+2, G[A′] is panconnected. For
any set B′ ⊆ (B\BD) with |B′|≥ (� /5)n+2, G[B′] is panconnected.

Proof of Claim 1. Since �(G[A\DA])≥n /2−(� /40)n−(� /40)n=n /2−(� /20)n
and, by symmetry, �(G[B\DB])≥n /2−(� /20)n, we see that |A|, |B|≤n /2+(� /20)n.
Hence:

�(G[A\DA]) ≥ n

2
− �

20
n

= |A|+|B|
2

− �

20
n

≥
|A|+|A|− �

10
n

2
− �

20
n

= |A|− �

10
n

≥ |A\DA|− �

10
n.

Thus given A′ ⊆A\DA with |A′|≥ (� /5)n+2,

�(A′) ≥ |A′|− �

10
n

≥
( |A|+2

2
+ �

10
n

)
− �

10
n

≥ |A|+2

2
.

Hence, by Theorem 3, we know G[A′] is panconnected. By symmetry, G[B′]⊆
(B\DB) is also panconnected. This completes the proof of Claim 1. �

The proof of this lemma is divided into cases based on the connectivity.

Case 1. Suppose �(G)≥5t.

Choose a system X′ ={u1,v1,u2,v2, . . . ,ut,vt} of two distinct representatives for each
of the vertices of X with xiui,xivi ∈E(G) for all i such that X′ ⊆G\(X∪D). By our
degree conditions, there exists such a set X′. Since G is 5t-connected, we know there
exists a set of 2t vertex disjoint paths from A\D to B\D in G\(X∪X′). Let M be the
collection of shortest such paths (see Fig. 3).

Suppose we have constructed paths P1, . . . ,Pi−1 for some 1≤ i<t where Pj =
P[vj, . . . ,uj+1] for j<i. Further suppose |Pj|=��jn�. Let vi,ui+1 ∈X′ and, without loss of
generality, suppose vi ∈A. Let Qi =V(P1)∪·· ·∪V(Pi−1) and let A′ = [A\(D∪X∪X′∪
M∪Qi)]∪{vi,u} for some u∈A∩M\(D∪Qi). If �in≤|A′|−((� /3)n+3t+2)−(2t−i+1),
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FIGURE 3. Graph G.

we use the fact that G[A′] is panconnected to construct a path P′
i of order �in−�i in

A′ from vi to u where �i =dist(u,ui+1).
By Claim 1, since |A′ \P′

i|≥ (� /3)n+2>(� /5)n+2, it follows that G[A′ \P′
i] is

panconnected. Construct the path Pi by using P′
i and the path of length �i from u to

ui+1. Note that this uses at most 2 vertices from A′ or B′; so |A′ \Pi|≥ (� /3)n which
means the resulting graph is still panconnected by Claim 1.

If �in>|A′|−((� /3)n+3t+2)−(2t− i+1), we again use the fact that G[A′] is pancon-
nected to create a path of length 2 from vi to u. Let v be the vertex of M∩B such
that u, . . . ,v is a path of M. First suppose �in≤|B′|−((� /3)n+3t+2)−(t− i), where
B′ = [B\(D∪X∪X′∪M∪Qi)]∪v. We take the path of length 2 from vi to u followed
by the path from u to B through M, and finally, using the panconnectivity of G[B′],
complete our path with a path of the desired length within B′.

Again breaking this into cases as above, based on whether ui+1 is in A or B, construct
Pi. This process may involve crossing from A to B and back (using M) at most twice
per path; so since M originally contains 2t paths, the construction process will never
run out of paths.

If �in>|B′|−((� /3)n+3t+2)−(t− i), we mark vi as reserved and construct the asso-
ciated path later. This reservation of vertices happens at most twice. Note that if we had
reserved at least three vertices, then since �<min{�in /2}, we could have constructed
one of the reserved paths as before.

Suppose, without loss of generality, that vt is the single remaining vertex in X′
(whether it was reserved or not) and vt ∈A and let u be a remaining vertex of A∩M\
(D∪Qt). If u1 ∈B, then use the panconnectivity of G[A′] to connect vt to u using all
of A′, take the path in M from u to B and use the panconnectivity of B′ to cover B′.
This creates a path of order lt for �tn≥ lt>�tn−|D|−|M|>(�t −(� /2))n as long as n is
sufficiently large. If u1 ∈A, we take a path vt, . . . ,u of length 2, cover all of B′ on a
path between two vertices of M, come back to A and cover A′ to again construct the
desired path (see Fig. 4).
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FIGURE 4. Path construction.

Finally, suppose vt−1 and vt are the two reserved vertices of X′. One may show that
|A′|, |B′|,��t−1n	, and ��tn	 are all within (� /2)n of each other. As above, we create
short paths from vt−1 and ut to vertices v′

t−1,u′
t ∈A and from vt and u1 to vertices

v′
t,u

′
1 ∈B. We now use the panconnectivity of G[A′] and G[B′] to construct a path

P′
t−1 =v′

t−1, . . . ,u′
t of length |A′| and a path P′

t =v′
t, . . . ,u′

1 of length |B′|. We then let
Pi =vi, . . . ,v′

i, . . . ,u′
i+1, . . . ,ui+1 for i= t−1, t. Because |A′|, |B′|,��t−1n	, and ��tn	 are

all within (�/2)n of each other, one may easily check that these paths are of length li with:(
�i −

�

3

)
n+3t+2−|DA|<li<

(
�i +

�

3

)
n+3t+2,

so we get: (
�i −

�

2

)
n<li<

(
�i +

�

2

)
n.

Notice, in this process, we can miss at most |DA|+|DB|+(� /5)n+2+6t<(� /2)n
vertices for n sufficiently large. Applying Lemma 1, the desired hamiltonian cycle
results.

Case 2. Suppose (3t /2)≤�(G)<5t.

Let K be a minimum cutset of G with 3t /2≤|K|<5t. Since �(G)≥n /2, there cannot
be more than two components of G\K. Call these components A and B.

We call a vertex v∈K blocked to A (or B) if for every edge e from v into A
(respectively, B), e=vxi for some xi ∈X. For each vertex v∈K\X which is blocked to
A, we choose a distinct vertex xi ∈N(v)∩X∩A. Call this the blocking vertex. We call the
vertices of K∩X with only one edge to either A\X (or B\X) half-blocked to A (or B).

For v∈K\X which is blocked by a vertex xi ∈A∩X, remove all edges to A∩X\xi and
move v to B and move xi to K. By the choice of these removed edges, the connectivity
will not be affected. We have now eliminated all the blocked vertices of K\X and
possibly created more half-blocked vertices.
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FIGURE 5. Types of paths.

We next remove all edges between vertices of X to create a new graph G′. Note that
these edges are useless in the construction of the desired cycle. Let K′ be a minimum
cutset in G′ containing the maximum number of vertices of X and observe that we
have the following facts about G′:

• There are no blocked vertices in K′.
• �(G′)≥�(G)−(t /2)≥ t.
• No half-blocked vertices could also have been blocked or blocking.

For the sake of notation, we distinguish four different types of paths that we would
like to construct. A path Pi from xi to xi+1 is of Type I if xi ∈K′ and xi+1 /∈K′ or xi /∈K′
and xi+1 ∈K′. A path Pi is of Type II if xi,xi+1 ∈A or both are in B. A path Pi is of
Type III if xi,xi+1 ∈K′. Finally, a path Pi is of Type IV if xi ∈A and xi+1 ∈B or xi ∈B
and xi+1 ∈A. See Figure 5.

Since �(G)≥n /2 and |K′|<5t, we know n /2−5t≤|A|, |B|≤n /2+5t and, by Claim 1,
G[A] and G[B] are panconnected. Using the same argument as in the previous case, as
long as there are enough paths from A to B, we may construct all paths as desired. If
�(G′)>t, the reader may verify that there are enough paths from A to B to complete
the above argument. If �(G′)= t, we know every vertex of X was either blocked or
blocking. This implies that all the paths are of Types II or IV . By tedious case analysis,
the paths may be constructed as above to get the desired hamiltonian cycle.

Case 3. Suppose �(G)<3t /2.

Let k=ka +kb where ka is the number of blockings or half-blockings into A and
likewise kb for B. From the previous case, we know that if �(G)≥ t+1+k then
we may construct the paths to get the desired hamiltonian cycle. Consider a vertex
v∈A and a vertex w∈B which are not involved in any half-blocking. The vertex v
is adjacent to at most �(G)−ka vertices of K and w is adjacent to at most �(G)−
kb vertices of K. Therefore, |A|≥d(v)+1−(�(G)−ka)≥ (n+ t+1) /2−�(G)+ka and
similarly |B|≥ (n+ t+1) /2−�(G)+kb. Hence, n=|A|+|B|+�(G)≥n+ t+1−�(G)+
ka +kb or �(G)≥ t+ka +kb +1 and we have our result.

This completes the proof of Lemma 3. �
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Our final lemma provides some structure similar to that in Theorem 1 but with the
chosen vertices in a given order on the hamiltonian cycle.

Lemma 4 (Setup). Let t≥3 be an integer and for sufficiently large n, let G be a
graph of order n having �(G)≥ (n+ t−1) /2 or �(G)≥n /2 and �(G)≥3t /2. For every
X ={x1,x2, . . . ,xt}⊆V(G), there exists a hamiltonian cycle H containing the vertices of
X in order such that distH(xi,xi+1)≥ (1 / (6400t3(1−1/ (2t))))n for all 1≤ i≤ t.

Proof. Let n be sufficiently large and G be as stated. Let {x1, . . . ,xt}⊆V(G) and let
�=1/ (2t). If there exists a partition of V(G) into two sets A and B, having |A|, |B|≥
�n such that e(A,B)<(�2 /1600)n2, then we may apply Lemma 3 to get the desired
hamiltonian cycle. Subsequently, we need to only show how to proceed if such a
partition does not exist.

Claim 1. Suppose we are given a graph G of sufficiently large order n with �(G)≥n /2
and a real number �>0. If, for every partition of V(G) into two sets A and B with
|A|, |B|≥�n, we have e(A,B)≥ (�2 /1600)n2, then �(G)≥ (�2 /1600(1−�))n.

Proof of Claim 1. We proceed by contradiction. Let K be a cutset of order less
than (�2 / (1600(1−�))n. Since �(G)≥n /2, we know there are only two components
(call them A and B) of G\K and since |K|<�2 / (1600(1−�))n and �(G)≥n /2, we know
|A|, |B|>�n. Let A′ =A∪K. By assumption, e(A′,B)≥ (�2 /1600)n2 and all these edges
must be incident to vertices in K. Therefore, there exists a vertex v∈K such that,

dB(v)≥
�2n2

1600
�2n

1600(1−�)

= (1−�)n.

However, since |A|>�n, this is a contradiction, completing the proof of Claim 1. �

Since �(G)≥n /2, we may choose a system X′ of two distinct representatives from
the neighborhood of each vertex of X. Also since �(G)≥n /2, we wish to create a
collection P of 2t vertex disjoint paths in G\X two of which start at each vertex of X.
Further, we wish each path to have length ��2n / (1600(1−�)2t)�−6 which ensures that
�(G\V(P))≥10t. Note, these paths are easily constructed using a greedy approach
within the neighborhood of the end vertex of the path under construction.

Let P=∪V(Pi) for Pi ∈P. By Theorem 2, we know G\(P∪X) is t-linked. This
implies that we may link, using only vertices of G\(P∪X), the ends of the paths of P
to create a cycle of length at least (�2 / (1600(1−�)))n−11t containing the vertices of
X in the given order.

Choose a longest cycle H having distH(xi,xj)≥�2n / (1600(1−�)t)−11 for i �= j≤ t.
We may assume |H|<3n /4+ t; otherwise applying Lemma 1, the desired hamiltonian
cycle results.

First suppose |H|≤ (n+ t−1) /2. This implies dG\H(v)≥1 for all v∈H. Also any
vertex of G\H may not be adjacent to consecutive vertices of H, so �(G[G\H])≥
(n+ t−1−|H|) /2>|G\H| /2. By Dirac’s Theorem [4], this implies G[G\H] is hamil-
tonian connected. At this point, we simply choose two consecutive vertices v,v+ ∈V(H)
and neighbors of these vertices u,u′ ∈G\H. Now create H′ from H by removing the
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edge vv+ and inserting the path v,u, . . . ,u′,v+ using all of G\H. Notice |H′|>|H|,
which contradicts the choice of H.

Now suppose (n+ t−1) /2<|H|<3n /4+ t. If J =G\H, then n /4− t<|J|<(n− t+1)/2.
By assumption, e(H,J)≥�2n2 /1600; hence, it follows that there exists a path
Pi = (xi,xi+1)H such that e(Pi,J)≥�2n2 / (1600t). Consequently, there are at least
�2n2 / (1600t|J|)−1≥�2n / (800t)−1 vertices v∈Pi with dJ(v)≥2. Since |Pi|<3n /4,
the average distance between vertices v such that dJ(v)≥2 is at most:

|Pi|
�2n

800t
−1

<
300t

�2
<

n

4
− t<|J|,

if n is sufficiently large. Therefore, there exist two vertices u,v∈Pi with distPi(u,v)<|J|
such that dJ(u),dJ(v)≥2.

Recall that no vertex of J may be adjacent to consecutive vertices of H; so �(J)≥
(n+ t−1) /2−|H| /2≥ (|J|+2) /2; so, by Theorem 3, J is panconnected. Let u′ ∈J∩N(u)
and let v′ ∈J∩N(v)\{u′}. There exists a hamiltonian path P of J from u′ to v′. We
now replace Pi =xi, . . . ,u, . . . ,v, . . . ,xi+1 with the path P′

i =xi, . . . ,u,u′,P,v′,v, . . . ,xi+1.
Because |J|>distH(u,v), it follows that |P′

i|>|Pi| contradicting the choice of H and
completing the proof of Lemma 4. �

4. PROOFS OF THE MAIN RESULTS

Theorem 4. Let t≥3 be an integer and let 0<�<1/ (2t). For n≥7t6 ×1010 /�6, let G be
a graph of order n having �(G)≥n /2 and �(G)≥2�t /2	. For every X ={x1,x2, . . . ,xt}⊆
V(G), there exists a hamiltonian cycle H such that distH(xi,xj)≥ (1 / t−�)n for all
1≤ i<j≤ t.

Proof. By Theorem 1, we know there exists a hamiltonian cycle H in G such that,
for a given set of t vertices X ={x1, . . . ,xt}, distH(xi,xj)≥n / (2t) for all i �= j. Let H be
the set of hamiltonian cycles which satisfy Theorem 1.

For each H in H, let P be the set of path segments of H between the vertices of
X including both end vertices. Order the paths Pi ∈P from shortest to longest and let
k=min{i : |Pi|≤|Pi+1|−(� / t2)n}. If no such k exists, one may easily verify that H is
the desired hamiltonian cycle. Let I be the set of indices of paths of order less than
n / t−�n and define �(H)=∑

i∈I tn/t−�n−|Pi|.
Let H be the graph in H with �(H) minimum. If I =∅, this cycle H is the desired

hamiltonian cycle; so suppose not. Partition the path segments into B=⋃k
i=1 Pi (where

k is defined above) and A=P\B. If the number of edges between A and B is at
least (�2 /1600)n2, there must exist a pair of paths A∈A and B∈B with e(A,B)≥
(�2 /1600t2)n2. First applying Lemma 2 with �i =1/ t for all i, c=�2 / (1600t2) and
c′ =�n / (2t2), and then Lemma 1 to reabsorb any lost vertices yields a hamiltonian
cycle H′ ∈H with �(H′)<�(H), which is a contradiction. Note that the lower bound
on the value of n comes from the application of Lemma 2.

Suppose the number of edges between A and B is less than (�2 /1600)n2. Let K be
a minimum cutset of G. If |K|≥3t /2, then we may apply Lemma 3 to complete the
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FIGURE 6. The graph G1.

proof; so assume |K|<3t /2. By the minimum degree condition, there can only be two
components A and B of G\K; furthermore, |K|≥2�t /2	. For every vertex xi /∈K, make
a short path (by the degree condition, this path has length at most 2) to a vertex vi of
K and contract the path to a new vertex xi ∈K. Notice we have only removed at most
2t vertices and since |K|<3t /2, A and B are very dense; so we have not decreased the
connectivity of G below 2�t /2	. If t is even, we may connect x1 to x2 through A, x2 to
x3 through B, and so on to get a hamiltonian cycle with all vertices essentially equally
spaced.

If t is odd, there exists at least one vertex v∈K\X and we may again connect all but
one of the paths as above. There will be one path Pt = (xt,x1) remaining that cannot fit
into only one of A or B. For this path, we must use the vertex v to cross between A
and B to complete the desired hamiltonian cycle.

To see the sharpness of the minimum degree condition, consider the graph G0
consisting of two cliques of order (n+1) /2 sharing a common vertex. The graph G
has �(G0)≥n /2−1 and G0 is not hamiltonian.

To see the sharpness of the connectivity condition, consider the graph G1 in Figure 6.
This graph consists of two sets A=B=K(n−t)/2 and an A,B separating set C with
|C|=2�t /2	−1 (for n of the correct parity). Notice |C| is always odd and |C|≤ t. If
all of the vertices X are in A (or B), we would need at least �t /2	 of our path segments
to cross into B and hence use at least 2�t /2	 vertices of C\X but |C|=2�t /2	−1; so
it is impossible to construct the desired hamiltonian cycle.

This completes the proof of Theorem 4. �

Theorem 6. Let t≥3 be an integer and �,�1,�2, . . . ,�t positive real numbers
having

∑t
i=1 �i =1 and 0<�<min{�2

i /2}. For n≥7t12 ×1010 /�6, let G be a graph
of order n having �(G)≥ (n+ t−1) /2 or �(G)≥n /2 and �(G)≥3t /2. For every
X ={x1,x2, . . . ,xt}⊆V(G), there exists a hamiltonian cycle H containing the vertices
of X in order such that (�i −�)n≤distH(xi,xi+1)≤ (�i +�)n for all 1≤ i≤ t.

Proof. By Lemma 4, there exists a hamiltonian cycle H with the vertices of X in
the given order and distH(xi,xi+1)≥�n for all xi ∈X. Applying Lemmas 2 and 3 as in
the previous proof, the desired result follows. Note that the lower bound on the value
of n comes from the application of Lemma 2.
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FIGURE 7. The graph G2.

Again the sharpness of the minimum degree bound follows by considering the graph
G0 used in Theorem 4. To see the sharpness of the connectivity bound, consider the
graph G2 =A∪B∪C where A=B=K(n−3t/2+1)/2 and C=K3t/2 −1 (see Fig. 7).

Choose a set SA of t /4 vertices in A and a set SB of t /4 vertices in B, as well as
two disjoint sets of t /4 vertices SC1 and SC2 in C. Now join each vertex of SA to each
vertex of SC2 and each vertex of SB to each vertex of SC1 . The set SC1 will contain
{x1,x3, . . . ,xt/2−1}, SB will contain {x2,x4, . . . ,xt/2}, SC2 will contain {xt/2+2,xt/2+4, . . . ,xt},
and SA will contain {xt/2+1,xt/2+3, . . . ,xt−1} (as shown in Fig. 7).

For each vertex v∈C which does not already have any edges to A (likewise B), all
edges are added from v to A (respectively B). Notice, each path we construct must use
a vertex of C\X; hence, we need |C|≥3t /2.

This completes the proof of Theorem 6. �
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