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a b s t r a c t

An assignment of positive integerweights to the edges of a simple graphG is called irregular
if theweighted degrees of the vertices are all different. The irregularity strength, s(G), is the
maximal edge weight, minimized over all irregular assignments, and is set to infinity if no
such assignment is possible. In this paper, we take an iterative approach to calculating the
irregularity strength of a graph. In particular, we develop a new algorithm that determines
the exact value s(T ) for trees T in which every two vertices of degree not equal to two are
at distance at least eight.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and notation

Letw : E(G)→ N be an assignment of positive integer weights to the edges of a simple graph G. This assignment yields a
weighted degreew(v) :=

∑
v∈ew(e) for all vertices v ∈ V (G), and is called irregular if the weighted degrees of the vertices

are all different. Let I(G) denote the set of irregular labelings of G. Define the irregularity strength s(G) of a simple graph G
to be

min
f∈I(G)

max
e∈E(G)

f (e) = s(G)

if I(G) is nonempty and s(G) = ∞ otherwise.
Graph irregularity strength was introduced in [4] by Chartrand et al. where, amongst other results, it was shown that

s(G) <∞ if and only if G contains no isolated edges and at most one isolated vertex. Upper bounds are known for general
graphs of order n (Nierhoff [8] shows the sharp bound s(G) ≤ n− 1), and d-regular graphs (Frieze et al. [5] show a bound of
s(G) ≤ c · n/d for d ≤ n1/2, and s(G) ≤ c · n log n/d for general d, which was recently improved to s(G) ≤ c · n/d for all d by
Przybyło [9]). The exact irregularity strength is known only for very few classes of graphs.
Let ni denote the number of vertices of degree i in a graph G. Then a simple counting argument shows that

s(G) ≥ λ(G) := max
k

⌈
1
k

k∑
i=1

ni

⌉
.

Kinch and Lehel [6] demonstrated, by considering the irregularity strength of tP3, that λ(G) and s(G) may differ
asymptotically. It was subsequently conjectured (see [7]) that if G is connected graph, then λ(G) and s(G) differ by at most
an additive constant.
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It can be shown that for trees, 1k
∑k
i=1 ni attains its maximum for k = 1 or for k = 2. Cammack et al. [3] show that

s(T ) = λ(T ) for full d-ary trees, and Amar and Togni [1] show that s(T ) = λ(T ) = n1 for all trees with n2 = 0 and n1 ≥ 3.
For general trees, it is not even the case that s(T ) is within an additive constant of n1. Bohman and Kravitz [2] present an
infinite sequence of trees with irregularity strength converging to 11−

√
5

8 n1 > n1 >
n1+n2
2 .

In this paper, we present an iterative algorithm showing that s(T ) = λ(T ) for another class of trees, but this time n1 < n2,
i.e. s(T ) =

⌈ n1+n2
2

⌉
. We believe that the methods developed here have the potential to be modified and used to determine

the irregularity strength of a broader class of trees or more general graphs. The following is the main result of this paper.

Theorem 1. Let T be a tree in which every two vertices of degree not equal to two are at distance at least 8, and with n1 ≥ 3.
Then s(T ) = λ(T ) =

⌈ n1+n2
2

⌉
.

The reader should note that we may obtain T from a tree containing no vertices of degree 2 by subdividing each edge at
least 7 times.

2. Proof of Theorem 1

2.1. A helpful lemma

Repeated application of the following lemma is at the heart of our algorithm.

Lemma 2. Let P = v0v1 · · · v`+1, ` ≥ 1 be a path, and let w1, w2, . . . , w` be a strictly increasing sequence of natural numbers
greater than one, so that all even numbers between w1 and w` are part of the sequence. Then there exists a weighting w of the
edges of P such that

(1) w(v0) is odd,
(2) w(vi) = wi for 1 ≤ i ≤ `,
(3) −1 ≤ w(vivi+1)− w(vi−1vi) ≤ 2 for 1 ≤ i ≤ `.

Proof. We proceed by induction on `. To begin, let ` = 1. Depending onw1, we assign edge weights as follows:

w1 w(v0v1) w(v1v2)

4k 2k− 1 2k+ 1
4k+ 1 2k+ 1 2k
4k+ 2 2k+ 1 2k+ 1
4k+ 3 2k+ 1 2k+ 2

Assume now that ` ≥ 2 and we are given w1, . . . , w`. By the induction hypothesis, we can assign weights to the edges
of P ′ = v0v1 · · · v` so thatw(v0) is odd,w(vi) = wi, and−1 ≤ w(vivi+1)− w(vi−1vi) ≤ 2 for 1 ≤ i ≤ `− 1.
Ifw` − w`−1 = 1, letw(v`v`+1) = w(v`−2v`−1)+ 1. Thenw(v`) = w` and

−1 ≤ w(v`v`+1)− w(v`−1v`)︸ ︷︷ ︸
=w(v`−2v`−1)−w(v`−1v`)+1

≤ 2.

Ifw` − w`−1 = 2, and thusw`−1 is an even number, letw(v`v`+1) = w(v`−2v`−1)+ 2. Thenw(v`) = w` and

0 ≤ w(v`v`+1)− w(v`−1v`)︸ ︷︷ ︸
=w(v`−2v`−1)−w(v`−1v`)+2

≤ 2. �

2.2. Setting up the weighting

We are given a tree T in which any two vertices of degree not equal to two are at distance at least 8. We decompose E(T )
into edge disjoint paths such that the end vertices of the paths correspond to the vertices in T with degree not equal to 2. If
one thinks of T as a subdivision of a tree T ′ with n2(T ′) = 0, then each path corresponds to an edge of T ′. A bottom vertex in
a path is called a pendant vertex if it is a leaf of T and we will call any of these paths a pendant path if it contains a pendant
edge.
We will root T at a vertex root of maximum degree, giving each path a top-to-bottom orientation. We then order the

paths in our decomposition of T in the followingmanner. Select any dT (root) pendant paths to be the final, or bottom, paths
in the ordering. We then order the remaining paths such that any path having bottom vertex v with dT (v) ≥ 3 will have
exactly dt(v)− 2 pendant paths directly above it in the path ordering. For an example, see Fig. 1.
Let P1, . . . , Pt denote the paths under this ordering, where P1 is the topmost path. We will also allow this path ordering

to induce an order on the vertices of the paths, where x in Pi is below y in Pj if either i > j or i = j and x is below y on Pi.
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Fig. 1. A tree and its associated path ordering.

Let M̄ be the set consisting of the topmost vertex of degree two from each path, and letM be the set of all other vertices
of degree two. Our initial weighting uses Lemma 2 to assign the weights 2, . . . , |M|+1 to the vertices inM starting with the
bottommost vertex. In applying the lemma, we will require that the lowest internal vertex in each path receive the lowest
weight and so on. Finally, for λ = λ(T ) = d n1+n22 e, we will label the top edge on each path with either λ or λ− 1 in a way
that assures each vertex in M̄ has odd weight. We call this initial weightingw0.
Observe thatw0 is not an irregular weighting, as each pendant vertex pwill have the same weight as some vertex in x in

M preceding p in the ordering. Our general approach is to attempt to improve our weighting iteratively, each time utilizing
Lemma 2. Let H0 denote the set of weights of pendant and M̄-vertices underw0. Note that by construction these weights are
distinct, and each is odd.
Starting with the bottommost vertex, we assign to each vertex inM the smallest weight that is neither inH0 nor assigned

to a lower vertex inM . Given that each pendant vertex and each vertex in M̄ has odd weight, the vertices in V (Pi)∩M , from
bottom to top, are assigned weights w1 ≤ · · · ≤ w` such that every even integer between w1 and w` appears in the list.
Consequently, we may use Lemma 2 to assign edge labels resulting in this weighting of the vertices inM .
Again, we will conclude this new weighting by labeling each top edge of each path with either λ or λ − 1 such that the

weight of the corresponding vertex in M̄ is odd. Wewill call this newweightingw1. If this is not an irregular weighting with
maximum edgeweight atmost λ, thenwewill repeat this process by constructing aweighting that avoids the (odd) weights
H1 of the pendant and M̄-vertices inw1, and so on.
Throughout this process, the following facts hold.

Fact 3. Let mj,mk ∈ M such that mj is below mk. Thenwi(mj) < wi(mk) for any i > 0.

The next Fact follows from our assignment of desired weights to the vertices inM , the fact that each vertex in M̄ receives
an odd weight and condition (3) of Lemma 2.

Fact 4. The weights of the pendant and M̄-vertices depend on the weight of their neighbor in M as follows:

Neighbor Pendant Vertex in M̄
λ even λ odd

4k 2k− 1 λ+ 2k− 1 or λ+ 2k+ 1 λ+ 2k
4k+ 1 2k+ 1 λ+ 2k− 1 or λ+ 2k+ 1 λ+ 2k
4k+ 2 2k+ 1 λ+ 2k+ 1 λ+2k or λ+2k+2
4k+ 3 2k+ 1 λ+ 2k+ 1 λ+2k or λ+2k+2

The following three useful lemmas follow from Fact 4 and Lemma 2. The first is concerned with the weight assigned to
the pendant vertices in T .

Lemma 5. Let pj and pk denote the bottom vertices of Pj and Pk respectively, where j > k and dT (pj) = dT (pk) = 1. Then for
any i ≥ 0,wi(pk)− wi(pj) ≥ 2.

Proof. Each of the paths in our decomposition have length at least eight and as such, the second lowest and third highest
vertices on each path are distance at least five apart. Consequently when applying Lemma 2 these vertices receive weights
at least five apart in any iteration. This observation, implies that the weight assigned to the neighbors of pj and pk differ by
more than four. The lemma then follows from Fact 4. �

The next lemma considers the weights assigned to vertices in T having degree higher than two. We omit the proof as it
is similar to that of Lemma 5, save that it utilizes the fact that any path having bottom vertex v with dT (v) ≥ 3 will have
exactly dt(v)− 2 pendant paths directly above it in the path ordering.



1192 M. Ferrara et al. / Discrete Applied Mathematics 158 (2010) 1189–1194

Lemma 6. Let pj and pk denote the bottom vertices of Pj and Pk respectively, where j > k and dT (pj) = dT (pk) ≥ 3. Then for
any i ≥ 0,

wi(pk)− wi(pj) ≥ 2dT (pj)− 2.

Finally, Lemma 7 demonstrates that the weights assigned to the vertices in M̄ must differ by at least two. Again we omit
the proof as it is similar to that of Lemma 5.

Lemma 7. Let {pj} = M̄ ∩ V (Pj) and {pk} = M̄ ∩ V (Pk), where j > k. Then for any i ≥ 0,wi(pk)− wi(pj) ≥ 2.

As a corollary of Lemma 6, we get the following statement.

Lemma 8. If x and y are distinct vertices of degree three or more in T , thenwi(x) 6= wi(y) for all i ≥ 0.

Proof. All that is left to show is the inequality for vertices x, y with dT (x) > dT (y) ≥ 3. As root is a vertex of maximum
degree in T and xmust be the bottom vertex on Pk for some k ≥ dT (root)+ 1 > dT (x), we have

wi(y) ≤ λdT (y) < (λ− 1)(dT (x)− 1)+ 3dT (x) ≤ wi(x). �

Note that wi+1 is completely determined by the set Hi ⊂ {1, 2, . . . , 2λ}. As there are only finitely many such sets, this
process will eventually stabilize in a loop with some period p, i.e. Hi = Hi+p for i ≥ i0 and minimal p ≥ 1. If p = 1, then
wi0+1 is an irregular weighting with maximum edge weight at most λ and we are done, so we assume in the following that
p > 1.
For 0 ≤ i < p, let ŵi = wi0+1+i, where all index calculations regarding ŵwill bemodulo p. Define Ĥi in a similar manner.

Let

m = max
i,k
x∈M

ŵi(x)− ŵi−k(x).

The parameter m is the maximum amount that the weight of an M-vertex can vary as we iteratively modify the edge
labels throughout one period.
The following lemma is crucial for the proof of Theorem 1.

Lemma 9. m = 1.

Proof. If m = 0 then p = 1, which we already excluded, so m ≥ 1 and we need to show that m ≤ 1. Let x ∈ M be the
lowest vertex in the ordering for which we can find i and k such that ŵi(x)− ŵi−k(x) = m.
The fact that the weight of x has increased by m implies that there are m pendant vertices or M̄-vertices x1, x2, . . . , xm,

such that for all t ≥ 0

ŵt(x1) ≤ ŵt(x2)− 2 ≤ · · · ≤ ŵt(xm)− 2m+ 2, (1)

ŵi−k−1(x1) > ŵi−k(x), (2)

and

ŵi−1(xm) < ŵi(x). (3)

Here (1) follows from the fact pendants and M̄ vertices receive distinct odd weights, while (2) and (3) follow from the
assumption that the weight of x has changed by exactlym. Form ≤ 3, this implies that

ŵi−1(x1) ≤(1) ŵi−1(xm)− 2m+ 2
≤(3) ŵi(x)− 2m+ 1 = ŵi−k(x)−m+ 1
≤(2) ŵi−k−1(x1)−m.

Both ŵi−1(x1) and ŵi−k−1(x1) are odd, so in fact

ŵi−k−1(x1)− ŵi−1(x1) ≥ 2
⌈m
2

⌉
. (4)

Form ≥ 4, we get

ŵi−1(x1) ≤(1) ŵi−1(xm)− 2m
≤(3) ŵi(x)− 2m− 1 = ŵi−k(x)−m− 1
≤(2) ŵi−k−1(x1)−m− 2.
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Both ŵi−1(x1) and ŵi−k−1(x1) are odd, so in fact

ŵi−k−1(x1)− ŵi−1(x1) ≥ 2
⌈m
2

⌉
+ 2.

Let y1 ∈ M be a neighbor of x1, and suppose thatm ≥ 4. If dT (x1) = 1, i.e. ŵi(x1) < λ. Fact 4 then yields that

ŵi−1(y1) ≤ 2ŵi−1(x1)+ 2

and

ŵi−k−1(y1) ≥ 2ŵi−k−1(x1)− 1.

Thus,

ŵi−k−1(y1)− ŵi−1(y1) ≥ 2(ŵi−k−1(x1)− ŵi−1(x1))− 3 ≥ 4
⌈m
2

⌉
+ 1 > m,

a contradiction to (2.2).
Now suppose that dT (x1) = 2. Here, Fact 4 yields that

ŵi−1(y1) ≤ 2(ŵi−1(x1)− λ+ 1)+ 1

and

ŵi−k−1(y1) ≥ 2(ŵi−k−1(x1)− λ)− 2.

Thus,

ŵi−k−1(y1)− ŵi−1(y1) ≥ 4
⌈m
2

⌉
− 1 > m,

a contradiction. This implies thatm ≤ 3.
It then follows that between ŵi and ŵi−k, the weight of a vertex in M̄ can change by at most four, and the weight of a

pendant vertex can change by at most two. This is a consequence of Fact 4, which shows that if the weight of some pendant
vertexwere to change by three ormore, then theweight of its neighbor inM would change by at least four. A similar analysis
shows that no vertex in M̄ can have its weight change by more than four.
Next assume thatm = 3. From (4), we know that

ŵi−k−1(x1)− ŵi−1(x1) ≥ 4,

thus x1, x2, x3 ∈ M̄ . Further,

ŵi−k−1(y1)− ŵi−1(y1) ≥ 3,

as otherwise ŵ(x1) could not decrease by four. But since ŵi−1(x1) < ŵi−1(x), we know that ŵi−1(y1) < ŵi−1(x),
contradicting the choice of x. This shows that m ≤ 2 and in turn that weights of vertices in M̄ can change by at most
two, again by Fact 4.
Finally assume thatm = 2. All the inequalities in (1) are in fact equalities and we get that for some t ,

ŵi−k−1(x1) = ŵi−1(x2) = 2t + 3,
ŵi−k−1(x2) = 2t + 5,
wi−1(x1) = 2t + 1.

Let y2 be the neighbor of x2 inM . If x1 is a pendant vertex, then Fact 4 shows that ŵi−1(y) ≥ 4t + 1 and

ŵi−1(y2) ≤ ŵi−k−1(y2)+ 2 ≤ 4t + 6,

a contradiction as at least five vertices fromM lie between y1 and y2 in the path-ordering, so ŵi−1(y2)− ŵi−1(y1) ≥ 6.
Thus, x1 ∈ M̄ . As y1 and y2 come before x in the ordering,

|ŵi−1(y1)− ŵi−k−1(y1)| ≤ 1 and |ŵi−1(y2)− ŵi−k−1(y2)| ≤ 1.

Fact 4 shows that ŵi−1(y2)− ŵi−1(y1) ≤ 6 with equality only if

|ŵi−1(y1)− ŵi−k−1(y1)| = |ŵi−1(y2)− ŵi−k−1(y2)| = 1.

But this last equality implies that Hi−2 contains a number between ŵi−1(y1) and ŵi−1(y2), and therefore ŵi−1(y2) −
ŵi−1(y1) ≥ 7, the final contradiction proving the lemma. �

The vertices outside ofM are sufficiently far apart in T to immediately yield the following corollary to Lemma 9.

Lemma 10. For two vertices x, y 6∈ M, ŵi(x) > ŵi(y) implies ŵj(x) > ŵk(y) for all i, j, k.
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2.3. Clean up

We will now modify the weighting ŵ1 to get an irregular weighting ŵ with Ĥ = Ĥ1. Let x ∈ M such that ŵ1(x) ∈ Ĥ1. By
Lemma 9, either ŵ2(x) = ŵ1(x) + 1 or ŵ2(x) = ŵ1(x) − 1. Let y ∈ M be the neighbor of x with ŵ1(y) = ŵ2(x). Note that
there is no vertex z with ŵ1(z) = 2ŵ2(x)− ŵ1(x) (i.e. ŵ1(z) = ŵ1(x)± 2), as 2ŵ2(x)− ŵ1(x) ∈ Ĥ0 \ Ĥ1. We differentiate
four cases.

Case 1. xy ∈ E and ŵ2(x) = ŵ1(x)+ 1.

Set ŵ(xy) = ŵ1(xy)+ 1.

Case 2. xy ∈ E and ŵ2(x) = ŵ1(x)− 1.

Set ŵ(xy) = ŵ1(xy)− 1.

Case 3. xy 6∈ E and ŵ2(x) = ŵ1(x)+ 1.

Let x1 ∈ M be the neighbor of xwith ŵ1(x1) = ŵ1(x)− 1, and y1 ∈ M be the neighbor of ywith ŵ1(y1) = ŵ1(x)+ 3. Set
ŵ(xx1) = ŵ1(xx1)+ 3 and ŵ(yy1) = ŵ1(yy1)− 2.

Case 4. xy 6∈ E and ŵ2(x) = ŵ1(x)− 1.

Let x1 ∈ M be the neighbor of xwith ŵ1(x1) = ŵ1(x)+ 1, and y1 ∈ M be the neighbor of ywith ŵ1(y1) = ŵ1(x)− 3. Set
ŵ(xx1) = ŵ1(xx1)− 3 and ŵ(yy1) = ŵ1(yy1)+ 2.
Repeating the above for every x ∈ M with ŵ1(x) ∈ Ĥ1 will result in an irregular weighting. Observe that if x and x′ both

fall in Case 3 or 4, then |ŵ1(x)− ŵ1(x′)| ≥ 6, and therefore the weight changes used to correct the weighting do not affect
each other. For all other cases, Lemma 10 guarantees that the weight changes stemming from different vertices will not
interfere. It is easy to check that none of the edge weights in Ŵ are below one or above λ+ 1.
If there is an edgewith ŵ(xy) = λ+1, then x and y are the second and third to last vertices of the last path, ŵ(x) = 2λ+1

and ŵ(y) = 2λ, and there is no vertex z with ŵ(z) = 2λ − 1. Change the weight of xy to ŵ′(xy) = λ, and the resulting
weighting Ŵ ′ is irregular and does not use edge weights above λ. This finishes the proof of Theorem 1.

3. Conclusions

We have made some new progress towards the problem of determining s(T ) for an arbitrary tree T . More importantly,
however, we have given an explicit algorithm that will generate an irregular weighting for trees in the class under
consideration. We are hopeful that this iterative approach will be adaptable to a larger class of trees or more general graphs.
For instance, it may be possible to show, via a modification of our algorithm, that there is some absolute constant c such
that if T is any tree with n2(T ) ≥ cn1(T ), then λ(T ) = s(T ) = d

n1+n2
2 e. This would represent marked progress towards the

general result.
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