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Abstract

For a fixed graph H, a graph G is H-saturated if there is no copy of H in G,
but for any edge e 6∈ G, there is a copy of H in G + e. The collection of H-
saturated graphs of order n is denoted by SAT(n,H), and the saturation number,
sat(n,H), is the minimum number of edges in a graph in SAT(n,H). Let Tk be
a tree on k vertices. The saturation numbers sat(n, Tk) for some families of trees
will be determined precisely. Some classes of trees for which sat(n, Tk) < n will be
identified, and trees Tk in which graphs in SAT(n, Tk) are forests will be presented.
Also, families of trees for which sat(n, Tk) ≥ n will be presented. The maximum
and minimum values of sat(n, Tk) for the class of all trees will be given. Some
properties of sat(n, Tk) and SAT(n, Tk) for trees will be discussed.

1 Introduction and Notation

Only finite graphs without loops or multiple edges will be considered. Notation will be
standard, and generally follow the notation of [CL05]. For a graph G we use G to represent
the vertex set V (G) and the edge set E(G) when it is clear from the context.

For a fixed graph H , a graph G is H-saturated if there is no copy of H in G, but for
any edge e 6∈ G, there is a copy of H in G + e. The collection of H-saturated graphs of
order n is denoted by SAT(n, H), and the saturation number, denoted sat(n, H), is the
minimum number of edges in a graph in SAT(n, H). The maximum number of edges
in a graph in SAT(n, H) is the well known Turán extremal number (see [Tur41]), and
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is usually denoted by ex(n, H). The graphs in SAT(n, H) with a minimum number of
edges will be denoted by SAT(n, H), and those with a maximum number of edges will be
denoted by SAT(n, H). Thus, all graphs in SAT(n, H) have sat(n, H) edges and graphs
in SAT(n, H) have ex(n, H) edges.

We will denote a path on k vertices by Pk. The complete bipartite graph K1,k−1 be
be called a star (on k vertices) and will be denoted by Sk. The vertex of degree k − 1 is
called the center of the star. A double star, denoted St,r, is the graph on t + r vertices
constructed by adding an edge between the centers of a star on t vertices and a star on r
vertices. (See Figure 1.) When t = r, we say St,t is a symmetric double star.

Figure 1: S6,4

The notion of the saturation number of a graph was introduced by Erdős, Hajnal, and
Moon in [EHM64] in which the authors proved sat(n, Kt) =

(

t−2
2

)

+(n− t+2)(t− 2) and

SAT(n, Kt) = {Kt−2 + Kn−t+2}. Since then sat(n, G) and SAT(n, G) have been investi-
gated for a range of graphs G. Some additional examples of graphs for which the saturation
number is known precisely include small cycles [Oll72] [Che09], complete bipartite graphs
[Bol67], matchings [KT86], and books [CFG08]. The exact value of sat(n, G) and a com-
plete characterization of SAT(n, G) are known for very few graphs G. For a summary of
known results see [GGL95] Chapter 23 or [FFS09]. Generalizations to hypergraphs also
exist, see [Pik04].

The emphasis of this paper will be on exploring sat(n, Tk) when the graph Tk is a
tree of order k. For special trees, specifically paths and stars, the saturation numbers
are already known. These results will be discussed in Section 2. The saturation numbers
sat(n, Tk) for some families of trees will be determined precisely such as when Tk is a
broom, double star, and subdivided star. The class of trees for which sat(n, Tk) < n will
be explored, and large classes of trees will be shown to have this property. Such trees
are said to have “small” saturation numbers, and these are trees Tk in which some of the
graphs in SAT(n, Tk) are forests. Also, families of trees in which sat(n, Tk) ≥ n will be
studied. The minimum values of sat(n, Tk) for the class of all trees on k vertices will be
determined. Some properties of sat(n, Tk) and SAT(n, Tk) for trees will be discussed.

2 Known Results

In [KT86] Kászonyi and Tuza proved several general results concerning saturated graphs
including an upper bound for sat(n, H) for any connected graph H by constructing an
H-saturated graph. It should be noted that Z. Furedi [Für09] has recently presented
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an alternate and somewhat shorter proof of this upper bound. The results particularly
relevant here are those concerning stars and paths which are summarized below.

Theorem 1. [KT86] Saturation Numbers for Paths and Stars

(a) sat(n, Sk+1) =

{

(

k

2

)

+
(

n−k

2

)

if k + 1 ≤ n ≤ k + k
2
,

⌈k−1
2

n − k2

8
⌉ if k + k

2
≤ n.

(b) For n ≥ 3, sat(n, P3) = ⌊n/2⌋.

(c) For n ≥ 4, sat(n, P4) =

{

n/2 n even,

(n + 3)/2 n odd.

(d) For n ≥ 5, sat(n, P5) = ⌈5n−4
6

⌉.

(e) Let ak =

{

3 · 2t−1 − 2 if k = 2t,

4 · 2t−1 − 2 if k = 2t + 1.
If n ≥ ak and k ≥ 6, then sat(n, Pk) =

n − ⌊ n
ak
⌋.

Theorem 2. [KT86] The Set of Minimal Star-Saturated Graphs

SAT(n, Sk) =

{

Kk−1 ∪ Kn−k+1 if k ≤ n ≤ 3k−3
2

,

G′ ∪ Kp if 3k−3
2

≤ n,

where p = ⌊k/2⌋ and G′ is a (k−1)-regular graph on n−p vertices. Note that in the case
when n ≥ 3k−3

2
, an edge is added if k − 1 and n − p are both odd.

The set SAT(n, Pk) is more complicated and may contain many nonisomorphic graphs.
However, all minimal Pk-saturated trees do have a common structure which will be useful
later. Thus, we make the following definitions. In these definitions, l and d are integers.

A perfect d-ary tree is a tree such that every vertex has degree d or degree 1 and all
degree 1 vertices are the same distance from the center. Thus for a given d, a pair of
distinct perfect d-ary trees differ by their diameter. Hence, we let Tl,d denote the perfect
d-ary tree whose longest path contains l vertices (i.e. Tl,d has diameter l−1). (See Figure
2.)

Figure 2: T5,3 and T6,3

In some instances it will be useful to view Tl,d as a rooted (or double rooted) tree.
Specifically, if l is odd, let the root r be the unique vertex in the center of Tl,d. Viewed
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in this way, the tree has ⌈ l
2
⌉ levels, the root has d children, all vertices in the middle

levels have d− 1 children, all vertices of degree 1 are in the bottom level, and |V (Tl,d)| =
d(d−1)⌊l/2⌋

−2
d−2

. If l is even, the center consists of two adjacent vertices which we call r1 and
r2 and we consider these to be the roots of the tree. In this case, all vertices have d − 1
children except for those of degree 1 all of which are in the bottom of the l/2 levels and

|V (Tl,d)| = 2
(

(d−1)l/2
−2

d−2

)

.

Observe that Tl−1,d is Pl-saturated for all d ≥ 3. In addition, any graph obtained from
Tl−1,d by adding more pendant vertices to those already adjacent to vertices of degree 1
maintains the Pl-saturated property. In the theorem below, observe that al = |V (Tl−1,3)|.

Theorem 3. [KT86] The Set of Minimal Path-Saturated Graphs
Let Pk be a path on k ≥ 3 vertices and let Tk−1,3 be the tree defined above.

Let ak =

{

3 · 2m−1 − 2 if k = 2m,

4 · 2m−1 − 2 if k = 2m + 1.
Then, for n ≥ ak, SAT(n, Pk) consists of a forest

with ⌊n/ak⌋ components. Furthermore, if T is a Pk-saturated tree, then Tk−1,3 ⊆ T.

Finally, Kászonyi and Tuza proved that the star has maximum saturation number for
trees.

Theorem 4. [KT86] For any tree, Tk, on k vertices such that Tk 6= Sk, sat(n, Tk) ≤
sat(n, Sk).

Curiously, we will show that the unique tree on k vertices with smallest saturation
number is almost the same graph: a star with a single subdivided edge.

3 Minimum Saturation Numbers for Trees

For k ≥ 4 let T ∗

k be the tree on k vertices obtained by subdividing one edge of a star
on k − 1 vertices. Thus, T ∗

k has a vertex of degree k − 2 and a vertex of degree 2 with
the remaining vertices of degree 1 (See Figure 3). First we will show (Lemma 1) that T ∗

k

is the only tree Tk for which there exists a Tk-saturated tree of order k. Then, we will
show (Corollary 1) that SAT(n, T ∗

k ) is a set of specific star forests each having ⌊n+k−2
k

⌋
components.

Figure 3: T ∗

6

Specifically, let F be the forest on n vertices equal to
(1) (n/k)Sk if n ≡ 0 mod k,
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(2) ((n − k − 1)/k)Sk ∪ Sk+1 if n ≡ 1 mod k,
(3) ((n − k − p)/k)Sk ∪ K2 ∪ Sk+p−2 if n ≡ p mod k for 2 ≤ p ≤ k − 1.
Thus, F has ⌊(n+k−2)/k⌋ tree components and n−⌊(n+k−2)/k⌋ edges. It is obvious
that F does not contain T ∗

k as a subgraph, and it is also clear that the addition of any
edge to F will produce a copy of T ∗

k . Hence, F ∈ SAT(n, T ∗

k ). First we will show that
F ∈ SAT(n, T ∗

k ) and sat(n, Tk) > |E(F )| for all k-vertex trees Tk 6= T ∗

k

Lemma 1. If there exists trees Tk and T ′

k each of order k such that T ′

k is Tk-saturated,
then k ≥ 4, Tk = T ∗

k , and T ′

k = Sk.

Proof. When k = 4, there exist only two trees, T ∗

k and S4 and it is easy to see in this case
the conclusion holds. For k = 5, there exist only three trees none of which is Tk-saturated
for any tree on 5 vertices except for T ∗

5 and S5.
Thus, we assume k ≥ 6 and that T ′

k is not a star, Sk. Thus, T ′

k contains a path with
at least 4 vertices. Also, since T ′

k is Tk-saturated and both have order k, for every edge
e 6∈ T ′

k there exists an edge e′ ∈ T ′

k such that T ′

k + e − e′ = Tk. Select a longest path P in
T ′

k, say P = (x1, x2, · · · , xq−1, xq) with q ≥ 4.
Case 1: Suppose deg(x2) ≥ 3 or deg(xq−1) ≥ 3.
Without loss of generality, assume deg(x2) ≥ 3. Let y be a vertex of degree 1 adjacent
to x2 other than x1. Such a vertex must exist since deg(x2) ≥ 3 and P is a longest path.
Let e = x1y 6∈ E(T ′

k). Then without loss of generality, e′ = yx2 and we conclude that
Tk = T ′

k + e − e′ and, in particular, T ′

k has exactly one more vertex of degree 1 than Tk.
Observe that if T ′

k contains two nonadjacent vertices u and v both of degree 2 or more,
then the copy of Tk contained in T ′

k +uv would have at least as many vertices of degree 1
as T ′

k. Thus every pair of vertices of degree 2 or more in T ′

k is adjacent. This means T ′

k has
exactly two vertices of degree 2 or more, say u and v. Furthermore, u and v must have
the same degree since the copy of Tk obtained by adding the edge between neighbors of
u must be isomorphic to that obtained by adding the edge between neighbors of v. This
forces T ′

k to be a symmetric double star.
But now, if we let e be a non-edge between end vertices of a longest path, there is

no edge e′ whose deletion will produce a tree isomorphic to the one obtained when e is
between end vertices with a shared neighbor. So T ′

k is not Tk-saturated for any tree, a
contradiction.
Case 2: Suppose deg(x2) = deg(xq−1) = 2.
Let e = x1x3 6∈ E(T ′

k). Then, in order to avoid a copy of Tk in T ′

k, e′ = x1x2. So,
Tk = T ′

k + e− e′ and therefore Tk must have exactly one more vertex of degree 1 than T ′

k.
Now consider T ′

k +x1xq. To have the right number of vertices of degree 1 in the copy of Tk,
we would have to find an edge in T ′

k + x1xq whose deletion would produce three vertices
of degree 1, which is impossible. So, T ′

k cannot contain a path of four or more vertices
and is therefore a star. Finally, T ∗

k is the only tree Tk for which T ′

k is Tk-saturated.

Theorem 5. For any tree Tk of order k ≥ 5 and any n ≥ k + 2,

sat(n, Tk) ≥ n − ⌊(n + k − 2)/k⌋.

Moreover, T ∗

k is the only tree attaining this minimum for all n.
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Proof. Let G ∈ SAT(n, Tk) for a fixed tree Tk of order k ≥ 5. Observe that any component
of G of order less than k must be complete and the union of any pair of components must
contain at least k vertices. Since k ≥ 5, this implies G can have at most one component
of the form Ki for i ∈ {1, 2}.

Thus, if Tk 6= T ∗

k , then Lemma 1 implies that any tree components of G have order
at least k + 1 with the possible exception of a single component of order 2 or less. Thus
sat(n, Tk) = |E(G)| ≥ n−⌊n−1

k+1
⌋−1 ≥ n−⌊n+k−2

k
⌋. Furthermore, the previous inequality

is strict for n ≥ k2 + k + 2.
Assume Tk = T ∗

k . If |E(G)| < n−⌊(n+k−2)/k⌋, then G has more than ⌊(n+k−2)/k⌋
components. Thus, at least two of them have order strictly less than k. So they are both
complete and together contain at least k vertices. Hence, we could replace these two
components with a star on the same number of vertices to create a new graph G′ that is
T ∗

k -saturated but with fewer edges, contradicting the assumption G ∈ SAT(n, T ∗

k ). Hence,
sat(n, T ∗

k ) = n − ⌊(n + k − 2)/k⌋.
The following corollary follows immediately from the preceding proof.

Corollary 1. For k ≥ 5, every graph G ∈ SAT(n, T ∗

k ) is a forest of ⌊(n+k−2)/k⌋ stars.
If n − k⌊n/k⌋ ≥ 2, then exactly one of the stars is K2.

4 Subtree Properties

There are no general monotone properties for subtrees of trees relative to the function
sat(n, Tk). The following theorems verify this in a very strong way.

We introduce some useful notation. Let G be a nonregular graph. Let x ∈ V (G) such
that deg(x) > δ(G) and there does not exist a vertex z ∈ V (G) with deg(x) > deg(z) >
δ(G). Define δ2(G) = deg(x), that is the second smallest degree in G.

Theorem 6. If Tk is a tree of order k ≥ 5 such that Tk 6= Sk and δ2(Tk) = d, then
sat(n, Tk) ≥

d−1
2

n provided n ≥ (d − 1)3.

Proof. Let G ∈ SAT(n, Tk). It is enough to show that G has average degree at least d−1.
If δ(G) ≥ d−1, the result holds so assume δ(G) ≤ d−2. Observe that any two vertices of
degree d−2 or less must be adjacent. Let x ∈ V (G) such that d(x) = δ(G). Now all vertices
in V (G)\N [x] (where N [x] denotes the closed neighborhood of x) must have degree at
least d − 1. Furthermore, since Tk 6= Sk, every vertex of V (G)\N [x] must be adjacent to
a vertex of degree at least d. Thus,

∑

v∈G d(v) ≥ δ(δ + 1) + (n − δ − 1)(d − 1) + n−δ−1
d

=

n(d−1)+ n
d
+(δ +1)2 − (δ +1)d2+1

d
≥ n(d−1) for n ≥ (d−1)3 and the result follows.

Corollary 2. For a given tree T, T is the subtree of a tree T ′ such that sat(n, T ′) ≥ αn
for any constant α and n sufficiently large.

Proof. Let d = 2α + 1. Construct a tree T ′ such that δ2(T
′) ≥ d by adding pendant

vertices to those vertices of T with degree 2 or more.

On the other hand we will now show that for a given tree T , T is the subtree of a
tree T ′ such that sat(n, T ′) < n. We first need to prove a structural lemma. Recall that
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Tl,d refers to a perfect d-ary tree such that a longest path contains l vertices (See Figure
2.) We will refer to the d subtrees below r (or the d − 1 subtrees below ri) to mean the
d trees that would result from the deletion of the edges incident to r (or the d − 1 trees
resulting from the deletion of edges incident to ri). Note that each of these is a standard
(d − 1)-ary tree.

Lemma 2. Given any edge e 6∈ E(Tk,d), there exists a path in Tl,d + e on
(a) l+3

2
vertices beginning at r and using vertices from at most two of the subtrees

under r for l odd
or
(b) ⌈ l+3

2
⌉ vertices ending at one of the roots ri and using vertices from at most one of

the d − 1 subtrees under ri for l even.

Proof. Let Tl,d = T be the perfect d-ary tree defined above. Assume l is odd. Let e = yz
be an edge not in T and assume the level of y is less than or equal to that of z.
Case 1: Suppose z lies on the unique ry path (r = z is allowed)
We construct the path on (l+3)/2 vertices as follows. Starting at r, take the unique path
in T down to z, take edge e = zy, take the unique path from y up to zc, a child of z, and
from zc take a path down to any end vertex. Recall that zc will have d− 2 children other
than y from which to choose. Since this path includes a path from r down to an end
vertex (through z and zc) and at least one additional vertex, namely y, it must contain
at least (l + 3)/2 vertices. Also, observe that this path uses at most one of the subtrees
under r, namely the one containing the unique ry path.
Case 2: Suppose z does not lie on the unique ry path
Construct the desired path as follows. Starting at r, take the unique path down to y, take
edge e = yz, take any path from z down to an end vertex. Since z is on a level at least
as high as y, the path contains at least two vertices from the same level and therefore at
least (l + 3)/2 vertices. Also, observe that it uses at most two subtrees under r, namely
the one containing y and the one containing z (which may in fact be the same).

Assume l is even. Let e = yz be an edge not in T.
Case 1: The edge e lies entirely in the subtree rooted by r1 or the subtree rooted by r2

Without loss of generality, assume e lies entirely in the tree rooted by r1. Then applying
the method when l is odd, we know there exists a path on at least l/2+1 vertices starting
at r1 and completely contained in this subtree. Add edge r1r2 and the desired path is
obtained using no subtree under r2.
Case 2: The edge e contains one vertex from the tree rooted at r1 and one from the tree
rooted at r2

Without loss of generality, assume y is in the subtree rooted at r1, z is in the subtree
rooted at r2, and that the level of y is no more than that of z. Then construct the desired
path by starting at r2, going down to z, taking edge zy, take the path from y up to r1,
and finally take a path from r1 down to any end vertex that doesn’t require using vertex
y. Observe that this contains a path from r2 to an end vertex under r1 plus at least one
additional vertex, namely y. Thus it must contain at least l/2 + 2 vertices and it uses
vertices from at most one subtree under r2, namely the one containing z.

the electronic journal of combinatorics 16 (2009), #R91 7



Theorem 7. Let T be a tree with maximum degree ∆ ≥ 3 and such that a longest path
has l vertices. Furthermore, assume that there exists a longest path P in T such that the
first ⌈l/2⌉ vertices on this path have degree 2 or less. Then Tl−1,∆+1 is T -saturated and
sat(n, T ) < n for n ≥ |V (Tl−1,∆+1)|.

Proof. Since Tl−1,∆+1 has no path on l vertices, it is T -free. Now consider Tl−1,∆+1 + e for
some new edge e. From Lemma 6, we know there exists a path, Q on at least ⌈l/2⌉ + 1
vertices that ends in a vertex in the top level of Tl−1,∆+1 (either r or r2 depending on the
parity of k). Additionally, this top vertex has at least ∆−1 subtrees under it all of which
are disjoint from Q. Thus, Tl−1,∆+1 + e must contain a copy of T.

Let m = |V (Tl−1,∆+1| ≤ n. So there exist integers p and q such that n = pm + q such
that 0 ≤ q > m. Thus, there exists a T -saturated forest consisting of (p − 1) copies of
Tl−1,∆+1 and one component formed from a copy of Tl−1,∆+1 with q additional pendant
vertices adjacent to vertices in the second level. The upper bound now follows.

Corollary 3. For a given tree T, T is the subtree of a tree T ′ such that sat(n, T ′) < n.

Proof. Given tree T with diameter p, construct T ′ by adding to T a path on p+1 vertices
and apply the previous theorem with diameter m = 2p.

It should also be observed that the proof of Lemma 2 implies that, for m odd and
any new edge e, one can find a path on m vertices in Tm,d such that the middle vertex
(vertex ⌈m/2⌉ on the path) is in one of the top two levels. Thus, the theorem above
can be extended to include trees for which the degree of the middle vertex on a diameter
path is greater than 2 provided the longest path starting at this middle vertex away from
the diameter path contains at most (m − 3)/2 vertices. On the other hand, for m even,
by considering an edge e from the top level to the bottom level, we see that we cannot
avoid forcing a vertex of degree two close to the middle (⌊m/2⌋). Furthermore, by adding
the edge from level r to an end vertex directly under it, we see that on every path on m
vertices there must be a vertex of degree 2 somewhere in position m− r +1 to m−2r +4.

5 Some Results Concerning Specific Trees

The following technical lemma simplifies the proof of the saturation number in many
cases.

Lemma 3. Assume Tk is a tree of order k ≥ 5 and Tl is an Tk-saturated tree of order l
such that

(a) |V (T )| ≥ l, for every Tk-saturated tree T
(b) for every m, 1 ≤ m ≤ l − 1, there exists an Tk-saturated tree Tl+m of order l + m,

and
(c) the union of any pair of trees in the set S = {Tl, Tl+1, Tl+2, · · ·T2l−1} is Tk-saturated.

Then for n ≥ l,
(1) there exists a graph G ∈ SAT(n, Tk) such that G is a forest

and
(2) n −

⌊

n−1
l

⌋

− 1 ≤ sat(n, Tk) ≤ n −
⌊

n
l

⌋

.
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Proof. (Part 1) For any n ≥ l there exists an Tk-saturated forest consisting of (⌊n
l
⌋ −

1)T ∪ Tp where n ≡ p mod l. Call this graph G′. Let G ∈ SAT(n, Tk) with the minimum
number of components that are not trees. Let A be the set of vertices of G in components
that are not trees. Then the graph G − A = F is a (nonempty) forest. Either F = K1

or F = K2 or F contains a tree on at least l vertices and thus we can assume all such
“large” trees are elements from S. If F = K1 or F = K2, then |E(G)| ≥ n − 1 ≥ |E(G′)|.
If F contains a large tree, then the vertices of A along with vertices of the large tree can
be replaced entirely with elements from S, forming an element of SAT(n, Tk) with fewer
nontree components.

(Part 2) The upper bound is obtained from the graph G′ described earlier. The lower
bound results from the observation that a minimal Tk-saturated forest might have K1 or
K2 as a component.

Note that even under the hypotheses of Lemma 3, we do not know that all G ∈
SAT(n, Tk) are necessarily forests. For example, T3,5 ∪ K3 ∈ SAT(10, P6).

Brooms

First we will consider brooms, denoted Br,k, where r corresponds to the number of
vertices on the handle and k denotes the number of bristles. So, Br,k contains r + k
vertices. (See Figure 4.) The vertex of degree k +1 will be referred to as the center of the
broom. One of the interesting properties of the collection of all brooms is that it contains
all of the trees for which the saturation number is, thus far, known exactly: the star B1,k,
the path Br,1, and the star with one subdivided edge B3,k. In the theorems below, we will
find the saturation number for some specific brooms.

Figure 4: B5,3

Theorem 8. For k ≥ 2 and n ≥ 2k + 5, sat(n, B4,k) = n −
(

⌊ n−2
2k+3

⌋ + 1
)

.

Proof. Recall that Sa,b is a double star on a + b vertices. See Figure 1. Note Sk+2,k+1 is
B4,k-saturated. In addition, Sa,b is B4,k-saturated for any a ≥ k + 2, b ≥ k + 1.

In order to apply Lemma 3, we need to show that every B4,k-saturated tree has at
least |V (Sk+2,k+1)| = 2k + 3 vertices. Let T be any B4,k-saturated tree. By adding an
edge between two vertices of degree 1 in T , we conclude T must have at least one vertex
of degree at least k + 1.

Case 1: Assume T has precisely one vertex of degree at least k + 1, say x.
Then x cannot be adjacent to two vertices of degree 1 since the edge between them would
not produce a B4,k. Let y be a neighbor of x of degree at least 2. Then, the length of the
longest path in T starting at x and using edge xy is exactly 2. Furthermore, adding the
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edge between x and the end vertex of such a path implies that deg(y) ≥ 3. Thus, if T has
precisely one vertex of high degree, |V (T )| ≥ 3k + 2 ≥ 2k + 3.

Case 2: Assume T has at least two vertices of degree k + 1 or more.
Then, to avoid a B4,k, these vertices must be adjacent. Thus, there are precisely two
vertices of high degree, say u and v, and all neighbors of u and v (other than u and v)
are end vertices. Thus, by adding the edge between x ∈ N(u) − v and y ∈ N(v) − u, we
conclude at least one of u or v must have degree at least k + 2. So, every nontrivial tree
component T must have at least 2k + 3 vertices.

Finally, Sk+2,k+1 ∪ K2 is B4,k-saturated. So, sat(n, B4,k) ≤ n −
(

⌊ n−2
2k+3

⌋ + 1
)

. But, by
the argument above, there does not exist any tree T such that T∪K1 is B4,k-saturated. So,
by Lemma 3, sat(n, B4,k) ≥ n−

(

⌊ n−2
2k+3

⌋ + 1
)

. Thus, for n ≥ 2k + 5, the graph consisting

of a disjoint union of one K2 and ⌊ n−2
2k+3

⌋ double stars each of which has Sk+2,k+1 as a

subgraph is a minimal B4,k-saturated graph and sat(n, B4,k) = n −
(

⌊ n−2
2k+3

⌋ + 1
)

.

Theorem 9. For k ≥ 2 and n ≥ 2k + 6, sat(n, B5,k) = n − ⌊ n
2k+6

⌋.

Proof. Recall that T5,3 is the perfect 3-ary tree such that a longest path has 5 vertices
and it is P6-saturated. (See Figure 2.) Let u and v be any two of the three vertices of
T5,3 in the middle level (those adjacent to vertices of degree 1.) Define T k

5,3 to be the tree
constructed from T5,3 by adding an additional k − 2 pendant vertices to each of u and v.
(See Figure 5.) Note T k

5,3 has two vertices of degree k + 1 and is still P6-saturated. It is
easy to check that for every new edge e, the graph T k

5,3 +e contains a P6 = v1v2 · · · v6 such
that degT k

5,3
(v2) = k + 1. Thus T k

5,3 and T k
5,3 ∪ T k

5,3 are B5,k-saturated. Furthermore, any

number of additional pendant vertices can be added to any of the vertices in the middle
level of T k

5,3 and the resulting graph will still be B5,k-saturated.

Figure 5: T 4
5,3

Next we show that if T is a B5,k-saturated tree, then |V (T )| ≥ 2k + 6. By adding the
edge between any two vertices of degree 1, we see T must contain a vertex of degree at
least k + 1.

Case 1: Assume T has precisely one vertex of degree at least k + 1, say x.
At most one of its neighbors can have degree 1. Thus, let y be a neighbor of x of degree

at least 2. If the longest path starting at x and proceeding through y is of length 2, then
adding the edge from x to the end vertex of this path cannot produce a B5,k. Thus, the
longest path in T starting at x and using edge xy has exactly 4 vertices. Furthermore,
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adding the edge between x and the end vertex of such a path implies that the component
of T − x containing y has at least 4 vertices. Thus, if T has precisely one vertex of high
degree, |V (T )| ≥ 4k + 2 ≥ 2k + 6.

Case 2: Assume T has at least two vertices of degree k + 1 or more.
Find two high degree vertices farthest apart, say x1 and x2. Then d(x1, x2) ≤ 2.

If x1x2 ∈ E(T ), then neither can be adjacent to two vertices of degree 1. Let y be a
neighbor of x1 of degree at least 2 (y 6= x2.) Adding the edge between x and an end
vertex of a longest path through y implies deg(y) ≥ 3. Applying symmetry, we find
|V (T )| ≥ |{x1, x2}| + 2(3|N(x1)| − 2) = 6k − 2 ≥ 2k + 6. If d(x1, x2) = 2, then label as
y the vertex on the path between them. Now all neighbors of xi other than y must have
degree 1. The copy of B5,k in T + {x1x2} requires T to have a path on three vertices
starting at y and disjoint from x1 and x2. Call it yy1y2. Now deg(y2) = 1. Adding the
edge yy2 forces deg(y1) ≥ 3. Thus, |V (T )| ≥ 2k + 6.

Thus, we have shown that all B5,k-saturated trees have at least 2k + 6 vertices.
Finally, observe that for any B5,k-saturated tree T, the graph T ∪ Ki is not B5,k-

saturated for i = 1, 2 since adding an edge between Ki and vertex of degree k + 1 in T
cannot produce a copy of B5,k. Thus, by applying Lemma 3 we know that SAT(n, B5,k)
contains a forest each component of which has T k

5,3 as a subgraph and sat(n, B5,k) =
n − ⌊ n

2k+6
⌋.

Theorem 10. For n ≥ ar+1 and r ≥ 5, then sat(n, Br,2) = sat(n, Pr+1) where

ar+1 =

{

2m+1 − 2 if r = 2m,

3 · 2m − 2 if r = 2m + 1.

Proof. Recall that if G ∈ SAT(n, Pr+1), then G is a forest such that all of its components
contain a common minimal subtree on ar+1 vertices called a perfect 3-ary tree and labeled
Tr,3. It is easy to verify that these graphs are also Br,2-saturated. Thus, sat(n, Br,2) ≤
sat(n, Pr+1).

Now, we need to show that every Br,2-saturated tree T contains at least ar+1 vertices.
We will do this by showing that every Br,2-saturated tree must be Pr+1-saturated.

Assume there exists a Br,2-saturated graph, T , that contains a path on r + 1 vertices.
Let P = x1, x2, · · · , xs be a longest path in T . So s ≥ r + 1. Since P is not itself Br,2-
saturated, P must contain a vertex of degree at least 3. Let xi0 be the first vertex on P
of degree 3 or more. Then 3 ≤ i0 ≤ r − 1. Let e = x1xi0 and let c be the vertex of T
that is the center of the copy of Br,2 in T + e. (That is, degBr,2

(c) = 3.) We know c 6= xi

for 1 ≤ i ≤ i0 − 1 because all these vertices have degree 2 in T + e. But for every other
choice of c, the edge e must appear in a path on r vertices starting at c which immedi-
ately implies Br,2 ⊂ T, a contradiction. So the longest path in any Br,2-saturated tree,
T , is at most r. Thus, T is Pr+1 saturated and therefore contains at least ar+1 vertices.

Double Stars

Theorem 11. For n ≥ 6, sat(n, S3,3) =

{

n n ≡ 0 mod 3,

n + 1 otherwise.
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Proof. If n ≡ 0 mod 3, then the graph consisting of n/3 disjoint triangles provides an
upper bound for sat(n, S3,3). If n ≡ 1 mod 3, the graph consisting of the union of (n−7)/3
disjoint triangles and one component on 7 vertices consisting of two triangles connected
by a single path of length 2 provides an upper bound for sat(n, S3,3). The example in
the case that n ≡ 2 mod 3 consists of the union of (n − 8)/3 disjoint triangles and one
component on 8 vertices consisting of a 4-cycle and a 5-cycle which share a single vertex.

Let G ∈ SAT(n, S3,3). We want to show that |E(G)| ≥ n or n + 1 accordingly. First,
observe that G cannot have two nonadjacent vertices of degree 1 since adding the edge
between them cannot produce a copy of S3,3. Also, if a component of G is a cycle, it must
be a 3-cycle since larger cycles are not S3,3-saturated. Thus, if δ(G) ≥ 2 the result follows.

Assume G contains a vertex x such that deg(x) ≤ 1.
Case 1: The vertex x is in a component of order at most 2.
Let C and C ′ be distinct components of G such that x ∈ C. Note, it is enough to show

that the average degree of vertices in G is strictly greater than 2. By adding edges from
x to vertices in C ′, it follows that δ(C ′) ≥ 2, and C ′ must have at least two vertices of
degree 3 or more that are adjacent and that share a common neighbor. If G has three
or more components, the result follows. If G = C ∪ C ′, the average degree of G will be
above 2 unless C ′ has exactly two vertices of degree 3 and all others have degree 2. This
forces C ′ to be a cycle with a single chord or two cycles connected by a path. In neither
case is the graph S3,3-saturated.

Case 2: The vertex x is in a component of order at least 3.
Then x is in a component of order at least 6. It is enough to show that the average

degree in this component is more than 2. Note that the only connected graph with average
degree exactly 2 and precisely one vertex of degree 1 is a cycle with a pendant path. This
is not S3,3-saturated.

Theorem 12. For n ≥ (t + 1)3, tn/2 ≤ sat(n, St+1,t+1) ≤
tn
2

+ t(t+2)
2

.

Proof. Let q = ⌊n/(t+1)⌋ and r = n− q(t+1). Then the graph G = (q− r)Kt+1 ∪ rKt+2

is St+1,t+1-saturated and |E(G)| ≤ t(n−r)
2

+ r(t + 2) ≤ tn
2

+ t(t+1)
2

.
For the lower bound, apply Theorem 6.

Theorem 13. Given the double star St+1,s+1 where t > s and n ≥ (s + 1)3, then
(

s
2

)

n ≤

sat(n, St+1,s+1) ≤
s+1
2

n − s2+8
8

.

Proof. To obtain the upper bound, consider the graph G = K1 +H where H ∈ SAT(n−
1, Ss+1). The graph G is St+1,s+1-saturated and |E(G)| = n−1+ s−1

2
n− s2

8
= s+1

2
n− s2+8

8
.

To obtain the lower bound, apply Theorem 6.

Subdivided Stars

Let St
r+1 denote the graph obtain by subdividing t edges of a star on r + 1 vertices.

Hence, t ≤ r. (See Figure 6.)
So St

r+1 contains t + r + 1 vertices, of which r have degree 1, t have degree 2, and one
has degree r. The vertex of degree r is called the center of the subdivided star. Recall
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Figure 6: S2
7

that the tree on k vertices of minimum saturation number (previously referred to as T ∗

k )
can be thought of as S1

k−1.
We will find exact values for sat(n, S2

r+1) for all r and establish upper and lower bounds
for sat(n, St

r+1) for t ≥ 3.

Theorem 14. For n ≥ 10, sat(n, S2
4) = ⌈9n

10
⌉.

Proof. Let P6 = x1x2 · · ·x6 be a path on 6 vertices. Let H be the graph on 10 vertices
constructed from P6 by adding precisely two pendant vertices to each of x2 and x5. Then
the forest G =

(

⌊ n
10
⌋ − 1

)

H ∪H∗ where H∗ is a copy of H with s ≡ n mod 10 additional
pendant vertices added to x2. Then G is S2

4 -saturated.
We need to show that H is an S2

4-saturated tree of smallest order. Let T be any
S2

4-saturated tree and let P = x1x2 · · ·xm be a longest path in T. Since neither a star nor
a double star can be S2

4-saturated, we know m ≥ 5. In T + x1x3, vertex x3 must be the
center of the newly obtained copy of S2

4 and vertex x2 must be adjacent to an additional
pendant vertex. Adding the edge between these two vertices of degree 1, forces vertex x2

to have three pendant vertices. But this argument applies at the other end of the longest
path. It is simple to check that if m = 5 the graph is not S2

4 -saturated. Thus, m = 6
and H is the minimal tree. Observe that neither K1 nor K2 can be components and the
result follows.

Theorem 15. If r ≥ 4 and n ≥ r2 − r + 1, then sat(n, S2
r+1) = n −

⌊

n+r−1
r2

⌋

.

Proof. Let H be a rooted tree with three levels such that the root v has r − 1 neighbors
and each of these has r children. Observe that H is S2

r+1-saturated as is H ∪ H and any
graph constructed by adding additional pendant vertices to those vertices in the middle
level. Let H∗ be the tree constructed from H by deleting r − 1 pendant vertices from a
single vertex. Thus, in H∗ all vertices in the second level have r children except for one
which has only one child. Note H∗ is S2

r+1-saturated as is any graph obtained from H∗ by
adding pendant vertices to those with r children. Note, H∗∪H∗ is not S2

r+1-saturated. In
fact no S2

r+1-saturated graph can have two nonadjacent vertices each of degree 2. Thus,
given any n ≥ r2 − r + 1, there exists an S2

r+1-saturated forest each component of which
is a copy of H∗, a copy H , a copy of H∗ with some added pendant vertices, or a copy of
H with some added pen! dant vertices.

We will now show that H∗ is the smallest S2
r+1-saturated tree and if T is a tree such

that H∗ ∪ T is S2
r+1-saturated, then |V (T )| ≥ |V (H)|. Let T be an S2

r+1-saturated tree.
Since neither the star nor the double star are S2

r+1-saturated, we know the longest path
in T has at least 5 vertices. If there exists a vertex x adjacent to two pendant vertices,
then x must be the center of the copy of S2

r+1 obtained by adding the edge between these
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end vertices. Thus, x must be adjacent to at least r pendant vertices. So, any vertex
adjacent to a pendant vertex is adjacent to exactly one pendant vertex or at least r
pendant vertices. Thus, without loss of generality, if the the longest path in T is labeled
x1x2 · · ·xm, we can assume x2 is adjacent to at least r vertices of degree 1. Now x3 must
be the center of the copy of S2

r+1 formed by the addition of edge x1x3. Thus, x3 has
exactly r − 3 ne! ighbors off the path. If any one of the neighbors of x3 is a pendant
vertex, adding the edge between it and vertex x2 will produce a contradiction. Finally,
at most one of the r − 1 neighbors of x3 can have degree 2. Thus all but at most one
must be adjacent to at least r pendant vertices. Thus all S2

r+1-saturated trees have at
least |V (H∗)| vertices and any longest path in such a tree shares the structure of H∗ at
one end. Since no S2

r+1-saturated graph can have two nonadjacent vertices of degree two,
the result follows.

Next we will find upper and lower bounds for sat(n, Sr+1,t) when t ≥ 3. Note that
one consequence of the following theorem is that there exist trees with many vertices of
degree 2 (for example when t = r) with “high” saturation number.

Theorem 16. For r ≥ t ≥ 3 and n ≥ 3t, n ≤ sat(n, St
r+1) ≤ n + 3t − 5

Proof. The graph G = {K1 + {(t − 1)K3 ∪ (n − 3t + 2)K1}} ∪ K2 is St
r+1-saturated and

proves the upper bound.

For the lower bound we argue by contradiction first that no nontrivial component
of an St

r+1-saturated graph can be a tree and second, that no nontrivial component is
unicyclic. Assume that there exists a tree T that is St

r+1-saturated. Now find a longest
path, P = x1, x2, · · · , xk in T. Then k ≥ 5. If x2 is adjacent to two end vertices, then
adding the edge between them forces x2 to be the center of a copy of St

r+1 which would
force T to contain a path longer than P . Thus, deg(x2) = 2. Now consider T + {x1x3}.
The vertex x3 must be the center of the newly obtained copy of St

r+1 and the new edge
must be used as a pendant edge in St

r+1. Thus, if t = r, Sr
r+1 has no pendant edges and a

contradiction occurs. If t < r, deg(x3) = r−1 and T must contain exactly t−1 additional
paths of length exactly 2 starting at x3 disjoint from the path P . For each of these paths
the vertex adjacent to x3 has degree exactly 2. Label one such vertex y. Now T + {x2y}
fails to contain a copy of St

r+1. So there does not exist an St
r+1-saturated tree.

Assume there exists a unicyclic St
r+1-saturated graph G. Clearly, G cannot simply be

a cycle, so G is a cycle with pendant trees. Let x be a vertex whose distance from the
cycle is maximized. If x is a distance 1 away from the cycle, let y be the neighbor of
x and let y− be a neighbor of y on the cycle. Then G + {xy−} fails to produce a copy
of St

r+1. So x is at least a distance 2 away. Now the argument used on trees will show
no such graph is St

r+1-saturated. Thus, if G is a nontrivial St
r+1-saturated graph, then

|E(G)| ≥ |V (G)| + 1 and the lower bound follows.

Caterpillars

Define a caterpillar, P d
k , to be a path on k ≥ 5 vertices such that all interior ver-
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tices of the path are adjacent to d additional pendant vertices. (See Figure 7.) Thus,
|V (P d

k )| = k + (k − 2)d. Note that if k = 4, the graph would be a double star. If k = 3,
the graph is a star.

Figure 7: P 3
5

Theorem 17. If n ≥ 2k − 2 and k ≥ 5, then

n ≤ sat(n, P 1
k ) ≤ (k − 3)

(

k − 2

2

⌊

n

2k − 2

⌋)

.

Proof. Let H = Kk−3 + Kk+1. Let G =
(

⌊ n
2k−2

⌋ − 1
)

H ∪ (Kk−3 + Kk+r+1) where r ≡ n
mod 2k − 2. Note G is P 1

k -saturated. The lower bound follows from the observation that
if a P 1

k -saturated graph has a vertex x of degree 0 (or 1), then all n− 1 (or n− 2) vertices
nonadjacent to x have degree at least 2. Furthermore at least 3 vertices have degree 3 or
more.

Theorem 18. For n ≥ k + (k − 2)d, k ≥ 4 and d ≥ 2, d+1
2

n − (d+2)2

8
≤ sat(n, P d

k ) ≤
2k+d−7

2
n − (k−3)(k−2)

2
− d2

8
.

Proof. The lower bound follows directly from Theorem 6 and the fact that δ2(P
d
k ) = d+2.

The upper bound follows from the observation G = Kk−3 + H where H ∈ SAT(n − k +
3, Sd+1) is P d

k -saturated.

Assume that, given a P d
k , we lengthen the path on k vertices by adding a vertex at

each end (see Figure 8.) This appended caterpillar (call it AP d
k+2) has a path on k + 2

vertices such that the middle k − 4 vertices have degree d + 2 and it has two vertices of
degree 2.

Figure 8: AP 3
7

Theorem 19. For the graph AP d
k , n ≥ k + (k − 4)d, k ≥ 6 and d ≥ 2, we have n ≤

sat(n, AP d
k ) ≤ n(k − 3) + (k − 3)⌊ n

k+(k−4)d
⌋((k − 4)d + 2).
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Proof. Let H = Kk−3 + K(k−4)d+3. Then the graph G =
(

⌊ n
k+(k−4)d

⌋ − 1
)

H ∪ (Kk−3 +

K(k−4)d+3+r) where r ≡ n mod k + (k − 4)d is AP d
k -saturated.

The lower bound can be obtained by observing no nontrivial component of an AP d
k -

saturated graph can be a tree or unicyclic. The longest path argument used in the proofs
in the section on subdivided stars will apply.

On the other hand, we know that if we append to AP d
k a path on k vertices at one

end to make a sort of “one-sided” caterpillar, then the saturation number drops below n.

Collections of Paths

As a last example, we consider a forest such that each component is a P3. In fact
both sat(n, tP2) and SAT(n, tP2) are established in [KT86] and [Mad73]. Additionally,
sat(n, P3) is shown in Theorem 1.

Theorem 20. For n ≥ 6, sat(n, 2P3) = ⌊n+6
2
⌋.

For t ≥ 3 and n ≥ 6t − 6, ⌊n+3t+1
2

⌋ ≤ sat(n, tP3) ≤ ⌊n+6(t−1)
2

⌋.

Proof. The graph N (sometimes called a net) consists of a K3 such that each vertex of
this triangle is adjacent to precisely one pendant vertex. So N has 6 vertices and 6 edges.
The graph Hn,t is the graph on n vertices consisting of (t− 1) copies of N and ⌊n−6(t−1)

2
⌋

copies of K2. If n is odd, one component of Hn,t is an isolated vertex. Then Hn,t is
tP3-saturated for all t ≥ 2.

Assume t ≥ 2. Let G ∈ SAT(n, tP3). Then G can have at most one isolated vertex.
Also, if G contains a vertex v of degree 2 such that its neighbors are not adjacent, the
new copy of P3 obtained by adding the edge between neighbors of v implies an unused
copy of P3 in G disjoint for the other t − 1 copies of P3. Thus, the neighbors of vertices
of degree 2 must be adjacent. The same argument shows that no vertex can be adjacent
to two vertices of degree 1. Thus, there does not exist a tP3 saturated tree for t ≥ 2. The
lower bound for sat(n, 2P3) now follows.

Assume 3 ≤ r ≤ t and C is a nontrivial component of a rP3 saturated graph. Since C
is not a tree it contains at least one cycle. However, if C is unicyclic, then the previous
observations imply that C consists of a cycle such that every vertex is adjacent to exactly
one vertex of degree 1 and such a graph is not rP3 saturated. Thus, C must contain at
least 2 cycles. Thus a minimum of edges would be achieved by a single tP3-saturated
component and the remaining vertices in a matching. The number of edges in this graph
is at least 3t + 1 + ⌊n−3t

2
⌋.

6 A Summary of Small Order Cases

By applying some of the previous theorems and checking a few specific cases, we can
establish the saturation numbers for all the trees of order 7 or less. Some of the special
cases (denoted by *) required extensive case analysis which we do not include here. For
a fixed number of vertices, the trees are listed in order of increasing saturation number.
See Table 1 for trees of order 6 or less and Table 2 for trees of order seven.
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Order Tree sat(T, n) Ref.

2 P2 0 [KT86]
3 P3 ⌊n/2⌋ [KT86]
4 P4 n/2 for n even; (n + 3)/2 for n odd [KT86]

4 S4 n − 1 [KT86]

5 B3,2 ⌈(4n − 3)/5⌉ Cor 1
5 P5 ⌈(5n − 4)/6⌉ [KT86]

5 S5 ⌈(3n − 6)/2⌉ [KT86]

6 B3,3 ⌈(5n − 4)/6⌉ Cor 1

6 B4,2 ⌈(6n − 5)/7⌉ Thm 8

6 S2
4 ⌈9n/10⌉ Thm 14

6 P6 ⌈9n/10⌉ [KT86]

6 S3,3 n for n ≡3 0; n + 1 otherwise Thm 11

6 S6 2n − 3 [KT86]

Table 1: Saturation Numbers for Trees of Order 6 or Less

7 Concluding Remarks

In conclusion, it is fair to say that what we don’t know about the saturation number
of trees is somewhat larger than what we do know. Specifically, if for T a tree we let
k = |V (T )| be fixed, we know the maximum and minimum values of sat(n, T ). For
some specific trees, we know sat(n, T ) exactly. These include paths and stars, and some
brooms, double stars, and subdivided stars. It is interesting that of all the trees for which
the exact saturation is known, all but one (S3

4) have a similar structure: the existence of
a dominating path. We have upper and lower bounds (some better than others) for other
classes of trees including all double stars and some subdivided stars and caterpillars.
Finally, we do know of certain properties in trees that effect the saturation number.
Specifically, trees with long induced paths will have saturation numbers near the minimum
and trees with high values for δ2(T ) will have high saturation numbers.

Obviously, we do not know the saturation number of an arbitrary tree. Additionally,
assuming the tree T does not have a high δ2 value and does not have a long induced path,
we really don’t have any tool other than the Kászonyi-Tuza upper bound result to even
put bounds on sat(n, T ). Some more specific open questions follow.

Question 1: Among all trees of order k, can you determine the tree of second highest
and second lowest saturation number?
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Order Tree sat(T, n) Ref.

7 B3,4 ⌈(6n − 5)/7⌉ Cor 1

7 B4,3 ⌈(8n − 7)/9⌉ Thm 8

7 B5,2 ⌈9n/10⌉ Thm 9

7 C6(0, 1, 0, 0) ⌈9n/10⌉ *
7 P7 ⌈13n/14⌉ [KT86]

7 S2
5 ⌈(15n − 3)/16⌉ Thm 15

7 C5(1, 1, 0) n + 1 *

7 S3
4 n + 3 Thm 16

7 C5(1, 0, 1) ⌊(7n − 3)/6⌋ *

7 S3,4 ⌈(5n − 3)/4⌉ Thm 13

7 S7 ⌈(5n − 9)/2⌉ [KT86]

Table 2: Saturation Numbers for Trees of Order 7

Question 2: Can sharper bounds be established for Theorems 12, 13, 16-19?

Question 3: For those classes of trees for which the saturation number is known, is it
possible to characterize the set of minimal saturated graphs?
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