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a b s t r a c t

A graph G is H-saturated if G does not contain H as a subgraph but for any nonadjacent
vertices u and v, G+uv containsH as a subgraph. The parameter sat(H, n) is theminimum
number of edges in an H-saturated graph of order n. In this paper, we determine sat(H, n)
for sufficiently large nwhen H is a union of cliques of the same order, an arbitrary union of
two cliques and a generalized friendship graph.
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1. Introduction

In this paper we consider only graphs without loops or multiple edges. We let V (G) and E(G) denote the sets of vertices
and edges of G, respectively. The order of G, usually denoted n, is |V (G)| and the size of G is |E(G)|. For any vertex v in G,
let N(v) denote the set of vertices adjacent to v and N[v] = N(v) ∪ v. The degree of a vertex v is |N(v)| and we let δ(G)
and 1(G) denote the minimum and maximum degree of a vertex in G, respectively. We denote the complement of G by G
and for any graph H let tH denote the graph composed of t vertex disjoint copies of H . For vertices v1, . . . , vt in V (G), let
〈v1, . . . , vt〉 denote the subgraph of G induced by these vertices. Furthermore, if U ⊂ V (G), we will use 〈U, v1, v2, . . . , vt〉
to denote the subgraph of G induced by the vertices v1, . . . , vt and U . Given any two graphs G and H , their join, denoted
G+ H , is the graph with V (G+ H) = V (G) ∪ V (H) and E(G+ H) = E(G) ∪ E(H) ∪ {gh | g ∈ V (G), h ∈ V (H)}.
Let G and H be graphs. We say that G is H-saturated if H is not a subgraph of G, but for any edge uv in G, H is a subgraph of

G+uv. For a fixed integer n, the problem of determining the maximum size of an H-saturated graph of order n is equivalent
to determining the classical extremal function ex(H, n). In this paper, we are interested in determining the minimum size
of an H-saturated graph. Erdős, Hajnal and Moon introduced this notion in [5] and studied it for cliques. We let sat(H, n)
denote the minimum size of an H-saturated graph on n vertices. The value sat(H, n) is called the saturation number for the
graph H .
There are very few graphs for which sat(H, n) is known exactly. In addition to cliques, some of the graphs for which

sat(H, n) is known include stars, paths and matchings [10], C4 [11], and C5 [3]. In [12] the value of sat(K2,3, n) is found
asymptotically. See [1] for a survey of related results. Some progress has beenmade for arbitrary cycles and the current best
known upper bound on sat(Ct , n) can be found in [9]. The best upper bound on sat(H, n) for an arbitrary graph H appears
in [10], and it remains an interesting problem to determine a non-trivial lower bound on sat(H, n).
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2. sat(tKp, n)

In [5], Erdős, Hajnal and Moon determined that

sat(Kp, n) = (p− 2)(n− 1)−
(
p− 2
2

)
for all p ≥ 3. The upper bound is obtained by considering the graph Kp−2 + K n−p+2, which is Kp-saturated. In this section
we extend this result by constructing a graph G that is tKp-saturated for any t ≥ 1 and p ≥ 3. In addition to extending the
result in [5] pertaining to sat(Kp, n), our main result also extends a result from [10] which states that sat(tK2, n) = 3t − 3
for n ≥ 3t − 3.
Let t ≥ 1, p ≥ 3 and n ≥ pt + t − 3 be fixed integers. Let G0 ∼= (t − 1)Kp+1 and denote these copies of Kp+1 by

H1, . . . ,Ht−1. The graph G(n, p, t) is defined to be the join of G1 ∼= Kp−2 and G0 ∪ K n−pt−t+3. We first note that G(n, p, t)
contains no copy of tKp. Indeed, any copy of Kp in G(n, p, t) can only be composed of vertices from G1 and exactly one Hi.
Furthermore, no two disjoint copies of Kp in G(n, p, t) can intersect any fixed Hi as together Hi and G1 have only 2p − 1
vertices. These two facts imply that if `Kp is contained in G(n, p, t) then ` ≤ t − 1.
Let u and v be nonadjacent vertices in G(n, p, t) and add uv to G(n, p, t). Then u, v and the vertices of G1 induce a copy

of Kp in G(n, p, t) + uv. Since u and v cannot lie in the same Hi, it is possible to find a subgraph of G(n, p, t) isomorphic
to (t − 1)Kp that is disjoint from u, v and G1, so that tKp is a subgraph of G(n, p, t) + uv. This implies that G(n, p, t) is
tKp-saturated. The main result of this section is as follows:

Theorem 2.1. Let t ≥ 1, p ≥ 3 and n ≥ p(p+ 1)t − p2 + 2p− 6 be integers. Then

sat(tKp, n) = |E(G(n, p, t))| = (t − 1)
(
p+ 1
2

)
+

(
p− 2
2

)
+ (p− 2)(n− p+ 2).

Proof. Given p and t , let G be a tKp-saturated graph of order n ≥ p(p+ 1)t − p2 + 2p− 6. We will assume that the size of
G is strictly less than |E(G(n, p, t))| and work to a contradiction.
By assumption, tKp is not a subgraph ofG, yet for any pair of nonadjacent vertices in V (G),G+uvmust contain a subgraph

F isomorphic to tKp. This says that uv must lie in some copy of Kp in G + uv. As this must hold for all pairs of nonadjacent
vertices in G, it follows that δ(G) is at least p− 2. When n is sufficiently large, we can make a stronger statement.

Claim 2.2. If n ≥ p(p+ 1)t − p2 + 2p− 6 then δ(G) = p− 2.

Proof. Assume otherwise, so that every vertex in G has degree at least δ ≥ p − 1. Let v be a vertex of minimum degree δ,
then each non-neighboring vertex umust therefore lie in a copy of Kp with v in G+ uv. This implies that u is adjacent to at
least p − 2 vertices in N(v) and also implies that there is a copy of Kp−2 contained in the subgraph induced by N(v). Thus,

the sum of the vertex degrees in N(v) is at least (n− δ − 1)(p− 2)+ 2
(
p−2
2

)
+ δ. This yields that

2|E(G)| ≥ δ(n− δ)+ (n− δ − 1)(p− 2)+ 2
(
p− 2
2

)
+ δ.

Since δ ≥ p− 1, we have that

2|E(G)| ≥ (n− p+ 1)(p− 1)+ (n− p)(p− 2)+ 2
(
p− 2
2

)
+ (p− 1).

By assumption,

|E(G)| < |E(G(n, p, t))| = (t − 1)
(
p+ 1
2

)
+

(
p− 2
2

)
+ (p− 2)(n− p+ 2)

which implies that

(n− p+ 1)(p− 1)+ (n− p)(p− 2)+ 2
(
p− 2
2

)
+ (p− 1)

is at most

2
(
(t − 1)

(
p+ 1
2

)
+

(
p− 2
2

)
+ (p− 2)(n− p+ 2)

)
.

Simplifying, we get that

n < p(p− 2)+ (t − 1)p(p+ 1)− (p− 2)(p− 3)
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or

n < p(p+ 1)t − p2 + 2p− 6,

contradicting our assumption about the order of G. �

Let v be a vertex of degree p− 2 in G and choose any vertex u that does not lie in N(v). Such a vertex exists by our bound
on n. Then G + uv must contain tKp such that u and v are both in the same copy of Kp. This immediately implies that the
other p− 2 vertices in this copy of Kp must be N(v) and hence, as the degree of v is p− 2, that N(v)must induce a complete
subgraph of G, which we will henceforth call S. Furthermore, since this holds for any choice of u, it must be that all of the
vertices in S are adjacent to each vertex in G− S.
Since G+ uv contains tKp in which one of the copies of Kp is 〈S, u, v〉, Gmust contain a subgraph isomorphic to (t − 1)Kp

that does not intersect S. Let H be such a subgraph and let H1, . . . ,Ht−1 denote the components of H . To further describe
the structure of G, let R denote those vertices in G, in ¯S ∪ V (H), that are adjacent to at least one vertex in V (H).
It is now our goal to show that there are at least (t − 1)p edges ux in G such that neither u nor x lies in S and ux is not in

E(H). If t = 1, there is nothing to prove, thus we need only consider t ≥ 2. In this case, we would know that

|E(G)| ≥
(
p− 2
2

)
+ (p− 2)(n− p+ 2)+ (t − 1)

(p
2

)
+ (t − 1)p = |E(G(n, p, t))|,

hence equality must hold. We will accomplish this by uniquely associating each vertex h in H with an appropriate edge
incident to h.
Assume that some vertex in H , say v1 in H1, is such that N[v1] = S ∪ V (H1). Select any other vertex x in H1 and add the

edge xv to G, where again we let v denote a vertex of degree p − 2 in G. Then G + xv contains a subgraph F isomorphic to
tKp in which 〈S, x, v〉 is one of the copies of Kp. Note that v1 has degree 2p − 3 and hence cannot lie in F since p − 1 of its
neighbors are already used in the clique 〈S, x, v〉. Consequently, replacing 〈S, x, v〉 with 〈S, v1, x〉 in F , yields a subgraph of
G isomorphic to tKp, contradicting the assumption that G is tKp-saturated.
We can therefore assume that every vertex h in H has a neighbor u that lies in either R or H such that hu is not in E(H).

If each vertex in H has a neighbor in R, this would assure at least (t − 1)p additional edges in G, completing the proof. This
must hold if t−1 = 1, so wemay assume t ≥ 2.We also assume that the subgraph H ′ given by 〈V (H)〉−E(H) is nonempty.
The components of H ′ fall into three categories: those components containing a cycle, those components that are trees

and contain a vertex which has a neighbor in R and those components that are trees such that no vertex in the component
has an adjacency in R. Assume for a moment that there are no components of the third type. Let C be a component of the
first type, so that there is some cycle in C . Choose any edge xy on this cycle and consider C − xy, which must be connected.
Choose any spanning tree of C − xy and root it at x. Define the map fC : V (C)→ E(C) such that fC (x) is xy and for each other
vertexw 6= x in C , fC (w) is the edge that precedesw in the rooted spanning tree. Note that fC is an injection.
Next assume that C is a component of the second type, that is, C is a tree (possibly a trivial tree) and there are vertices

x and r in C and R respectively such that xr is in E(G). Root C at x and define the map fC : V (C) → (E(C) ∪ xr) such that
f (x) is xr and for each other vertex w 6= x in C , f (w) is the edge that precedes w in the rooting of C at x. Note again that fC
is injective.
If all of the components of H ′ fall into one of these two categories, then we will define the function f : V (H) → E(G)

such that if w is in some component C of H ′, then f (w) = fC (w). For each component C , fC is injective and fC (v) is an edge
adjacent to v that either lies in C or has an endpoint in R, and these two properties imply that f must be injective, which
would complete the proof.
It is therefore our goal to show that each component of H ′ that is a tree must contain a vertex which has a neighbor in

R. Assume that T is such a component of H ′ and let u1 be an end-vertex of T . Assume that u1 lies in H1 and let w denote
the neighbor of u1 in T , so that w lies in some Hi for i ≥ 2. Let u2 be any vertex in H1 other than u1 and assume that u2w
is not an edge in G. Choose any u3 in H1 distinct from u1 and u2 and add the edge u3v to G, where v is any vertex of degree
p− 2 in G. Then G+ u3v contains a subgraph F isomorphic to tKp such that one of the copies of Kp is 〈S, u3, v〉. Note that the
neighborhood of u1 is exactly S, w and the other vertices in H1. This implies, since 〈S, u3, v〉 is one of the cliques in F , that if
u1 was in F , it would have to be in a clique withw and V (H1) \ {u3}. This is impossible, as we have assumed that u2w is not
an edge in G, so u1 is not in F . This implies that we could replace 〈S, u3, v〉 in F with 〈S, u1, u3〉which creates a subgraph of
G isomorphic to tKp, a contradiction.
Hence we may assume that w is adjacent to each vertex in H1. Let V (H1) = {u1, . . . , up−1, y}. If we choose u1 to be an

end-vertex of a longest path in T , we may assume that all but one of the neighbors of w in T are also end-vertices of T .
Specifically, we will assume that U = {u1, . . . , up−1} are end-vertices in T . By assumption, u1 is not adjacent to any other
vertex in the component of H containingw, so choose some vertex z in the same component of H asw and add the edge u1z
to G. This creates a subgraph F of G+ u1z isomorphic to tKp. Let C denote the component (clique) in F that contains u1z and
let T denote F \ C .
Note that N(u1) ∩ N(z) is composed of S, w and possibly y (if yz is an edge in G). Also note that the common neighbors

of the vertices in U are exactlyw, S and y. We consider several cases.
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Case 1: Suppose that C = 〈S, u1, z〉.
Note that the vertices in U have exactly 2 common neighbors outside of C , namely y and w. Thus, if any vertices of U

appear in T , then they specifically appear in the clique 〈y, w, u2, . . . , up−1〉. If 〈y, w, u2, . . . , up−1〉 is a clique in T , then we
see that H1(= 〈U, y〉), 〈S, w, z〉 and the cliques in T \ 〈y, w, u2, . . . , up−1〉 comprise a subgraph of G isomorphic to tKp,
contrary to our assumptions. Hence we may assume that 〈y, w, u2, . . . , up−1〉 is not one of the cliques in T and therefore
that no vertex of U appears in T . Then 〈S, u1, u2〉 together with T is a subgraph of G isomorphic to tKp, a contradiction.
Case 2: Suppose that C = 〈S ′, u1, w, z〉, where S ′ = S \ {s}.
Note that if p = 3, then |S| = 1 and S ′ = ∅. The vertices in U have exactly two common neighbors outside of C , namely y

and s, so if any vertex of U appears in T , then they specifically appear in the clique 〈y, s, u2, . . . , up−1〉. If 〈y, s, u2, . . . , up−1〉
is in T , then H1, 〈S, w, z〉 and the cliques in T \ 〈y, s, u2, . . . , up−1〉 comprise a subgraph of G isomorphic to tKp, contrary to
our assumptions. Hence we may assume that 〈y, s, u2, . . . , up−1〉 is not one of the cliques in T and therefore that no vertex
of U appears in T . Then 〈S ′, u1, u2, u3〉 together with T is a subgraph of G isomorphic to tKp, a contradiction.
Case 3: Suppose that C = 〈S ′′, u1, w, y, z〉, where S ′′ = S \ {s1, s2}.
Note that Case 3 does not exist if p = 3. Also note that the vertices in U have only s1 and s2 as common neighbors in C̄ , so

once again if any vertex of U is in T then they specifically appear in the clique 〈s1, s2, u2, . . . , up−1〉. If 〈s1, s2, u2, . . . , up−1〉
is in T , then H1, 〈S, w, z〉 and the cliques in T \ 〈s1, s2, u2, . . . , up−1〉 comprise a subgraph of G isomorphic to tKp. If
〈s1, s2, u2, . . . , up−1〉 is not a clique in T , then H1 ∪ T is a subgraph of G isomorphic to tKp, a contradiction.
Case 4: Suppose that C = 〈S ′, u1, z, y〉, where S ′ = S \ {s}.
Note that the vertices in U have only w and s as common neighbors in C̄ , so as above if any vertex of U is in T , then

they specifically appear in the clique 〈s, w, u2, . . . , up−1〉. If 〈s, w, u2, . . . , up−1〉 is in T , then H1, 〈S, w, z〉 and the cliques in
T \ 〈s, w, u2, . . . , up−1〉 comprise a subgraph of G isomorphic to tKp. If 〈s, w, u2, . . . , up−1〉 is not a clique in F , then H1 ∪ T
is a subgraph of G isomorphic to tKp, a contradiction.
As noted above,N(u1)∩N(z) is composed of S, v and possibly y (if yz is an edge inG) so these four cases suffice to exhaust

the possible compositions of C .
Consequently, it follows that each component of H ′ which is a tree must contain a vertex which has a neighbor in R. By

our previous discussion, we can therefore associate each vertex in H with a unique edge in H̄ that is not incident to any
vertex in S. This assures that there are at least (t − 1)p edges in G aside from those in H and those adjacent to at least one
vertex in S, completing the proof. �

One of the difficulties in determining sat(H, n) is that frequently the extremal graphs are not unique. In [5], it was shown
that G(n, p, 1) = Kp−2 + K n−p+2 was the unique Kp-saturated graph of minimum size. As a consequence of the main result
of the next section we will also show that G(n, p, 2) is the unique 2Kp-saturated graph of order nwith minimum size. In this
vein, we show the following.

Theorem 2.3. If p ≥ 3 and n ≥ 3p(p + 1) − p2 + 2p − 6, then G(n, p, 3) is the unique 3Kp-saturated graph of order n with
minimum size.

Proof. Let G be a 3Kp-saturated graph of minimum size amongst all such graphs of order |G| = n ≥ 3p(p+1)−p2+2p−6.
Many of the structural observations about Gmade in the proof of Theorem 2.1 still hold. In particular, there must be a set S
of p − 2 vertices in G each having degree n − 1. Additionally, G has a subgraph H which is disjoint from S and isomorphic
to 2Kp. Let H1 and H2 be the components of H and note that since G is 3Kp-saturated of minimum size, there are exactly 2p
edges in G that lie in H̄ and are not incident to any vertex in S.
As in the proof of Theorem 2.1 we may also assume that each vertex h in H has a neighbor u such that u is not in S and

hu is not an edge of H . Let R again denote those vertices in V (H̄) ∪ S that have a neighbor in H . We first wish to show that
|R| ≥ 2. Assume that |R| ≤ 1 and that there are nonadjacent vertices h1 and h2 in H1 and H2, respectively. Then G + h1h2
must contain 3Kp, but the only vertices of degree at least p − 1 in G + h1h2 lie in H, S and possibly R. This accounts for
at most |S| + |H| + |R| ≤ p − 2 + 2p + 1 = 3p − 1 vertices of degree at least p − 1, implying that 3Kp cannot be a
subgraph of G + h1h2. Thus, if |R| ≤ 1 each vertex h1 and h2 in H1 and H2 respectively, must be adjacent. This implies that
there are at least p2 edges in G that lie in H̄ and are not incident to any vertex in S. Since p2 > 2p for p ≥ 3, this is a
contradiction.
Next we note that each vertex in R must be adjacent to at least p vertices in H . Assume that there is some r in R that is

adjacent to strictly less than p vertices in H . Let x be any neighbor of r in H and let v be a vertex of degree p− 2 in G. Then
G + xv contains a subgraph F isomorphic to 3Kp in which 〈S, x, v〉 is one of the copies of Kp. The fact that there are exactly
2p edges in G not induced by R, or H , nor incident with S, it follows that r cannot lie in F . This implies that 〈S, r, x〉 is a copy
of Kp in G that is disjoint from F \ 〈S, x, v〉 so that Gmust contain 3Kp, a contradiction.
Since |R| > 1 and each vertex in R is adjacent to at least p vertices in H , we must have that R = {r1, r2}. Let h be some

neighbor of r1 in H , specifically assume that h is in H1. Let v be a vertex of degree p− 2 in G and add the edge hv to G. Then
G+hv contains some subgraph F isomorphic to 3Kp, and 〈S, h, v〉 is one of the copies of Kp in F . If r1 does not lie in F , thenwe
could simply replace 〈S, h, v〉 in F with 〈S, h, r1〉, implying that there is a copy of 3Kp in G. Thus r1 must be in F and NF (r1),
the neighborhood of r1 in F , must be a clique of order p− 1. Furthermore, this clique must be disjoint from S since 〈S, h, v〉
is in F and hence must lie entirely in one component of H . If NF (r1) was contained in H2, then recall that r1 is adjacent to
exactly p vertices in H and repeat this argument by adding the edge h2v to G, where h2 is any vertex in NF (r1) ∩ H2. Then r1
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would have to be adjacent to a clique of order p−1 that included h, but excluded h2 which is impossible because this would
imply that r1 would be adjacent to more than p vertices in H .
Hence we may assume that N(r1) and N(r2) both induce components of H . If these components are distinct then G is

isomorphic to G(n, 3, p), so assume without loss of generality that N(r1) = N(r2) = H2 ∪ S. In this case, choose any vertex
h1 in H1 and any vertex v of degree p − 2 in G, and add the edge h1v to G. Then 〈S, h1, v〉 is a Kp in some subgraph F of
G + h1v isomorphic to 3Kp. The assumption that N(r1) = N(r2) = H2 ∪ S in G along with the fact that 〈S, h1, v〉 is a Kp in
F implies that no vertex h 6= h1 lies in F . This implies that we can replace 〈S, h1, v〉 in F with 〈S, h1, h〉 demonstrating that
3Kp is a subgraph of G, a contradiction. Thus it must be that, without loss of generality, N(r1) = H1 and N(r2) = H2, so G is
isomorphic to G(n, p, 3). �

2.1. Generalized friendship graphs

Let Fk be the graph comprised of k triangles intersecting in a common point, often called the friendship graph. Extending
this notion, let Ft,p,` denote the graph comprised of t copies of Kp intersecting in a common K`. The graph Ft,p,` generalizes
the notion of a friendship graph. Both of these graphs have been of interest in the extremal literature. The extremal function
ex(Fk, n)was determined in [4] and was subsequently extended in [2] to determine ex(Ft,p,`)when ` = 1.
We will use techniques nearly identical to those in the proof of Theorem 2.1 to determine sat(Ft,p,`, n). We begin by

constructing a graph FG(t, p, `) that is Ft,p,`-saturated. For p ≥ 3, t ≥ 2 and p − 2 ≥ ` ≥ 1, let FG(t, p, `) denote the
graph formed by taking the join of G1 = Kp−2 and (t − 1)Kp−`+1 ∪ K n−(p−2)−(t−1)(p−`+1). We wish to verify that FG(t, p, `)
is Ft,p,`-saturated.
If FG(t, p, `) contained a copy of Ft,p,`, then the common K` would have to lie in G1. However, there is no subgraph of

FG(t, p, `) isomorphic to tKp−` that is disjoint from any `-element subset of V (G1). If u and v are nonadjacent vertices in
FG(t, p, `), then in FG(t, p, `)+ uv there is a copy of Ft,p,` constructed from G1, u, v and any (t − 1) copies of Kp−` that are
disjoint from G1, u and v.

Theorem 2.4. Let p ≥ 3, t ≥ 2 and p− 2 ≥ ` ≥ 1 be integers. Then, for sufficiently large n,

sat(Ft,p,`, n) = |E(FG(t, p, `))| = (p− 2)(n− p+ 2)+
(
p− 2
2

)
+ (t − 1)

(
p− `+ 1
2

)
.

Asmentioned above, the proof of this theoremwill closely mirror that of Theorem 2.1. As such, wewill give only a sketch
of the proof and leave the details to the reader.

Proof (Sketch). Let G be an Ft,p,`-saturated graph, and assume that |E(G)| < |E(FG(t, p, `))|. Assume that u and v are
nonadjacent vertices in G. Then G + uv has a subgraph F isomorphic to Ft,p,` that contains the edge uv. This implies that u
and v each must have degree at least δ(Ft,p,`) = p − 1 in G + uv and hence that δ(G) ≥ p − 2. By an argument similar to
Claim 2.2, for n sufficiently large we may assume δ(G) = p− 2. Let v be a vertex of degree p− 2 in G. For any other vertex
w in G \ N[v], G + vw contains a subgraph F ∼= Ft,p,` such that vw lies in some Kp. Then w and v each have a copy of Kp−2
in their neighborhoods, and since v has degree p− 2 in G, we know that 〈N(v)〉 ∼= Kp−2. Let S = N(v).
The preceding argument holds for all choices of w, and as such, each vertex in S must be adjacent to every vertex in

V (G) \ S. Additionally, since 〈S, v, w〉 must be the clique containing wv in G + wv, we may assume that the common K`
in the subgraph of G + uw isomorphic to Ft,p,` lies in S. This implies that in G \ S there are (t − 1) disjoint copies of Kp−`,
denoted by H1, . . . ,Ht−1.
Let H = ∪1≤i≤t−1 Hi. As in the proof of Theorem 2.1, we wish to show that there are at least (t−1)(p− `) edges in G that

are neither in H nor adjacent to a vertex in S. This would imply that G has at least |E(FG(t, p, `))| edges. It is not difficult to
show that each vertex x in H has a neighbor vx such that vx is not in S and xvx is not in E(H). If, for each vertex x in H , there is
some choice for vx that lies in H̄ , we are done. Hence we will consider the subgraph H1 = 〈V (H)〉 − E(H). Using arguments
similar to those above, it is not difficult to show that each component C ofH1 either contains a cycle or is a tree with a vertex
v that is adjacent to some vertex in V (G) \ (S ∪ H). As above, this completes the proof. �

3. Determining sat(Kp ∪ Kq, n)

In this section, we will consider the problem of determining the saturation number of a union of cliques that are not all
of the same order. Specifically, for 3 ≤ p ≤ q we will determine sat(Kp ∪ Kq, n). Let H(n, p, q) denote the graph formed by
taking the join of Kp−2 and Kq+1 ∪ K n−p−q+1 and note that H(n, p, q) is structurally similar to each of the extremal graphs in
the preceding section. This graph has only p+ q− 1 vertices of degree at least p− 1, and as such cannot contain a copy of
Kp ∪ Kq. It is not difficult to see that for any nonadjacent vertices u and v in H(n, p, q), the addition of the edge uv creates a
copy of Kp ∪ Kq in H(n, p, q)+ uv. The following is the main result of this section.
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Theorem 3.1. Let 2 ≤ p ≤ q and n ≥ q(q+ 1)+ 3(p− 2) be integers. Then

sat(Kp ∪ Kq, n) = |E(H(n, p, q))| = (p− 2)(n− p+ 2)+
(
p− 2
2

)
+

(
q+ 1
2

)
.

Furthermore, H(n, p, q) is the unique (Kp ∪ Kq)-saturated graph of minimum size when n ≥ q(q+ 1)+ 3(p− 2).

Proof. Given q ≥ p ≥ 2, let G be a Kp ∪ Kq-saturated graph of order n ≥ q(q + 1) + 3(p − 2). We will assume that
|E(G)| ≤ |E(H(n, p, q))| and work to show that equality must hold. Choose any nonadjacent u and v in G. Since G is Kp ∪ Kq-
saturated, we know that inG+uv there is a clique of order at least p that contains uv. This implies that u and v have degree at
least p−1 in G+uv, and hence that δ(G) ≥ p−2. In fact, via an argument that is nearly identical to Claim 2.2 of Theorem 2.1,
our choice of n ≥ q(q+ 1)+ 3(p− 2) allows us to assume that δ(G) = p− 2.
Let v be a vertex of degree p− 2 in G and letw be any other vertex in G that is not adjacent to v. Then G+ vw contains a

subgraph F that is isomorphic to Kp ∪ Kq such that vw is in F . Since the degree of v is p− 1 in G+ vw the edge vwmust lie
in a clique of order p. Therefore, if p ≥ 3, Gmust contain a clique S of order p− 2 with every vertex of S adjacent to both v
andw. In particular, N(v) = S and since this must hold for all choices ofw it follows that each vertex in S must therefore be
adjacent to each vertex in G \ E(S). If p = 2, v was an isolated vertex andwmay or may not have been isolated. To complete
the proof of this theorem, it will suffice to show that there are at least

(
q+1
2

)
edges in G \ E(S).

Also note that sinceG+vw contains Kp∪Kq and vwmust be in some copy of Kp, we can also assume thatG has a subgraph
H that is isomorphic to Kq such that H contains no vertices from S. Choose some vertex x in H and again let v have degree
p− 2 in G. Then G+ vx contains a copy of Kp ∪Kq in which 〈S, v, x〉must be the Kp and some subgraph Hx of G, distinct from
H (but possibly intersecting), must be the Kq. For p ≥ 3, if |V (H) ∩ V (Hx)| = t < q− 1, then G \ E(S) has at least( q

2

)
+

(
q− t
2

)
+ t(q− t) ≥

(
q+ 1
2

)
edges, implying that |E(G)| ≥ |E(H(n, p, q))|. If q = p = 2, then t 6= 0 or else 2K2 already exists. But then again,(

2
2

)
+

(
1
2

)
+ 1(2− 1) ≥

(
2+ 1
2

)
,

again implying |E(G)| ≥ |E(H(n, 2, 2))|.
Therefore, we may assume that for each x in H there is some vertex vx that lies in neither S nor H such that vx and q− 1

vertices of H form a Kq in G. If for distinct x1 and x2 in V (H), vx1 6= vx2 then there are at least
( q
2

)
+ 2(q− 1) >

(
q+1
2

)
edges

in G \ E(S), contradicting our assumption that G has at most as many edges as H(n, p, q). Hence, there is some vertex y such
that vx = y for each x in V (H). This implies that H ∪ y induces a Kq+1 contained in G \ E(S), thus, G has at least as many
edges as H(n, p, q), which implies that the Kq+1 induced by V (H)∪ ymust be the entirety of edges of G \ E(S). Thus, Gmust
be isomorphic to H(n, p, q). �

For integers 3 ≤ p1 ≤ p2 ≤ · · · ≤ pt , it is interesting to consider the problem of determining sat(Kp1 ∪ · · · ∪ Kpt , n). In
fact, one may consider adapting the structure of the extremal graphs used thus far in this paper in the following way. Let
Σpi = m and consider the graph G formed by taking the join of Kp1−2 and Kp2+1 ∪ · · · ∪ Kpt+1 ∪ K n−m−t+3. Clearly, if u and
v are nonadjacent vertices in G, then G+ uv contains a copy of Kp1 ∪ · · · ∪ Kpt . However, for appropriate choices of the pi, G
may also contain a copy of this subgraph. Indeed, for any integers 3 ≤ ` ≤ p, choose p1 = `, p2 = p and p3 = p+ 1. In this
case, the graph Gwould be K`−2 joined to Kp+1 ∪ Kp+2 ∪ Kn−`−2p+1. The copies of K`−2 and Kp+2 form a K`+p which contains
K` ∪ Kp. This, together with the Kp+1 already in G comprises a subgraph of G isomorphic to K` ∪ Kp ∪ Kp+1. This precludes G
from being (K` ∪ Kp ∪ Kp+1)-saturated.

4. Conclusion

With an eye towards further extending the results from [10], it would be of interest to continue investigating the
saturation number of a union of cliques of different sizes, particularly in light of the observation made above about the
case K` ∪ Kp ∪ Kp+1. For the sake of completeness, the issue of the uniqueness (or non-uniqueness) of G(n, t, p) for t > 3
and n large enough would also be of interest.
A non-negative integer sequence π is said to be graphic if it is the degree sequence of some graph G and we then say

that G is a realization of π . For an arbitrary graph H , define σ(H, n) (see for example [8]) to be the minimum even integerm
such that any n-term graphic sequence π with sum at leastm has some realization that contains H as a subgraph. In [8], it is
conjectured that 2sat(H, n) < σ(H, n). Comparing Theorems 2.1 and 3.1 to the results in [6] and Theorem 2.4 to the results
in [1,7] affirms this conjecture for tKp, Kp ∪ Kq and Ft,p,`.
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