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a b s t r a c t

For an integer kwith k ≥ 2 and a pair of connected graphs F1 and F2 of order at least three,
we say that {F1, F2} is a k-forbidden pair if every k-connected {F1, F2}-free graph, except
possibly for a finite number of exceptions, is Hamiltonian. If no exception arises, {F1, F2} is
said to be a strong k-forbidden pair. The 2-forbidden pairs and the strong 2-forbidden pairs
are determined by Faudree and Gould (1997) [11] and Bedrossian (1991) [1], respectively.
All of them contain K1,3. In this paper, we prove that {K1,k+1, P4} is a strong k-forbidden
pair, which shows that K1,3 is not always necessary in a k-forbidden pair for k ≥ 3. On the
other hand, we prove that each k-forbidden pair contains K1,l for some l ≤ k+ 1. We also
discuss several other Hamiltonian properties of k-connected {K1,k+1, P4}-free graphs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Wewill generally followWest [21] for terminology and notation, and consider simple graphs only. For a connected graph
F , a graph G is said to be F-free if it does not contain an induced subgraph isomorphic to F . The graph F is called a forbidden
subgraph. More generally, for a set of connected graphs {F1, F2, . . . , Fk}, a graph G is said to be {F1, F2, . . . , Fk}-free if G is
Fi-free for each i, 1 ≤ i ≤ k. The graphs F1, . . . , Fk are called forbidden subgraphs. In order to avoid triviality, we assume
that all forbidden subgraphs have order at least three.

Hamiltonicity involving a set of two or three forbidden subgraphs has been studied actively for years.We refer the reader
to Faudree [9] for a survey of this topic. Bedrossian [1] characterized all the pairs of forbidden subgraphs that force the
existence of aHamiltonian cycle in a 2-connected graphwithout any exception. Later Faudree andGould [11] extended it and
characterized all the pairs of forbidden subgraphs that force a 2-connected graph to be Hamiltonian, allowing finitely many
exceptions. These two papers opened up a new vista in the research of Hamiltonicity and forbidden subgraphs. In [5,12,14],
the characterization of the triples forcing Hamiltonicity in a 2-connected graph was completed under the assumption that
no exception is allowed. The same problem was addressed in [12,13] under the assumption that finitely many exceptions
are allowed, but a complete characterization has not been obtained yet. A similar problem for Hamiltonian-connectedness
was discussed in [3,6]. While every Hamiltonian-connected graph is 3-connected, a characterization of forbidden pairs for
Hamiltonian-connectedness in the class of 3-connected graphs appears to be far from completed.

In this type of problem, if we impose higher connectivity in the assumption, the class of graphs in consideration becomes
smaller and hence a weaker condition may guarantee Hamiltonian properties. Therefore, if we raise the connectivity, the
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number of forbidden pairs or triples may increase. It actually happens for 4-connected graphs. In [4], Broersma et al. gave a
pair of forbidden subgraphswhich guarantees the existence of aHamiltonian cycle in a 4-connected graph. Later Pfender [18]
extended this result by giving another pair. Neither pair guarantees Hamiltonicity of a 2-connected graph, hence they do
not belong to the set of 2-forbidden pairs determined in [11]. Note that both pairs contain K1,3.

In this paper, we consider pairs of forbidden subgraphs that force Hamiltonicity in a graph of high connectivity. Let k be
an integer with k ≥ 2, and let F1 and F2 be connected graphs of order at least three. Then {F1, F2} is called a k-forbidden
pair for Hamiltonian graphs, or simply a k-forbidden pair, if there exists a positive integer N such that every k-connected
{F1, F2}-free graph of order at least N is Hamiltonian. If we can take N = k + 1 in this definition, or equivalently every
k-connected {F1, F2}-free graph is Hamiltonian without any exception, then {F1, F2} is called a strong k-forbidden pair. The
ultimate goal would be to characterize all k-forbidden pairs for every k, but considering the long-standing conjecture by
Matthews and Sumner [17], we are not optimistic. We will discuss this in the concluding remarks.

With the background stated above, the purpose of this paper is to investigate k-forbidden pairs for k ≥ 3 and observe
the difference from 2-forbidden pairs. According to the characterization in [11], each 2-forbidden pair contains a claw. To
show a contrast, we first remark that for k ≥ 3, there exists a strong k-forbidden pair which does not contain a claw. We
then prove that for each k ≥ 3, every k-forbidden pair contains a star with at most k+ 1 leaves.

As we wrote in the beginning, for terminology and notation not explained in this paper, we refer the reader to [21].
The connectivity, the independence number and the minimum degree of a graph G are denoted by κ(G), α(G) and δ(G),
respectively. We say that G is trivial if |V (G)| = 1. The degree of a vertex x in G is denoted by degG x. For two vertex-disjoint
graphs G and H , we write G+H for the join of G and H . For a path P = x0x1 · · · xm, the subpath xixi+1 · · · xj(i ≤ j) is denoted
by xi
−→
P xj, and we write xj

←−
P xi for its reverse xjxj−1 · · · xi.

2. Hamiltonian properties of k-connected {K1,k+1, P4}-free graphs

In this section, we study Hamiltonian properties of k-connected {K1,k+1, P4}-free graphs. In [8], the second author of this
paper makes the following observations.

Theorem A ([8]). Let G be a connected noncomplete P4-free graph, and let S be a smallest cutset of G. Then each vertex in S is
adjacent to all vertices in V (G)− S.

Theorem B ([8]). Let k be a positive integer and let G be a connected P4-free graph. Then G is K1,k+1-free if and only if α(G) ≤ k.

He also points out that Theorem A has been proved implicitly by Faudree et al. [10] and that Theorem B is an immediate
corollary of Theorem A.

We also use the following well-known theorem.

Theorem C (Chvátal and Erdős [7]). Let G be a 2-connected graph.

(1) If α(G) ≤ κ(G), then G is Hamiltonian.
(2) If α(G) ≤ κ(G)− 1, then G is Hamiltonian-connected.

By combining Theorems B and C(1), we immediately obtain the following corollary.

Corollary 1. For k ≥ 2, {K1,k+1, P4} is a strong k-forbidden pair.

However, k-connected {K1,k+1, P4}-free graphs satisfy stronger Hamiltonian properties.

Theorem 2. For k ≥ 2, every k-connected {K1,k+1, P4}-free graph is either pancyclic or isomorphic to Kk,k.

Before proving the above theorem, we make one simple observation. A path-factor of a graph G is a spanning subgraph of G
in which each component is a path.

Lemma 3. A graph H of independence number at most k has a path-factor with at most k components. Moreover, if |V (H)| ≥ k,
then H has a path-factor with exactly k components.

Proof. If k = 1, then H is a complete graph and the theorem trivially holds. Thus, we may assume k ≥ 2. Let G be the
graph obtained by the join of H and a complete graph of order k. Then G is k-connected and α(G) ≤ k. Since k ≥ 2,G has a
Hamiltonian cycle C by Theorem C(1). Then V (C) ∩ V (H) induces a path-factor with at most k components.

If |V (H)| ≥ k and the obtained path-factor has less than k components, it has a non-trivial component. By deleting an
edge in this component, we can increase the number of components. We can continue this edge-deletion until the number
of components reaches k. �

We also use the following theorem in the proof of Theorem 2.
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Theorem D (Bondy [2]). For n ≥ 3, a graph of order n and minimum degree at least 1
2n is either pancyclic or isomorphic to Kk,k,

where k = 1
2n.

Proof of Theorem 2. We proceed by induction on |V (G)|. If |V (G)| = k+ 1, then G is a complete graph of order k+ 1 and
the theorem follows immediately. Thus, we may assume |V (G)| ≥ k+ 2.

Suppose G is (k+ 1)-connected. Let x be a vertex of smallest degree in G, and let G′ = G− x. Then G′ is k-connected and
{K1,k+1, P4}-free. If G′ ≃ Kk,k, then since δ(G) ≥ k+ 1, every vertex in G′ is adjacent with x. This contradicts the minimality
of degG x. Therefore, G′ is not isomorphic to Kk,k. Then by the induction hypothesis, G′ is pancyclic. Since G is Hamiltonian by
Corollary 1, G is also pancyclic. Therefore, we may now assume that the connectivity of G is exactly k. If |V (G)| ≤ 2k, then
δ(G) ≥ κ(G) = k ≥ |V (G)|

2 , and hence G is either pancyclic or isomorphic to Kk,k by Theorem D. Therefore, we may further
assume |V (G)| ≥ 2k+ 1.

Let S = {z1, . . . , zk} be a smallest cutset of G and let H = G− S. By Theorem A, G is the join of H and G[S]. By Theorem B,
α(G) ≤ k and hence α(H) ≤ k. Moreover, since |V (G)| ≥ 2k+ 1, |V (H)| ≥ k+ 1. Then by Lemma 3, H has a path-factor F
with exactly k components, and at least one of its components is nontrivial.

Let P1, . . . , Pk be the components of F , each of which is a path. We may assume |V (P1)| ≥ 2. Let xi and yi be the first and
the last vertices of Pi. Note that x1 ≠ y1, but possibly xi = yi for some i ≥ 2. Since |V (P1)| ≥ 2, we can define the successor
x+1 of x1 in P1. Then x1x+1 z1x1 is a cycle of order three.

For each integer lwith 3 ≤ l ≤ |V (P1)|+1,we can choose a vertex v ∈ V (P1)with |V (x1
−→
P1 v)| = l−1, and then x1

−→
P1 vz1x1

is a cycle of order l. Let C1 = x1
−→
P1 y1z1x1. Then C1 is a cycle with V (C1) = V (P1) ∪ {z1} and {z1x1, x1x+1 , y1z1} ⊂ E(C1).

Suppose for an integermwith 1 ≤ m < k,G has a cycle of order l for every integer lwith 3 ≤ l ≤
∑m

i=1(|V (Pi)|+1). Also
suppose G has a cycle Cm with V (Cm) =

m
i=1 V (Pi) ∪ {z1, . . . , zm} and {z1x1, x1x+1 , ymzm} ⊂ E(Cm). By replacing the edge

ymzm with the path ymzm+1xm+1zm, we obtain a cycle C ′ of order |V (Cm)| + 2. Moreover, by replacing the subpath z1x1x+1 in
C ′ with the edge z1x+1 , we obtain a cycle of order |V (C ′)| − 1 = |V (Cm)| + 1. For each l with 2 ≤ l ≤ |V (Pm+1)| + 1,
we can take a vertex v in V (Pm+1) with |V (xm+1

−−→
Pm+1v)| = l − 1. Then by replacing the edge ymzm with the path

ymzm+1v
←−−
Pm+1xm+1zm, we obtain a path of order |V (Cm)|+ l. In particular, let Cm+1 be the cycle obtained from Cm by replacing

the edge ymzm with ymzm+1ym+1
←−−
Pm+1xm+1zm. Then V (Cm+1) = V (Cm) ∪ V (Pm+1) ∪ {zm+1} =

m+1
i=1 V (Pi) ∪ {z1, . . . , zm+1}

and {z1x1, x1x+1 , ym+1zm+1} ⊂ E(Cm+1).
By the construction, when we construct Ck, we obtain a cycle of order l for each lwith 3 ≤ l ≤ |V (G)|. �

While every k-connected {K1,k+1, P4}-free graph except for Kk,k is pancyclic, there exist infinitely many k-connected
{K1,k+1, P4}-free graphswhich are not Hamiltonian-connected. For example, for each positive integerm, the graph kKm+kK1
is k-connected and {K1,k+1, P4}-free, but no Hamiltonian path exists joining a pair of vertices in kK1. On the other hand, a
k-connected {K1,k, P4}-free graph is Hamiltonian-connected by TheoremC(2) since its independence number is atmost k−1
by Theorem B.

3. Forbidden pairs and stars

In this section, we prove that every k-forbidden pair contains a star with at most k+1 leaves. But before that, we prepare
a k-connected graph of girth at least five, which we use in the proof.

Let n and k be two positive integers with n ≥ 2k + 1. The Kneser graph K(n, k) is the graph whose vertices represent
the k-subsets of {1, 2, . . . , n} and where two vertices are adjacent if they correspond to disjoint subsets. Clearly, K(n, k) has n
k


vertices and it is a regular graph of degree


n−k
k


. Moreover, K(n, k) is edge-transitive and hence the connectivity of

K(n, k) coincides with its degree


n−k
k


(see [16], for example). In particular, K(2k − 1, k − 1) is a k-connected k-regular

graph. Moreover, if k ≥ 3, its girth is at least five.
We need another class of graphs, which was introduced in [19].

Theorem E ([19]). For each positive integer m, n and k with n ≥ k+ 1, there exists a k-connected unbalanced bipartite graph of
maximum degree exactly n and order at least m.

Now we prove the main theorem in this section.

Theorem 4. Let k be an integer with k ≥ 2 and let F1 and F2 be connected graphs of order at least three. If {F1, F2} is a k-forbidden
pair, then either F1 or F2 is isomorphic to K1,l, where l ≤ k+ 1.

Proof. Let {F1, F2} be a k-forbidden pair. Then there exists a positive integer n0 such that every k-connected {F1, F2}-free
graph of order at least n0 is Hamiltonian. We may assume n0 ≥ k+ 1.

Assume neither F1 nor F2 is isomorphic to K1,l for any l ≤ k+1. Since Kn0,n0+1 is a k-connected non-Hamiltonian graph of
order at least n0, it contains F1 or F2 as an induced subgraph. By symmetry, we may assume that F1 is an induced subgraph
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of Kn0,n0+1. Then F1 itself is a complete bipartite graph. In particular, F1 does not contain a triangle. Moreover, F1 either is a
star with at least k+ 2 leaves or contains C4.

Let G1 = Kk + (k + 1)Kn0 . Then G1 is a k-connected non-Hamiltonian graph of order at least n0. Then G1 contains F1 or
F2 as an induced subgraph. Note that every connected induced subgraph of G1 either contains a triangle or is isomorphic to
K1,l for some l ≤ k+1. Therefore, F1 is not an induced subgraph of G1 and hence G1 contains F2 as an induced subgraph. This
implies that F2 contains a triangle.

Let H1,H2, . . . ,Hk+1 be copies of the Kneser graph K(2n0 − 1, n0 − 1). Since n0 ≥ k + 1, each Hi is k-connected and of
order at least n0. For each i, 1 ≤ i ≤ k + 1, we take k distinct vertices yi,1, . . . , yi,k of Hi. We then introduce k new vertices
x1, . . . , xk and join xj and yi,j for each i and j with 1 ≤ i ≤ k+ 1 and 1 ≤ j ≤ k. Let G2 be the resulting graph.

It is not difficult to see that G2 is a k-connected graph of girth at least five and order greater than n0. Moreover, G2 is not
1-tough and hence it is not Hamiltonian. Therefore, G2 contains either F1 or F2 as an induced subgraph. However, since G2
does not contain a triangle, F2 is not an induced subgraph of G2, and hence G2 contains F1 as an induced subgraph. Moreover,
since G2 does not contain C4, F1 is isomorphic to a star K1,l, where l ≥ k+ 2.

TheoremE guarantees the existence of a k-connected unbalanced bipartite graphG3 ofmaximumdegree exactly k+1 and
order at least n0. Then G3 is not Hamiltonian. Since the maximum degree of G3 is k+ 1, it does not contain F1 as an induced
subgraph. And since G3 does not contain a triangle, F2 is not an induced subgraph of G3. Therefore, G3 is a k-connected
{F1, F2}-free non-Hamiltonian graph of order greater than n0. This is a contradiction, and the theorem follows. �

4. Concluding remarks

In this paper, we have investigated pairs of forbidden subgraphs which force Hamiltonicity of k-connected graphs,
possibly with a finite number of exceptions. While all the 2-forbidden pairs contain K1,3, as has been proved in [11], we
have seen that for k ≥ 3, there exists a strong k-forbidden pair not containing K1,3. On the other hand, every k-forbidden
pair contains K1,l for some l ≤ k+ 1.

According to [11], the set of 2-forbidden pairs is finite. It may suggest that the set of all the k-forbidden pairs is finite for
every k ≥ 2. But we need some preparation to make it a formal conjecture.

Matthews and Sumner [17] made the following conjecture.

Conjecture F ([17]). Every 4-connected claw-free graph is Hamiltonian.

As a partial solution, Ryjáček [20] proved that every 7-connected claw-free graph is Hamiltonian. This result implies that for
every connected graph H, {K1,3,H} is a 7-forbidden pair. In particular, there exist infinitely many strong 7-forbidden pairs.
They may even be strong 4-forbidden pairs if Conjecture F is true.

In order to avoid set-theoretic ambiguity, we consider graphs whose vertices are natural numbers. Let G be the set of
all the finite connected graphs of order at least three. Let F ′k = {F ⊂ G : there exists a natural number n0 such that every
k-connected F -free graph of order at least n0 is Hamiltonian }. By the definition, for each F ∈ F ′k and H ⊂ G, F ∪H ∈ F ′k.
Let Fk be the set of all the minimal elements in terms of inclusion,

Fk = {F ∈ F ′k : F
′
∉ F ′k for any F ′ ( F }.

In other words, Fk is the subfamily of F ′k consisting of non-redundant members.
For a positive integer p, define F p

k by:

F p
k = {F ∈ Fk : |F | ≤ p}.

The result of Faudree and Gould [11] determines F 2
2 , and Corollary 1 and Theorem 4 claim {K1,k+1, P4} ∈ F 2

k − F 2
k−1 for each

k ≥ 3. The result of Ryjáček claims {K1,3} ∈ F 1
7 .

Now we can state our conjecture in a formal way.

Conjecture 1. For each integer k with k ≥ 2, F 2
k is a finite set.

The complete characterization of F 2
4 involves Conjecture F and seems to be difficult.

Wemake one more comment before closing this section. In [15], it is shown that there is a natural partial order in Fk. For
F1, F2 ⊂ G, we write F1 ≤ F2 if for each F ∈ F2, there exists F ′ ∈ F1 such that F ′ is an induced subgraph of F . Trivially,
if F1 ≤ F2, then every F1-free graph is F2-free. Moreover, ≤ is a reflexive and transitive binary relation in 2G. Though it is
not anti-symmetric in F ′k, it is anti-symmetric in Fk and hence (Fk,≤) is a partially ordered set.

We make the following observation.

Theorem 5. If F ∈ F p
k , then {F

′
∈ Fk : F ′ ≤ F } ⊂ F p

k .

Proof. Let F = {F1, F2, . . . , Fr}, where r ≤ p. Let F ′ ∈ Fk and F ′ ≤ F . Then for each iwith 1 ≤ i ≤ r , there exists F ′i ∈ F ′

such that F ′i is an induced subgraph of Fi. Let F ′′ = {F ′1, F
′

2, . . . , F
′
r} ⊂ F ′. Then F ′′ ≤ F . Since F ∈ F p

k ⊂ Fk, there exists
a positive integer n0 such that every k-connected F -free graph of order at least n0 is Hamiltonian. Then every k-connected
F ′′-free graph of order at least n0 is F -free and hence it is also Hamiltonian. This implies F ′′ ∈ F ′k. Since F ′′ ⊂ F ′ and
F ′ ∈ Fk, we have F ′ = F ′′, which implies F ′ ∈ F p

k . �
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By this theorem, in order to determine F p
k , it is sufficient to characterize its maximal elements in terms of ≤. According

to [11,1], F 2
2 has five maximal elements and four of them are strong 2-forbidden pairs.
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