$t K_{p}$-saturated graphs of minimum size

Ralph Faudree ${ }^{\text {a }}$, Michael Ferrara ${ }^{\text {b }}$, Ronald Gould ${ }^{\text {c,* }}$, Michael Jacobson ${ }^{\text {d }}$
${ }^{\text {a }}$ University of Memphis, Memphis, TN 38152, United States
${ }^{\text {b }}$ University of Akron, Akron, OH 44325, United States
${ }^{\text {c }}$ Emory University, Atlanta, GA 30322, United States
${ }^{\text {d }}$ University of Colorado at Denver, Denver, CO 80217, United States

ARTICLE INFO

Article history:

Received 13 April 2007
Accepted 27 June 2008
Available online 26 July 2008

Keywords:

Saturation
Complete graph
Union of graphs

Abstract

A graph G is H-saturated if G does not contain H as a subgraph but for any nonadjacent vertices u and $v, G+u v$ contains H as a subgraph. The parameter $\operatorname{sat}(H, n)$ is the minimum number of edges in an H-saturated graph of order n. In this paper, we determine sat (H, n) for sufficiently large n when H is a union of cliques of the same order, an arbitrary union of two cliques and a generalized friendship graph.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider only graphs without loops or multiple edges. We let $V(G)$ and $E(G)$ denote the sets of vertices and edges of G, respectively. The order of G, usually denoted n, is $|V(G)|$ and the size of G is $|E(G)|$. For any vertex v in G, let $N(v)$ denote the set of vertices adjacent to v and $N[v]=N(v) \cup v$. The degree of a vertex v is $|N(v)|$ and we let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degree of a vertex in G, respectively. We denote the complement of G by \bar{G} and for any graph H let $t H$ denote the graph composed of t vertex disjoint copies of H. For vertices v_{1}, \ldots, v_{t} in $V(G)$, let $\left\langle v_{1}, \ldots, v_{t}\right\rangle$ denote the subgraph of G induced by these vertices. Furthermore, if $U \subset V(G)$, we will use $\left\langle U, v_{1}, v_{2}, \ldots, v_{t}\right\rangle$ to denote the subgraph of G induced by the vertices v_{1}, \ldots, v_{t} and U. Given any two graphs G and H, their join, denoted $G+H$, is the graph with $V(G+H)=V(G) \cup V(H)$ and $E(G+H)=E(G) \cup E(H) \cup\{g h \mid g \in V(G), h \in V(H)\}$.

Let G and H be graphs. We say that G is H-saturated if H is not a subgraph of G, but for any edge $u v$ in \bar{G}, H is a subgraph of $G+u v$. For a fixed integer n, the problem of determining the maximum size of an H-saturated graph of order n is equivalent to determining the classical extremal function $e x(H, n)$. In this paper, we are interested in determining the minimum size of an H -saturated graph. Erdős, Hajnal and Moon introduced this notion in [5] and studied it for cliques. We let sat (H, n) denote the minimum size of an H-saturated graph on n vertices. The value sat (H, n) is called the saturation number for the graph H.

There are very few graphs for which $\operatorname{sat}(H, n)$ is known exactly. In addition to cliques, some of the graphs for which $\operatorname{sat}(H, n)$ is known include stars, paths and matchings [10], C_{4} [11], and C_{5} [3]. In [12] the value of $\operatorname{sat}\left(K_{2,3}, n\right)$ is found asymptotically. See [1] for a survey of related results. Some progress has been made for arbitrary cycles and the current best known upper bound on $\operatorname{sat}\left(C_{t}, n\right)$ can be found in [9]. The best upper bound on $\operatorname{sat}(H, n)$ for an arbitrary graph H appears in [10], and it remains an interesting problem to determine a non-trivial lower bound on $\operatorname{sat}(H, n)$.

[^0]
2. $\operatorname{sat}\left(t K_{p}, n\right)$

In [5], Erdős, Hajnal and Moon determined that

$$
\operatorname{sat}\left(K_{p}, n\right)=(p-2)(n-1)-\binom{p-2}{2}
$$

for all $p \geq 3$. The upper bound is obtained by considering the graph $K_{p-2}+\bar{K}_{n-p+2}$, which is K_{p}-saturated. In this section we extend this result by constructing a graph G that is $t K_{p}$-saturated for any $t \geq 1$ and $p \geq 3$. In addition to extending the result in [5] pertaining to sat $\left(K_{p}, n\right)$, our main result also extends a result from [10] which states that sat $\left(t K_{2}, n\right)=3 t-3$ for $n \geq 3 t-3$.

Let $t \geq 1, p \geq 3$ and $n \geq p t+t-3$ be fixed integers. Let $G_{0} \cong(t-1) K_{p+1}$ and denote these copies of K_{p+1} by H_{1}, \ldots, H_{t-1}. The graph $G(n, p, t)$ is defined to be the join of $G_{1} \cong K_{p-2}$ and $G_{0} \cup \bar{K}_{n-p t-t+3}$. We first note that $G(n, p, t)$ contains no copy of $t K_{p}$. Indeed, any copy of K_{p} in $G(n, p, t)$ can only be composed of vertices from G_{1} and exactly one H_{i}. Furthermore, no two disjoint copies of K_{p} in $G(n, p, t)$ can intersect any fixed H_{i} as together H_{i} and G_{1} have only $2 p-1$ vertices. These two facts imply that if ℓK_{p} is contained in $G(n, p, t)$ then $\ell \leq t-1$.

Let u and v be nonadjacent vertices in $G(n, p, t)$ and add $u v$ to $G(n, p, t)$. Then u, v and the vertices of G_{1} induce a copy of K_{p} in $G(n, p, t)+u v$. Since u and v cannot lie in the same H_{i}, it is possible to find a subgraph of $G(n, p, t)$ isomorphic to $(t-1) K_{p}$ that is disjoint from u, v and G_{1}, so that $t K_{p}$ is a subgraph of $G(n, p, t)+u v$. This implies that $G(n, p, t)$ is $t K_{p}$-saturated. The main result of this section is as follows:

Theorem 2.1. Let $t \geq 1, p \geq 3$ and $n \geq p(p+1) t-p^{2}+2 p-6$ be integers. Then

$$
\operatorname{sat}\left(t K_{p}, n\right)=|E(G(n, p, t))|=(t-1)\binom{p+1}{2}+\binom{p-2}{2}+(p-2)(n-p+2)
$$

Proof. Given p and t, let G be a $t K_{p}$-saturated graph of order $n \geq p(p+1) t-p^{2}+2 p-6$. We will assume that the size of G is strictly less than $|E(G(n, p, t))|$ and work to a contradiction.

By assumption, $t K_{p}$ is not a subgraph of G, yet for any pair of nonadjacent vertices in $V(G), G+u v$ must contain a subgraph F isomorphic to $t K_{p}$. This says that $u v$ must lie in some copy of K_{p} in $G+u v$. As this must hold for all pairs of nonadjacent vertices in G, it follows that $\delta(G)$ is at least $p-2$. When n is sufficiently large, we can make a stronger statement.

Claim 2.2. If $n \geq p(p+1) t-p^{2}+2 p-6$ then $\delta(G)=p-2$.
Proof. Assume otherwise, so that every vertex in G has degree at least $\delta \geq p-1$. Let v be a vertex of minimum degree δ, then each non-neighboring vertex u must therefore lie in a copy of K_{p} with v in $G+u v$. This implies that u is adjacent to at least $p-2$ vertices in $N(v)$ and also implies that there is a copy of K_{p-2} contained in the subgraph induced by $N(v)$. Thus, the sum of the vertex degrees in $N(v)$ is at least $(n-\delta-1)(p-2)+2\binom{p-2}{2}+\delta$. This yields that

$$
2|E(G)| \geq \delta(n-\delta)+(n-\delta-1)(p-2)+2\binom{p-2}{2}+\delta
$$

Since $\delta \geq p-1$, we have that

$$
2|E(G)| \geq(n-p+1)(p-1)+(n-p)(p-2)+2\binom{p-2}{2}+(p-1)
$$

By assumption,

$$
|E(G)|<|E(G(n, p, t))|=(t-1)\binom{p+1}{2}+\binom{p-2}{2}+(p-2)(n-p+2)
$$

which implies that

$$
(n-p+1)(p-1)+(n-p)(p-2)+2\binom{p-2}{2}+(p-1)
$$

is at most

$$
2\left((t-1)\binom{p+1}{2}+\binom{p-2}{2}+(p-2)(n-p+2)\right) .
$$

Simplifying, we get that

$$
n<p(p-2)+(t-1) p(p+1)-(p-2)(p-3)
$$

or

$$
n<p(p+1) t-p^{2}+2 p-6,
$$

contradicting our assumption about the order of G.
Let v be a vertex of degree $p-2$ in G and choose any vertex u that does not lie in $N(v)$. Such a vertex exists by our bound on n. Then $G+u v$ must contain $t K_{p}$ such that u and v are both in the same copy of K_{p}. This immediately implies that the other $p-2$ vertices in this copy of K_{p} must be $N(v)$ and hence, as the degree of v is $p-2$, that $N(v)$ must induce a complete subgraph of G, which we will henceforth call S. Furthermore, since this holds for any choice of u, it must be that all of the vertices in S are adjacent to each vertex in $G-S$.

Since $G+u v$ contains $t K_{p}$ in which one of the copies of K_{p} is $\langle S, u, v\rangle, G$ must contain a subgraph isomorphic to $(t-1) K_{p}$ that does not intersect S. Let H be such a subgraph and let H_{1}, \ldots, H_{t-1} denote the components of H. To further describe the structure of G, let R denote those vertices in G, in $S \cup \bar{V}(H)$, that are adjacent to at least one vertex in $V(H)$.

It is now our goal to show that there are at least $(t-1) p$ edges $u x$ in G such that neither u nor x lies in S and $u x$ is not in $E(H)$. If $t=1$, there is nothing to prove, thus we need only consider $t \geq 2$. In this case, we would know that

$$
|E(G)| \geq\binom{ p-2}{2}+(p-2)(n-p+2)+(t-1)\binom{p}{2}+(t-1) p=|E(G(n, p, t))|
$$

hence equality must hold. We will accomplish this by uniquely associating each vertex h in H with an appropriate edge incident to h.

Assume that some vertex in H, say v_{1} in H_{1}, is such that $N\left[v_{1}\right]=S \cup V\left(H_{1}\right)$. Select any other vertex x in H_{1} and add the edge $x v$ to G, where again we let v denote a vertex of degree $p-2$ in G. Then $G+x v$ contains a subgraph F isomorphic to $t K_{p}$ in which $\langle S, x, v\rangle$ is one of the copies of K_{p}. Note that v_{1} has degree $2 p-3$ and hence cannot lie in F since $p-1$ of its neighbors are already used in the clique $\langle S, x, v\rangle$. Consequently, replacing $\langle S, x, v\rangle$ with $\left\langle S, v_{1}, x\right\rangle$ in F, yields a subgraph of G isomorphic to $t K_{p}$, contradicting the assumption that G is $t K_{p}$-saturated.

We can therefore assume that every vertex h in H has a neighbor u that lies in either R or H such that $h u$ is not in $E(H)$. If each vertex in H has a neighbor in R, this would assure at least $(t-1) p$ additional edges in G, completing the proof. This must hold if $t-1=1$, so we may assume $t \geq 2$. We also assume that the subgraph H^{\prime} given by $\langle V(H)\rangle-E(H)$ is nonempty.

The components of H^{\prime} fall into three categories: those components containing a cycle, those components that are trees and contain a vertex which has a neighbor in R and those components that are trees such that no vertex in the component has an adjacency in R. Assume for a moment that there are no components of the third type. Let C be a component of the first type, so that there is some cycle in C. Choose any edge $x y$ on this cycle and consider $C-x y$, which must be connected. Choose any spanning tree of $C-x y$ and root it at x. Define the map $f_{C}: V(C) \rightarrow E(C)$ such that $f_{C}(x)$ is $x y$ and for each other vertex $w \neq x$ in $C, f_{C}(w)$ is the edge that precedes w in the rooted spanning tree. Note that f_{C} is an injection.

Next assume that C is a component of the second type, that is, C is a tree (possibly a trivial tree) and there are vertices x and r in C and R respectively such that $x r$ is in $E(G)$. Root C at x and define the map $f_{C}: V(C) \rightarrow(E(C) \cup x r)$ such that $f(x)$ is $x r$ and for each other vertex $w \neq x$ in $C, f(w)$ is the edge that precedes w in the rooting of C at x. Note again that f_{C} is injective.

If all of the components of H^{\prime} fall into one of these two categories, then we will define the function $f: V(H) \rightarrow E(G)$ such that if w is in some component C of H^{\prime}, then $f(w)=f_{C}(w)$. For each component C, f_{C} is injective and $f_{C}(v)$ is an edge adjacent to v that either lies in C or has an endpoint in R, and these two properties imply that f must be injective, which would complete the proof.

It is therefore our goal to show that each component of H^{\prime} that is a tree must contain a vertex which has a neighbor in R. Assume that T is such a component of H^{\prime} and let u_{1} be an end-vertex of T. Assume that u_{1} lies in H_{1} and let w denote the neighbor of u_{1} in T, so that w lies in some H_{i} for $i \geq 2$. Let u_{2} be any vertex in H_{1} other than u_{1} and assume that $u_{2} w$ is not an edge in G. Choose any u_{3} in H_{1} distinct from u_{1} and u_{2} and add the edge $u_{3} v$ to G, where v is any vertex of degree $p-2$ in G. Then $G+u_{3} v$ contains a subgraph F isomorphic to $t K_{p}$ such that one of the copies of K_{p} is $\left\langle S, u_{3}, v\right\rangle$. Note that the neighborhood of u_{1} is exactly S, w and the other vertices in H_{1}. This implies, since $\left\langle S, u_{3}, v\right\rangle$ is one of the cliques in F, that if u_{1} was in F, it would have to be in a clique with w and $V\left(H_{1}\right) \backslash\left\{u_{3}\right\}$. This is impossible, as we have assumed that $u_{2} w$ is not an edge in G, so u_{1} is not in F. This implies that we could replace $\left\langle S, u_{3}, v\right\rangle$ in F with $\left\langle S, u_{1}, u_{3}\right\rangle$ which creates a subgraph of G isomorphic to $t K_{p}$, a contradiction.

Hence we may assume that w is adjacent to each vertex in H_{1}. Let $V\left(H_{1}\right)=\left\{u_{1}, \ldots, u_{p-1}, y\right\}$. If we choose u_{1} to be an end-vertex of a longest path in T, we may assume that all but one of the neighbors of w in T are also end-vertices of T. Specifically, we will assume that $U=\left\{u_{1}, \ldots, u_{p-1}\right\}$ are end-vertices in T. By assumption, u_{1} is not adjacent to any other vertex in the component of H containing w, so choose some vertex z in the same component of H as w and add the edge $u_{1} z$ to G. This creates a subgraph F of $G+u_{1} z$ isomorphic to $t K_{p}$. Let C denote the component (clique) in F that contains $u_{1} z$ and let \mathcal{T} denote $F \backslash C$.

Note that $N\left(u_{1}\right) \cap N(z)$ is composed of S, w and possibly y (if $y z$ is an edge in G). Also note that the common neighbors of the vertices in U are exactly w, S and y. We consider several cases.

Case 1: Suppose that $C=\left\langle S, u_{1}, z\right\rangle$.
Note that the vertices in U have exactly 2 common neighbors outside of C, namely y and w. Thus, if any vertices of U appear in \mathcal{T}, then they specifically appear in the clique $\left\langle y, w, u_{2}, \ldots, u_{p-1}\right\rangle$. If $\left\langle y, w, u_{2}, \ldots, u_{p-1}\right\rangle$ is a clique in \mathcal{T}, then we see that $H_{1}(=\langle U, y\rangle),\langle S, w, z\rangle$ and the cliques in $\mathcal{T} \backslash\left\langle y, w, u_{2}, \ldots, u_{p-1}\right\rangle$ comprise a subgraph of G isomorphic to $t K_{p}$, contrary to our assumptions. Hence we may assume that $\left\langle y, w, u_{2}, \ldots, u_{p-1}\right\rangle$ is not one of the cliques in \mathcal{T} and therefore that no vertex of U appears in \mathcal{T}. Then $\left\langle S, u_{1}, u_{2}\right\rangle$ together with \mathcal{T} is a subgraph of G isomorphic to $t K_{p}$, a contradiction.

Case 2: Suppose that $C=\left\langle S^{\prime}, u_{1}, w, z\right\rangle$, where $S^{\prime}=S \backslash\{s\}$.
Note that if $p=3$, then $|S|=1$ and $S^{\prime}=\emptyset$. The vertices in U have exactly two common neighbors outside of C, namely y and s, so if any vertex of U appears in \mathcal{T}, then they specifically appear in the clique $\left\langle y, s, u_{2}, \ldots, u_{p-1}\right\rangle$. If $\left\langle y, s, u_{2}, \ldots, u_{p-1}\right\rangle$ is in \mathcal{T}, then $H_{1},\langle S, w, z\rangle$ and the cliques in $\mathcal{T} \backslash\left\langle y, s, u_{2}, \ldots, u_{p-1}\right\rangle$ comprise a subgraph of G isomorphic to $t K_{p}$, contrary to our assumptions. Hence we may assume that $\left\langle y, s, u_{2}, \ldots, u_{p-1}\right\rangle$ is not one of the cliques in \mathcal{T} and therefore that no vertex of U appears in \mathcal{T}. Then $\left\langle S^{\prime}, u_{1}, u_{2}, u_{3}\right\rangle$ together with \mathcal{T} is a subgraph of G isomorphic to $t K_{p}$, a contradiction.

Case 3: Suppose that $C=\left\langle S^{\prime \prime}, u_{1}, w, y, z\right\rangle$, where $S^{\prime \prime}=S \backslash\left\{s_{1}, s_{2}\right\}$.
Note that Case 3 does not exist if $p=3$. Also note that the vertices in U have only s_{1} and s_{2} as common neighbors in \bar{C}, so once again if any vertex of U is in \mathcal{T} then they specifically appear in the clique $\left\langle s_{1}, s_{2}, u_{2}, \ldots, u_{p-1}\right\rangle$. If $\left\langle s_{1}, s_{2}, u_{2}, \ldots, u_{p-1}\right\rangle$ is in \mathcal{T}, then $H_{1},\langle S, w, z\rangle$ and the cliques in $\mathcal{T} \backslash\left\langle s_{1}, s_{2}, u_{2}, \ldots, u_{p-1}\right\rangle$ comprise a subgraph of G isomorphic to $t K_{p}$. If $\left\langle s_{1}, s_{2}, u_{2}, \ldots, u_{p-1}\right\rangle$ is not a clique in \mathcal{T}, then $H_{1} \cup \mathcal{T}$ is a subgraph of G isomorphic to $t K_{p}$, a contradiction.

Case 4: Suppose that $C=\left\langle S^{\prime}, u_{1}, z, y\right\rangle$, where $S^{\prime}=S \backslash\{s\}$.
Note that the vertices in U have only w and s as common neighbors in \bar{C}, so as above if any vertex of U is in \mathcal{T}, then they specifically appear in the clique $\left\langle s, w, u_{2}, \ldots, u_{p-1}\right\rangle$. If $\left\langle s, w, u_{2}, \ldots, u_{p-1}\right\rangle$ is in \mathcal{T}, then $H_{1},\langle S, w, z\rangle$ and the cliques in $\mathcal{T} \backslash\left\langle s, w, u_{2}, \ldots, u_{p-1}\right\rangle$ comprise a subgraph of G isomorphic to $t K_{p}$. If $\left\langle s, w, u_{2}, \ldots, u_{p-1}\right\rangle$ is not a clique in F, then $H_{1} \cup \mathcal{T}$ is a subgraph of G isomorphic to $t K_{p}$, a contradiction.

As noted above, $N\left(u_{1}\right) \cap N(z)$ is composed of S, v and possibly y (if $y z$ is an edge in G) so these four cases suffice to exhaust the possible compositions of C.

Consequently, it follows that each component of H^{\prime} which is a tree must contain a vertex which has a neighbor in R. By our previous discussion, we can therefore associate each vertex in H with a unique edge in \bar{H} that is not incident to any vertex in S. This assures that there are at least $(t-1) p$ edges in G aside from those in H and those adjacent to at least one vertex in S, completing the proof.

One of the difficulties in determining sat (H, n) is that frequently the extremal graphs are not unique. In [5], it was shown that $G(n, p, 1)=K_{p-2}+\bar{K}_{n-p+2}$ was the unique K_{p}-saturated graph of minimum size. As a consequence of the main result of the next section we will also show that $G(n, p, 2)$ is the unique $2 K_{p}$-saturated graph of order n with minimum size. In this vein, we show the following.

Theorem 2.3. If $p \geq 3$ and $n \geq 3 p(p+1)-p^{2}+2 p-6$, then $G(n, p, 3)$ is the unique $3 K_{p}$-saturated graph of order n with minimum size.

Proof. Let G be a $3 K_{p}$-saturated graph of minimum size amongst all such graphs of order $|G|=n \geq 3 p(p+1)-p^{2}+2 p-6$. Many of the structural observations about G made in the proof of Theorem 2.1 still hold. In particular, there must be a set S of $p-2$ vertices in G each having degree $n-1$. Additionally, G has a subgraph H which is disjoint from S and isomorphic to $2 K_{p}$. Let H_{1} and H_{2} be the components of H and note that since G is $3 K_{p}$-saturated of minimum size, there are exactly $2 p$ edges in G that lie in \bar{H} and are not incident to any vertex in S.

As in the proof of Theorem 2.1 we may also assume that each vertex h in H has a neighbor u such that u is not in S and $h u$ is not an edge of H. Let R again denote those vertices in $V(\bar{H}) \cup S$ that have a neighbor in H. We first wish to show that $|R| \geq 2$. Assume that $|R| \leq 1$ and that there are nonadjacent vertices h_{1} and h_{2} in H_{1} and H_{2}, respectively. Then $G+h_{1} h_{2}$ must contain $3 K_{p}$, but the only vertices of degree at least $p-1$ in $G+h_{1} h_{2}$ lie in H, S and possibly R. This accounts for at most $|S|+|H|+|R| \leq p-2+2 p+1=3 p-1$ vertices of degree at least $p-1$, implying that $3 K_{p}$ cannot be a subgraph of $G+h_{1} h_{2}$. Thus, if $|R| \leq 1$ each vertex h_{1} and h_{2} in H_{1} and H_{2} respectively, must be adjacent. This implies that there are at least p^{2} edges in G that lie in \bar{H} and are not incident to any vertex in S. Since $p^{2}>2 p$ for $p \geq 3$, this is a contradiction.

Next we note that each vertex in R must be adjacent to at least p vertices in H. Assume that there is some r in R that is adjacent to strictly less than p vertices in H. Let x be any neighbor of r in H and let v be a vertex of degree $p-2$ in G. Then $G+x v$ contains a subgraph F isomorphic to $3 K_{p}$ in which $\langle S, x, v\rangle$ is one of the copies of K_{p}. The fact that there are exactly $2 p$ edges in G not induced by R, or H, nor incident with S, it follows that r cannot lie in F. This implies that $\langle S, r, x\rangle$ is a copy of K_{p} in G that is disjoint from $F \backslash\langle S, x, v\rangle$ so that G must contain $3 K_{p}$, a contradiction.

Since $|R|>1$ and each vertex in R is adjacent to at least p vertices in H, we must have that $R=\left\{r_{1}, r_{2}\right\}$. Let h be some neighbor of r_{1} in H, specifically assume that h is in H_{1}. Let v be a vertex of degree $p-2$ in G and add the edge $h v$ to G. Then $G+h v$ contains some subgraph F isomorphic to $3 K_{p}$, and $\langle S, h, v\rangle$ is one of the copies of K_{p} in F. If r_{1} does not lie in F, then we could simply replace $\langle S, h, v\rangle$ in F with $\left\langle S, h, r_{1}\right\rangle$, implying that there is a copy of $3 K_{p}$ in G. Thus r_{1} must be in F and $N_{F}\left(r_{1}\right)$, the neighborhood of r_{1} in F, must be a clique of order $p-1$. Furthermore, this clique must be disjoint from S since $\langle S, h, v\rangle$ is in F and hence must lie entirely in one component of H. If $N_{F}\left(r_{1}\right)$ was contained in H_{2}, then recall that r_{1} is adjacent to exactly p vertices in H and repeat this argument by adding the edge $h_{2} v$ to G, where h_{2} is any vertex in $N_{F}\left(r_{1}\right) \cap H_{2}$. Then r_{1}
would have to be adjacent to a clique of order $p-1$ that included h, but excluded h_{2} which is impossible because this would imply that r_{1} would be adjacent to more than p vertices in H.

Hence we may assume that $N\left(r_{1}\right)$ and $N\left(r_{2}\right)$ both induce components of H. If these components are distinct then G is isomorphic to $G(n, 3, p)$, so assume without loss of generality that $N\left(r_{1}\right)=N\left(r_{2}\right)=H_{2} \cup S$. In this case, choose any vertex h_{1} in H_{1} and any vertex v of degree $p-2$ in G, and add the edge $h_{1} v$ to G. Then $\left\langle S, h_{1}, v\right\rangle$ is a K_{p} in some subgraph F of $G+h_{1} v$ isomorphic to $3 K_{p}$. The assumption that $N\left(r_{1}\right)=N\left(r_{2}\right)=H_{2} \cup S$ in G along with the fact that $\left\langle S, h_{1}, v\right\rangle$ is a K_{p} in F implies that no vertex $h \neq h_{1}$ lies in F. This implies that we can replace $\left\langle S, h_{1}, v\right\rangle$ in F with $\left\langle S, h_{1}, h\right\rangle$ demonstrating that $3 K_{p}$ is a subgraph of G, a contradiction. Thus it must be that, without loss of generality, $N\left(r_{1}\right)=H_{1}$ and $N\left(r_{2}\right)=H_{2}$, so G is isomorphic to $G(n, p, 3)$.

2.1. Generalized friendship graphs

Let F_{k} be the graph comprised of k triangles intersecting in a common point, often called the friendship graph. Extending this notion, let $F_{t, p, \ell}$ denote the graph comprised of t copies of K_{p} intersecting in a common K_{ℓ}. The graph $F_{t, p, \ell}$ generalizes the notion of a friendship graph. Both of these graphs have been of interest in the extremal literature. The extremal function $e x\left(F_{k}, n\right)$ was determined in [4] and was subsequently extended in [2] to determine $e x\left(F_{t, p, \ell}\right)$ when $\ell=1$.

We will use techniques nearly identical to those in the proof of Theorem 2.1 to determine sat $\left(F_{t, p, \ell}, n\right)$. We begin by constructing a graph $F G(t, p, \ell)$ that is $F_{t, p, \ell}$-saturated. For $p \geq 3, t \geq 2$ and $p-2 \geq \ell \geq 1$, let $F G(t, p, \ell)$ denote the graph formed by taking the join of $G_{1}=K_{p-2}$ and $(t-1) K_{p-\ell+1} \cup \bar{K}_{n-(p-2)-(t-1)(p-\ell+1)}$. We wish to verify that $F G(t, p, \ell)$ is $F_{t, p, \ell}$-saturated.

If $F G(t, p, \ell)$ contained a copy of $F_{t, p, \ell}$, then the common K_{ℓ} would have to lie in G_{1}. However, there is no subgraph of $F G(t, p, \ell)$ isomorphic to $t K_{p-\ell}$ that is disjoint from any ℓ-element subset of $V\left(G_{1}\right)$. If u and v are nonadjacent vertices in $F G(t, p, \ell)$, then in $F G(t, p, \ell)+u v$ there is a copy of $F_{t, p, \ell}$ constructed from G_{1}, u, v and any $(t-1)$ copies of $K_{p-\ell}$ that are disjoint from G_{1}, u and v.

Theorem 2.4. Let $p \geq 3, t \geq 2$ and $p-2 \geq \ell \geq 1$ be integers. Then, for sufficiently large n,

$$
\operatorname{sat}\left(F_{t, p, \ell}, n\right)=|E(F G(t, p, \ell))|=(p-2)(n-p+2)+\binom{p-2}{2}+(t-1)\binom{p-\ell+1}{2}
$$

As mentioned above, the proof of this theorem will closely mirror that of Theorem 2.1. As such, we will give only a sketch of the proof and leave the details to the reader.

Proof (Sketch). Let G be an $F_{t, p, \ell}$-saturated graph, and assume that $|E(G)|<|E(F G(t, p, \ell))|$. Assume that u and v are nonadjacent vertices in G. Then $G+u v$ has a subgraph F isomorphic to $F_{t, p, \ell}$ that contains the edge $u v$. This implies that u and v each must have degree at least $\delta\left(F_{t, p, \ell}\right)=p-1$ in $G+u v$ and hence that $\delta(G) \geq p-2$. By an argument similar to Claim 2.2, for n sufficiently large we may assume $\delta(G)=p-2$. Let v be a vertex of degree $p-2$ in G. For any other vertex w in $G \backslash N[v], G+v w$ contains a subgraph $F \cong F_{t, p, \ell}$ such that $v w$ lies in some K_{p}. Then w and v each have a copy of K_{p-2} in their neighborhoods, and since v has degree $p-2$ in G, we know that $\langle N(v)\rangle \cong K_{p-2}$. Let $S=N(v)$.

The preceding argument holds for all choices of w, and as such, each vertex in S must be adjacent to every vertex in $V(G) \backslash S$. Additionally, since $\langle S, v, w\rangle$ must be the clique containing $w v$ in $G+w v$, we may assume that the common K_{ℓ} in the subgraph of $G+u w$ isomorphic to $F_{t, p, \ell}$ lies in S. This implies that in $G \backslash S$ there are $(t-1)$ disjoint copies of $K_{p-\ell}$, denoted by H_{1}, \ldots, H_{t-1}.

Let $H=\cup_{1 \leq i \leq t-1} H_{i}$. As in the proof of Theorem 2.1, we wish to show that there are at least $(t-1)(p-\ell)$ edges in G that are neither in H nor adjacent to a vertex in S. This would imply that G has at least $|E(F G(t, p, \ell))|$ edges. It is not difficult to show that each vertex x in H has a neighbor v_{x} such that v_{x} is not in S and $x v_{x}$ is not in $E(H)$. If, for each vertex x in H, there is some choice for v_{x} that lies in \bar{H}, we are done. Hence we will consider the subgraph $H_{1}=\langle V(H)\rangle-E(H)$. Using arguments similar to those above, it is not difficult to show that each component C of H_{1} either contains a cycle or is a tree with a vertex v that is adjacent to some vertex in $V(G) \backslash(S \cup H)$. As above, this completes the proof.

3. Determining sat $\left(K_{p} \cup K_{q}, n\right)$

In this section, we will consider the problem of determining the saturation number of a union of cliques that are not all of the same order. Specifically, for $3 \leq p \leq q$ we will determine sat $\left(K_{p} \cup K_{q}, n\right)$. Let $H(n, p, q)$ denote the graph formed by taking the join of K_{p-2} and $K_{q+1} \cup \bar{K}_{n-p-q+1}$ and note that $H(n, p, q)$ is structurally similar to each of the extremal graphs in the preceding section. This graph has only $p+q-1$ vertices of degree at least $p-1$, and as such cannot contain a copy of $K_{p} \cup K_{q}$. It is not difficult to see that for any nonadjacent vertices u and v in $H(n, p, q)$, the addition of the edge $u v$ creates a copy of $K_{p} \cup K_{q}$ in $H(n, p, q)+u v$. The following is the main result of this section.

Theorem 3.1. Let $2 \leq p \leq q$ and $n \geq q(q+1)+3(p-2)$ be integers. Then

$$
\operatorname{sat}\left(K_{p} \cup K_{q}, n\right)=|E(H(n, p, q))|=(p-2)(n-p+2)+\binom{p-2}{2}+\binom{q+1}{2}
$$

Furthermore, $H(n, p, q)$ is the unique $\left(K_{p} \cup K_{q}\right)$-saturated graph of minimum size when $n \geq q(q+1)+3(p-2)$.
Proof. Given $q \geq p \geq 2$, let G be a $K_{p} \cup K_{q}$-saturated graph of order $n \geq q(q+1)+3(p-2)$. We will assume that $|E(G)| \leq|E(H(n, p, q))|$ and work to show that equality must hold. Choose any nonadjacent u and v in G. Since G is $K_{p} \cup K_{q}-$ saturated, we know that in $G+u v$ there is a clique of order at least p that contains $u v$. This implies that u and v have degree at least $p-1$ in $G+u v$, and hence that $\delta(G) \geq p-2$. In fact, via an argument that is nearly identical to Claim 2.2 of Theorem 2.1, our choice of $n \geq q(q+1)+3(p-2)$ allows us to assume that $\delta(G)=p-2$.

Let v be a vertex of degree $p-2$ in G and let w be any other vertex in G that is not adjacent to v. Then $G+v w$ contains a subgraph F that is isomorphic to $K_{p} \cup K_{q}$ such that $v w$ is in F. Since the degree of v is $p-1$ in $G+v w$ the edge $v w$ must lie in a clique of order p. Therefore, if $p \geq 3, G$ must contain a clique S of order $p-2$ with every vertex of S adjacent to both v and w. In particular, $N(v)=S$ and since this must hold for all choices of w it follows that each vertex in S must therefore be adjacent to each vertex in $G \backslash E(S)$. If $p=2, v$ was an isolated vertex and w may or may not have been isolated. To complete the proof of this theorem, it will suffice to show that there are at least $\binom{q+1}{2}$ edges in $G \backslash E(S)$.

Also note that since $G+v w$ contains $K_{p} \cup K_{q}$ and $v w$ must be in some copy of K_{p}, we can also assume that G has a subgraph H that is isomorphic to K_{q} such that H contains no vertices from S. Choose some vertex x in H and again let v have degree $p-2$ in G. Then $G+v x$ contains a copy of $K_{p} \cup K_{q}$ in which $\langle S, v, x\rangle$ must be the K_{p} and some subgraph H_{x} of G, distinct from H (but possibly intersecting), must be the K_{q}. For $p \geq 3$, if $\left|V(H) \cap V\left(H_{x}\right)\right|=t<q-1$, then $G \backslash E(S)$ has at least

$$
\binom{q}{2}+\binom{q-t}{2}+t(q-t) \geq\binom{ q+1}{2}
$$

edges, implying that $|E(G)| \geq|E(H(n, p, q))|$. If $q=p=2$, then $t \neq 0$ or else $2 K_{2}$ already exists. But then again,

$$
\binom{2}{2}+\binom{1}{2}+1(2-1) \geq\binom{ 2+1}{2}
$$

again implying $|E(G)| \geq|E(H(n, 2,2))|$.
Therefore, we may assume that for each x in H there is some vertex v_{x} that lies in neither S nor H such that v_{x} and $q-1$ vertices of H form a K_{q} in G. If for distinct x_{1} and x_{2} in $V(H), v_{x_{1}} \neq v_{x_{2}}$ then there are at least $\binom{q}{2}+2(q-1)>\binom{q+1}{2}$ edges in $G \backslash E(S)$, contradicting our assumption that G has at most as many edges as $H(n, p, q)$. Hence, there is some vertex y such that $v_{x}=y$ for each x in $V(H)$. This implies that $H \cup y$ induces a K_{q+1} contained in $G \backslash E(S)$, thus, G has at least as many edges as $H(n, p, q)$, which implies that the K_{q+1} induced by $V(H) \cup y$ must be the entirety of edges of $G \backslash E(S)$. Thus, G must be isomorphic to $H(n, p, q)$.

For integers $3 \leq p_{1} \leq p_{2} \leq \cdots \leq p_{t}$, it is interesting to consider the problem of determining $\operatorname{sat}\left(K_{p_{1}} \cup \cdots \cup K_{p_{t}}, n\right)$. In fact, one may consider adapting the structure of the extremal graphs used thus far in this paper in the following way. Let $\Sigma p_{i}=m$ and consider the graph G formed by taking the join of $K_{p_{1}-2}$ and $K_{p_{2}+1} \cup \cdots \cup K_{p_{t}+1} \cup \bar{K}_{n-m-t+3}$. Clearly, if u and v are nonadjacent vertices in G, then $G+u v$ contains a copy of $K_{p_{1}} \cup \cdots \cup K_{p_{t}}$. However, for appropriate choices of the p_{i}, G may also contain a copy of this subgraph. Indeed, for any integers $3 \leq \ell \leq p$, choose $p_{1}=\ell, p_{2}=p$ and $p_{3}=p+1$. In this case, the graph G would be $K_{\ell-2}$ joined to $K_{p+1} \cup K_{p+2} \cup \overline{K_{n-\ell-2 p+1}}$. The copies of $K_{\ell-2}$ and K_{p+2} form a $K_{\ell+p}$ which contains $K_{\ell} \cup K_{p}$. This, together with the K_{p+1} already in G comprises a subgraph of G isomorphic to $K_{\ell} \cup K_{p} \cup K_{p+1}$. This precludes G from being ($K_{\ell} \cup K_{p} \cup K_{p+1}$)-saturated.

4. Conclusion

With an eye towards further extending the results from [10], it would be of interest to continue investigating the saturation number of a union of cliques of different sizes, particularly in light of the observation made above about the case $K_{\ell} \cup K_{p} \cup K_{p+1}$. For the sake of completeness, the issue of the uniqueness (or non-uniqueness) of $G(n, t, p)$ for $t>3$ and n large enough would also be of interest.

A non-negative integer sequence π is said to be graphic if it is the degree sequence of some graph G and we then say that G is a realization of π. For an arbitrary graph H, define $\sigma(H, n)$ (see for example [8]) to be the minimum even integer m such that any n-term graphic sequence π with sum at least m has some realization that contains H as a subgraph. In [8], it is conjectured that $2 \operatorname{sat}(H, n)<\sigma(H, n)$. Comparing Theorems 2.1 and 3.1 to the results in [6] and Theorem 2.4 to the results in [1,7] affirms this conjecture for $t K_{p}, K_{p} \cup K_{q}$ and $F_{t, p, \ell}$.

Acknowledgements

The authors would like to thank the referees for their thoughtful comments.

References

[1] G. Chen, J. Schmitt, J. Yin, Graphic sequences with a realization containing a generalized friendship graph, Discrete Math. (in press).
[2] G. Chen, R.J. Gould, F. Pfender, B. Wei, Extremal graphs for intersecting cliques, J. Combin. Theory Ser. B 89 (2003) 159-171.
[3] Y. Chen, Minimum C_{5}-saturated graphs (submitted for publication).
[4] P. Erdős, Z. Füredi, R.J. Gould, D.S. Gunderson, Extremal graphs for intersecting triangles, J. Combin. Theory Ser. B 64 (1995) 89-100.
[5] P. Erdős, A. Hajnal, J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964) 1107-1110.
[6] M. Ferrara, Graphic sequences with a realization containing a union of cliques, Graphs Combin. 23 (2007) 263-269.
[7] M. Ferrara, R. Gould, J. Schmitt, Graphic sequences with a realization containing a friendship graph, Ars Combin. 85 (2007) 161-171.
[8] M. Ferrara, snd J. Schmitt, A lower bound on potentially H-graphic sequences (submitted for publication).
[9] T. Łuczak, R. Gould, J. Schmitt, Constructive upper bounds for cycle saturated graphs of minimum size, Electron. J. Combin. 13 (2006) R29.
[10] L. Kásonyi, Z. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210.
[11] L.T. Ollmann, $K_{2,2}$-saturated graphs with a minimal number of edges, in: Proc. 3rd Southeastern Conference on Combinatorics, Graph Theory and Computing, 1972, pp. 367-392.
[12] O. Pikhurko, J. Schmitt, A note on minimum $K_{2,3}$-saturated graphs, Australasian J. Combin. 40 (2008) 211-215.

[^0]: * Corresponding author.

 E-mail address: rg@mathcs.emory.edu (R. Gould).

