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a b s t r a c t

Let G = (X, Y ) be a bipartite graph and define σ 22 (G) = min{d(x) + d(y) : xy 6∈ E(G), x ∈
X, y ∈ Y }. Moon and Moser [J. Moon, L. Moser, On Hamiltonian bipartite graphs, Israel J.
Math. 1 (1963) 163–165. MR 28 # 4540] showed that if G is a bipartite graph on 2n vertices
such that σ 22 (G) ≥ n+1, then G is hamiltonian, sharpening a classical result of Ore [O. Ore,
A note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55] for bipartite graphs. Here
we prove that if G is a bipartite graph on 2n vertices such that σ 22 (G) ≥ n+ 2k− 1, then G
contains k edge-disjoint hamiltonian cycles. This extends the result ofMoon andMoser and
a result of R. Faudree et al. [R. Faudree, C. Rousseau, R. Schelp, Edge-disjoint Hamiltonian
cycles, Graph Theory Appl. Algorithms Comput. Sci. (1984) 231–249].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and terminology

For any graph G, let V (G) and E(G) ⊆ V (G) × V (G) denote the sets of vertices and edges of G respectively. An edge
between two vertices x and y in V (G) shall be denoted xy. Furthermore, let δ(G) denote the minimum degree of a vertex in
G. For a given subgraph H of G and vertices x and y in H , we will let distH(x, y) denote the distance from x to y in H . Also, for
convenience, given a path P in G and u, v in V (P), let uPv denote the subpath of P that starts at the vertex u and ends at the
vertex v. Given two disjoint sets of vertices X and Y in V (G), we let EG(X, Y ) denote the set of edges in Gwith one endpoint
in X and one endpoint in Y . Similarly, we will let δ(X, Y ) denote the minimum degree between vertices of X and Y . A useful
reference for any undefined terms is [1].
We assume that all cycles have an implicit clockwise orientation and, for convenience, given a vertex v on a cycle C we

will let v+ denote the successor of v along C . Along the same lines, given an x–y path P , we will let v+ denote the successor
of a vertex v in V (P) as we traverse P from x to y. Analogously, we define v− to be the predecessor of a vertex v on C or P .
Given a set of vertices S ⊆ C (⊆ P), we let S+ denote the set {s+ | s ∈ S}. The set S− is defined analogously.
If G is bipartite with bipartition (X, Y )wewill write G = (X, Y ). If |X | = |Y |, then we will say that G is balanced. A proper

pair in G is a pair of non-adjacent vertices (x, y)with x in X and y in Y .
We shall denote a cycle on t vertices by Ct . A hamiltonian cycle in a graph G is a cycle that spans V (G) and, if such a cycle

exists, G is said to be hamiltonian. Hamiltonian graphs and their properties have been widely studied. A good reference for
recent developments and open problems is [3].
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In general, we are interested in degree conditions that ensure hamiltonian cycles in a graph. For an arbitrary graph G, we
define σ2(G) to be theminimumdegree sum of non-adjacent vertices in G. Of interest for ourwork here is Ore’s Theorem [5],
which uses this parameter.

Theorem 1.1 ([5]). If G is a graph of order n ≥ 3 such that σ2(G) ≥ n, then G is hamiltonian.

In a bipartite graph G, we are interested instead in the parameter σ 22 (G), defined to be the minimum degree sum of a
proper pair. Moon and Moser [4] extended Ore’s theorem to bipartite graphs as follows.

Theorem 1.2 (Moon, Moser 1960). If G = (X, Y ) is a balanced bipartite graph on 2n vertices such that σ 22 (G) ≥ n+ 1, then G
is hamiltonian.

Faudree, Rousseau and Schelp [2] were able to give Ore-type degree-sum conditions that ensured the existence of many
disjoint hamiltonian cycles in an arbitrary graph.

Theorem 1.3 ([2]). If G is a graph on n vertices such that σ2(G) ≥ n + 2k − 2 then for n sufficiently large, G contains k
edge-disjoint hamiltonian cycles.

In this paper we will extend the previous two results by proving the following.

Theorem 1.4. If G = (X, Y ) is a balanced bipartite graph of order 2n, with n ≥ 128k2 such that σ 22 (G) ≥ n + 2k − 1, then G
contains k edge-disjoint hamiltonian cycles.

2. Veneering numbers and k-extendibility

To prove our main theorem, we need some results on path systems in bipartite graphs. Our strategy is to develop k
systems of edge-disjoint paths and show that they can be extended to k edge-disjoint hamiltonian cycles. The following
definitions and theorems can be found in [6].
LetWk(G) be the family of all k-sets {(w1, z1), . . . , (wk, zk)} of pairs of vertices of Gwherew1, . . . , wk, z1, . . . , zk are all

distinct. Let Sk(G) denote the collection of edge-disjoint path systems in G that have exactly k paths. IfW ∈ Wk(G) lists the
end-points of a path systemP in Sk(G), we say thatP is aW -linkage. A graph G is said to be k-linked if there is aW -linkage
for everyW ∈ Wk(G). A graph G is said to be k-extendible if anyW -linkage of maximal order is spanning.
In order to tailor the idea of extendible path systems to bipartite graphs, the notion of a veneering path system was

introduced in [6].

Definition 1. A path system P veneers a bipartite graph G if it covers all the vertices of one of the partite sets.

Let G = (X, Y ) be a bipartite graph. Given aW ∈ Wk(G), we denote byW X those pairs ofW that are in X2, byW Y those
that are in Y 2, and byW 1 the set of bipartite pairs ofW . Also, with a slight abuse of notation, we will letWX (resp.WY ) be
the set of vertices of X (resp. Y ) that are used in the pairs ofW .

Definition 2. Let G be a bipartite graph andW ∈ Wk(G). The veneering number ϑXY (W ) ofW is defined to be

ϑXY (W ) = (|X | − |Y |)− (|W
X
| − |W Y |),

= (|X | − |Y |)−
|WX | − |WY |

2
.

Note that one consequence of the definition is thatϑXY = −ϑ
Y
X . For a given path systemP , let ∂(P ) denote the set of pairs

of endpoints of paths in P and let
◦

P denote P − ∂(P ). We define the veneering number of such a P to be the veneering
number of ∂P . The veneering number of a given set of endpoints is of interest, because it represents the minimum possible
number of vertices left uncovered by a path system with those endpoints.
As an example, considerG = K6,7 and let X denote the partite set of order six. Furthermore, let (x1, x2) be a pair of distinct

vertices in X . Clearly, any x1−x2 path inG has order atmost eleven and omits at least two vertices from Y . LetW = {(x1, x2)}.
Then

ϑXY (W ) = (|X | − |Y |)− (|W
X
| − |W Y |)

= (6− 7)− (1− 0) = −2.

This indicates that the minimum possible number of uncovered vertices in a path system with endpoints inW is two. The
fact that ϑXY (W ) < 0 indicates that those vertices would be in Y . Similarly, ϑ

Y
X (W ) = 2, yielding the same information.

If P1 and P2 are two path systems of G, we write P1 ≤ P2 when every path of P1 is contained in a path of P2. The
following fact will prove most useful.
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Proposition 2.1. Let G = (X ∪ Y , E) be a bipartite graph and P1,P2 ∈ S(G) be such that P1 ≤ P2. Let

G1 = (X1 ∪ Y1, E1) = G−
◦

P1,

G2 = (X2 ∪ Y2, E2) = G−
◦

P2,

then

ϑ
X1
Y1
(P1) = ϑ

X2
Y2
(P2).

Proof (Sketch). Suppose that P1 consists entirely of the paths R1 and R2 and that P2 consists entirely of the path S with
R ⊂ S. We consider the case where R1 has endpoints y1 and y2 in Y , R2 has endpoints y′1 and y

′

2 in Y and that S has
endpoints x in X and y in Y . All of the other cases, both when the systems contain multiple paths or have different endpoints
follow by a nearly identical analysis.
By definition,

ϑ
X1
Y1
(P1) = (|X1| − |Y1|)− (|W X1 | − |W Y1 |).

Since both paths inR have their endpoints in Y |W X1 | = 0 and |W Y1 | = 2. Additionally, since each path inR has one more
internal vertex in X than in Y , we observe that (|X1| − |Y1|) = −2 and hence we conclude that ϑ

X1
Y1
(R) = |X | − |Y |.

Similarly,

ϑ
X2
Y2
(S) = (|X2| − |Y2|)− (|W X2 | − |W Y2 |).

Since S has an endpoint in each partite set, it follows that |W X2 | = |W Y2 | = 0 and for some integer `, |X2| = |X | − ` and
|Y2| = |Y | − `. Consequently, ϑ

X2
Y2
(S) = |X | − |Y |. �

We are now ready to give our definition of a k-extendible bipartite graph.

Definition 3. Let G be a bipartite graph. Then G is said to be k-extendible if for any path systemP in Sk(G) there exists some
veneering path system P ′ in Sk(G) that preserves the endpoints of P .

We will utilize the following in the proof of our main theorem.

Theorem 2.2 ([6]). If k ≥ 2 and G = (X, Y ) is a bipartite graph of order n such that |X |, |Y | > 3k and σ 22 (G) ≥ d
n+3k
2 e, then

G is k-extendible.

It is important to note that a maximal path systemwith veneering number zero is spanning. Thus, if a graph G that meets
the σ 22 bound for k-extendibility has some path system P in Sk(G) such that ϑ(P ) = 0, then Gmust have a spanning path
system.
We give twomore results from [6] that will be very useful. The first is relatively straightforward to prove, and the second

is a weaker version of a result in [4].

Theorem 2.3. If G = (X ∪ Y , E) is a balanced bipartite graph of order 2n with σ2(G) ≥ n+ 2k− 2 then for any setW inWk(G)
comprised entirely of proper pairs of G, there exists a system of k edge-disjoint paths whose endpoints are exactly the pairs inW.

Theorem 2.4. If G = (X ∪ Y , E) is a balanced bipartite graph of order 2n such that for any x ∈ X and any y ∈ Y ,
d(x) + d(y) ≥ n + 2, then for any pair (x, y) of vertices of G, there exists a hamiltonian path between x and y. The degree-
sum condition is the best possible.

3. Proof of Theorem 1.4

Suppose the theorem is not true, and let G be a counterexample of order 2n with a maximum number of edges. The
maximality of G implies that for any proper pair (x, y), G + xy contains k edge-disjoint hamiltonian cycles, one of these
containing the edge xy. Thus,with anyproper pair (x, y)wewill associate k−1 edge-disjoint hamiltonian cyclesH1, . . . ,Hk−1
and an (x, y)-hamiltonian path P = (x = z1, z2, . . . , z2n = y).
Let H denote the union of subgraphs H1, . . . ,Hk−1, and L = L(x, y) denote the subgraph obtained from G by removing

the edges of H . Before we go on proving our theorem we will state a few facts about L. Throughout these proofs, we must
keep in mind that

n ≥ 128k2, (1)

and for any vertexw of G, we have

dL(w) = dG(w)− 2(k− 1). (2)
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Thus, the degree-sum condition on any proper pair (x, y) of G is

dG(x)+ dG(y) ≥ n+ 2k− 1. (3)

This yields the following:

Fact 1. For any proper pair (x, y) of G, we have

dL(x)+ dL(y) ≥ n− 2k+ 3. (4)

Fact 2. If there is a proper pair (x, y) of G, with

dG(x)+ dG(y) ≥ n+ 4k− 3,

or equivalently

dL(x)+ dL(y) ≥ n+ 1,

then L contains a hamiltonian cycle.

Proof. If there were a proper pair (x, y) of G such that dG(x) + dG(y) ≥ n + 4k − 3, then by (2), dL(x) + dL(y) ≥ n + 1,
hence if we consider the (x, y)-path P in L, we see that there must be a vertex z ∈ V (P) such that z is in N(y) and z+. Then
xz+ ∪ [z+, y]P ∪ yz ∪ [x, z] is a hamiltonian cycle in L. �

Note that the existence of P shows that L is connected. In fact, Lmust be 2-connected.

Lemma 3.1. If L has a cut-vertex, then there are k edge-disjoint hamiltonian cycles in G.

Proof. Supposew is a cut-vertex of L; we assume, without loss of generality, thatw ∈ X . Since L admits a hamiltonian path,
L − w can only have two components, one of them being balanced. Let B be the subgraph of G induced by the balanced
component of L − w and A = G − B. Note that w ∈ A, and EL(AX − w, B) = EL(AY , B) = ∅. Let a = |AX | = |AY | and
b = |BX | = |BY |.

Claim 1. a, b > n
2k .

Proof. Assume a ≤ n
2k . Then a(2k− 2)+ a < 2ak ≤ n, implying a(2k− 2) < n− a = b, so |EH(AY , BX )| < |BX | = b. Thus

there is a vertex u ∈ BX such that EH(u, AY ) = ∅, so EG(u, AY ) = ∅. Take any v ∈ AY . We have uv 6∈ E(G), so

d(u)+ d(v) ≤ |AX | + dH(v, BX )+ |BY | + dH(u, AY )
≤ a+ 2(k− 1)+ b
< n+ 2k− 1,

which contradicts the condition of our theorem. �Claim 1

The following two claims give lower bounds on the degrees of the vertices in L.

Claim 2. For any z ∈ A− w, dL(z) ≥ |A|2 − 2k+ 3 and for any z ∈ B, dL(z) ≥
|B|
2 − 2k+ 3.

Proof. Assume z ∈ BY (the cases z ∈ BX , z ∈ AX , z ∈ AY are similar). By Claim 1 and the fact that n ≥ 128k2, we have
|AX − w| = a − 1 > n

2k − 1 > 2(k − 1), so there is a z ′ ∈ AX − w such that zz ′ 6∈ E(H), thus zz ′ 6∈ E(G), so that
dL(z)+ dL(z ′) ≥ n− 2k+ 3. Then since dL(z ′) ≤ |AY | = a, we get dL(z) ≥ n− 2k+ 3− a = b− 2k+ 3. �Claim 2

Claim 3. dL(w) ≥ n
2k − 2k+ 3.

Proof. Ifw is adjacent, in G, to all the vertices of AY , then the Claim is obviously true. If not, there is a v ∈ AY withwv 6∈ E(G),
so that dL(w)+ dL(v) ≥ n− 2k+ 3. Since dL(v) ≤ a = n− b < n− n

2k , we get

dL(w) ≥ n− 2k+ 3− dL(v)

> n− 2k+ 3−
(
n−

n
2k

)
=
n
2k
− 2k+ 3. �Claim 3

Finally:

Claim 4. |EG(AX , BY )|, |EG(AY , BX )| ≥ 2k− 1.
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Proof. If G[(AX , BY )] is complete, the result is obvious. If not, there is a pair of non-adjacent vertices u ∈ AX and v ∈ BY , so
d(u)+ d(v) ≥ n+ 2k− 1. Yet d(u, AY ) ≤ a and d(v, BX ) ≤ b, so

d(u, BY )+ d(v, AX ) ≥ n+ 2k− 1− a− b
= 2k− 1.

The proof is identical for (AY , BX ). �Claim 4

By Claims 2 and 3, and the fact that n ≥ 128k2 we have, for any pair of vertices (u, v) ∈ AX × AY

dA(u)+ dA(v) ≥ |A| − 2k+ 3+
n
2k
− 2k+ 3

> |A| + 2k
= 2a+ 2k > a+ 66k.

Thus, A, and by a similar computation B, satisfies the conditions of Theorem 2.4. Hence take k pairs (ei, e′i) of edges such that
the ei are distinct edges of EG(AX , BY ) and the e′i are distinct edges of EG(AY , BX ). These edges exist by Claim 4.
Let ui ∈ AX and vi ∈ BY be the end vertices of ei, and u′i ∈ AY and v

′

i ∈ BX be the end vertices of e
′

i . Since pairs of vertices
from A and B satisfy the conditions of Theorem 2.4 and removing a hamiltonian path reduces the degree sum of any pair of
vertices by at most 4, there are k edge-disjoint hamiltonian paths U1, . . . ,Uk in A such that ui and u′i are the end-vertices of
Ui, and there are k edge-disjoint hamiltonian paths V1, . . . , Vk in B such that vi and v′i are the end-vertices of Vi. Togetherwith
the ei and e′i edges we get k edge-disjoint hamiltonian cycles in G, which contradicts the assumption that no such collection
of cycles exists in G. Hence the lemma is proven. �

Now we show that the 2-connectedness of L ensures that L contains a relatively large cycle.

Lemma 3.2. If L is 2-connected, then it contains a cycle of order at least 2n− 4k+ 4.

Proof. Recall that the maximality of G implies that L is traceable, so let P = x1, y1, . . . , xn, yn be a hamiltonian path in L.
The path P induces a natural ordering of the vertices in G, specifically, z ≺ z ′ if we encounter z before z ′ while traversing P
from x1 to yn. For convenience, we will say that a vertex w is theminimum (respectivelymaximum vertex with respect to a
given property ifw ≺ w′ (resp.w′ ≺ w) for each otherw′ in V (L) satisfying this property.
Since, by assumption, L is 2-connected, each of x1 and yn have at least two adjacencies on P . Let x∗ be theminimum vertex

of N(yn) and let y∗ be the maximum vertex of N(x1). We consider two cases.

Case 1: Suppose x∗ ≺ y∗. Amongst all xi ∈ N(yn) and yj ∈ N(x1) such that xi ≺ yj, pick the pair, call them x and y such that
distP(x, y) is minimum. By this choice of x and y note that there are no neighbors of x1 or yn between x and y on P . Note that
the subpath P ′ of P that goes from x+ to y− cannot contain more than 4k − 2 vertices since otherwise, as x1 and yn are not
adjacent, we would have

dL(yn) ≤ (n− 1)− (2k− 2)− dL(x1),

or

dL(x1)+ dL(yn) ≤ n− 2k+ 1.

This contradicts Fact 1.
However, if P ′ has at most 4k− 4 vertices then the cycle

x1y1 . . . xynxn . . . yx1,

which excludes only the vertices in P ′ has length at least 2n− 4k+ 4, as desired.

Case 2: Suppose y∗ ≺ x∗. Since L is 2-connected, there exists a sequence of ` ≥ 1 adjacent pairs of vertices (ui, vi)with the
following properties. First, u1 ≺ y∗, y∗ ≺ v1 and x∗ ≺ v`. Then, for each 1 ≤ i ≤ ` − 1, ui ≺ ui+1, vi ≺ vi+1 and ui+1 ≺ vi.
We will also choose these vertices so that v`−1 ≺ x∗ and y∗ ≺ u2, as this will simplify things going forward.
Next, choose y in N(xi) such that u1 ≺ y and distP(ui, y) is minimum. Similarly, select x in N(yn) such that x ≺ v` and

distP(x, v`) is minimum. Now we consider the cycle

C ′ = x1yPu2v2Pu4 . . . u`v`PynxPv`−1u`−1Pv`−3 . . . v1u1Px1.

In C ′, we omit several vertices from P . Specifically, we omit u+1 Py
−, x+Pv−` and segments of the form u

+

i Pv
−

i−1 for 2 ≤ i ≤ `.
Note that by our choice of x and y, neither x1 nor yn have any adjacencies in these subpaths of P . Counting as above, if these
subpaths contain 4k− 3 or more vertices, we violate Fact 1, while if these subpaths total 4k− 4 or fewer vertices, C ′ will be
the desired cycle. �
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3.1. Path systems

In order to prove an important technical lemma, we must first establish some facts about extending paths and path
systems.

Lemma 3.3. Let G = (X ∪ Y , E) be a bipartite graph, and let P be a path system of G. Let X ′ be a subset of (∂P )X , and let Y ′

be a subset of Y − (
◦

P )Y . Suppose that |X ′| = s+ t, where s is the number of vertices in X ′ arising from paths of P consisting of
a single vertex. Furthermore let ` denote the number of vertices of Y ′ that are endpoints of some non-trivial path in P . If

δ(X ′, Y ′) >
t + `
2
+ s

then there exists another path system, P ′, of G such that P ≤ P ′ and (∂P ′)X ′ = ∅.

Proof. We will first show that s may be assumed to be 0. If s > 0, let P1, P2, . . . , Ps be the trivial paths of P contained in
X ′. Now, for every i ∈ [s], replace Pi = {xi} with a path P ′i on three vertices such that the endvertices of P

′

i are new vertices
added to X ′ and the middle vertex of P ′i is a new vertex added to Y . In addition, let the endvertices of P

′

i be adjacent to the
neighbors of xi. Let P1 be the new path system, and let X ′1, consisting of X

′ and the vertices added to X ′, be the new set of
endvertices we wish to eliminate.
The new system P1 now contains no trivial paths, and |X ′1| = t + 2s. Thus, if our lemma were true for systems with no

trivial paths, then the condition

δ(X ′, Y ′) >
t + 2s
2
=
t
2
+ s

ensures the existence of a path system P ′1 such that P1 ≤ P ′1 and (∂P
′

1)X ′1
= ∅. By replacing every P ′i by Pi within the

appropriate paths of P ′1, we obtain the desired path system of G.
So assume that X ′ = {x1, . . . , xt}. Note that the result clearly holds if t = 1, so assume that t ≥ 2. Our goal is to find

edges from each xi to vertices in Y ′, allowing us to create a new path system in which no xi is an endpoint.
Given some xi in X ′, let Pi be the path inP containing xi, letwi be the other endpoint of Pi. Our goal is to select an element

yi in NY ′(xi) that will allow us to extend Pi to a path with one fewer endpoint in X ′. We will extend the Pi, 1 ≤ i ≤ t , in order
and at the time we consider xi, let Zi denote the set of internal vertices in the current (updated) path system. It remains to
show that NY ′(xi)− wi − Zi is non-empty.
Initially, no vertex of Y ′ was interior to a path in P . Each vertex in Y ′ that was already an endpoint of some non-trivial

path in P can be selected once to extend a path and each other vertex in Y ′ can be selected twice. If exactly j vertices in
Y ′ ∩ Zi were endpoints of some non-trivial path in P , then

|Zi| ≤ max
{
0,
i− j− 2
2

+ j
}
≤
t − j− 2
2

+ j ≤
t + `
2
+ 1.

This implies that

|NY ′(xi)− wi − Zi| ≥ δ(X ′, Y ′)− 1− |Zi| >
t + `
2
− 1− |Zi| > 0. �

The following corollary is obtained from Lemma 3.3 by induction on k:

Corollary 3.4. Let G = (X ∪ Y , E) be a bipartite graph, let P1, . . . ,Pk be k edge-disjoint path systems, and let Y ′ ⊂
Y −

⋃k
i=1 int(Pi)Y . For all i ∈ [k] let Xi ⊂ (∂Pi)X and |Xi| = si + ti, where si is the number of vertices of Xi arising from

paths of Pi consisting of a single vertex. Furthermore let `i denote the number of vertices of Y ′i that are endpoints of some non-
trivial path in Pi. If for all i ∈ [k],

δ(Xi, Y ′) >
ti + `i
2
+ si + 2(k− 1)

then there exist k edge-disjoint path systems P ′1, . . . ,P
′

k such that for all i ∈ [k], Pi ≤ P ′i and (∂P
′

i )Xi = ∅.

3.2. The degree-product lemma

The remainder of the proof of Theorem 1.4 relies on a result pertaining to degree products as opposed to degree sums.
We feel it would be interesting to investigate similar results.

Lemma 3.5. If G has no proper pair (u, v) such that dL(u)dL(v) ≥ 12k(n− 12k) then G has k edge-disjoint hamiltonian cycles.
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Proof. Suppose G has no such vertices. Let A be the subgraph of G generated by the vertices of degree less than 16k, and
B the subgraph generated by the vertices of degree greater or equal to 16k. By (3) and (1) no bipartite pairs (u, v) of A are
proper.
Nextwe show that no bipartite pairs (u, v) of B can be proper. Suppose that (u, v)was a proper bipartite pair andwithout

loss of generality, assume that dL(u) ≥ dL(v). Since v has degree at least 16k in G, we have that dL(v) ≥ 14k + 2 and by
Fact 1 we know that dL(u) ≥ n−2k+3

2 . If dL(u) ≥ 6n
7 − 2k + 3 then since n is at least 128k

2, dL(u) > 12k(n−12k)
14k+2 then

dL(u)dL(v) > 12k(n− 12k), a contradiction. If, otherwise, dL(u) < 6n
7 − 2n+ 3 then Fact 1 implies that dL(v) >

n
7 , so that

dL(u)dL(v) >
n
7
n− 2k+ 3

2

which exceeds 12k(n− 12k) since n is at least 128k2.
Thus A and B induce complete bipartite graphs. Assume without loss of generality, that |AX | ≥ |AY |, and set λ =

|AX | − |AY | = |BY | − |BX |. We can assume λ < 4k − 3 since otherwise we could find a proper non-adjacent pair
(x, y) ∈ V (BX ) × V (AY ) with dG(x) + dG(y) ≥ |BY | + λ + |AX | + λ = n + λ ≥ n + 4k − 3, and Fact 2 would imply a
hamiltonian cycle in L, hence k edge-disjoint hamiltonian cycles in G. �

Claim 5. We have δ(AX , BY ) ≥ λ+ 2k− 1 and δ(AY , BX ) ≥ 2k− 1− λ.

Let x ∈ AX such that d(x, BY ) = δ(AX , BY ). By (3), every vertex y ∈ BY − N(x, BY )must verify

dG(y) ≥ n+ 2k− 1− dG(x)
= n+ 2k− 1− |AY | − d(x, BY )
= |BY | + 2k− 1− δ(AX , BY ),

so

dG(y, AX ) ≥ |BY | + 2k− 1− δ(AX , BY )− |BX |
= λ+ 2k− 1− δ(AX , BY ).

This implies that

dG(AX − x, BY − N(x, BY )) ≥ (|BY | − δ(AX , BY ))(λ+ 2k− 1− δ(AX , BY )) (5)

yet, since the vertices of AX can be adjacent to no more than λ+ 4k− 1 vertices of BY (by Fact 2), we see that

dG(AX − x, BY − N(x, BY )) ≤ (|AX | − 1)(λ+ 4k− 1). (6)

Thus if λ+ 2k− 1− δ(AX , BY ) > 0, (5) and (6) imply

|BY | ≤
(|AX | − 1)(λ+ 4k− 1)
λ+ 2k− 1− δ(AX , BY )

+ δ(AX , BY )

≤ (16k)(8k− 4)+ 2k− 2

which contradicts the fact that n ≥ 128k2, hence δ(AX , BY ) ≥ λ+ 2k− 1.
The proof of δ(AY , BX ) ≥ 2k− 1− λ is similar. �Claim 5
We distinguish two cases, according to the size of AX :

Case 1: Suppose 1 ≤ |AY | ≤ 2k− 1. Then Claim 5 and the completeness of A imply

δ(AY ) ≥ |AX | + 2k− 1− λ
= |AY | + 2k− 1
> |AY | + 2(k− 1).

Now, we apply Corollary 3.4 with Pi = Xi = AY for all i, and let Y ′ = X . This implies, in the language of the corollary,
that δ(Xi, Y ′) = δ(AY ). Thus, we find that there are k edge-disjoint systems P1, . . . ,Pk whose paths have all order three
and whose endvertices are all in X .
Further, since A is a complete bipartite graph, we may choose these path systems so that they cover a subset A′X of

min(|AX |, 2|AY |) vertices of AX . That is to say, if |AX | ≤ 2|AY |, A′X = AX , so these systems each cover A entirely, and if
|AX | > 2|AY |, we require that they each cover the same proper subset A′X of AX having order 2|AY |.
For all i ∈ [k] we let P ′i = Pi when |AX | ≤ 2|AY |, and P ′i = Pi ∪ (AX − A′X ) when |AX | > 2|AY |. In either case, we now

have k edge-disjoint path systems which cover A.
Again we wish to apply Corollary 3.4 to the P ′i with Xi = (∂P ′i )AX , to extend to a family of k edge-disjoint systems

P ′′1 , . . . ,P
′′

k such that every path in each of these systems has both endvertices in B.
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We may do so since if |AX | ≤ 2|AY | then all ti = |AX | vertices of Xi come from non-trivial paths, and if |AX | > 2|AY |
then ti = 2|AY | vertices of Xi also come from non-trivial paths, and si = |AX | − 2|AY | of them come from paths consisting of
exactly one vertex, so by Claim 5,

d(AX , BY ) ≥ λ+ 2k− 1

>
ti
2
+ si + 2(k− 1).

Consider some matchingM1 that contains exactly one edge from each non-empty path in P ′1. Clearly, ϑ
X
Y (M1) = 0, and

therefore by Proposition 2.1 we have that

ϑ(∂(P ′1)) = 0 (7)

in G −
◦

P
′

1. Thus, as ∂(P
′

1) ⊂ B, and B induces a complete bipartite graph, we can link the endpoints of the paths in P ′1 to
form a Hamiltonian cycle in G.
Suppose then that we have extended P ′1, . . . ,P

′

t−1 (t ≤ k) to the disjoint Hamiltonian cycles H1, . . . ,Ht−1. As above,
Proposition 2.1 implies that

ϑ(∂(P ′t )) = 0 (8)

in G −
◦

P
′

t . Assume that P ′t has exactly j paths, and let {x1, y1}, . . . , {xj, yj} denote the pairs of endpoints of these paths.
Additionally, let the setW = {{y1, x2}, {y2, x3}, . . . , {yj, x1}}. As B induces a complete bipartite graph with each partite set

having size at least n− |AY | − λ ≥ n− 6k, it is simple to see that there is aW -linkage in Gt := G−
◦

P
′

t −
⋃t−1
i=1 E(Hi). Note

that there are at most j ≤ |AY | < 2k paths in P ′t , so if we are able to show that Gt is 2k-extendible we will be done.
By Corollary 2.2, it suffices to show that

σ 22 (Gt) >
|V (Gt)| + 6k

2
≥
2n− 2k
2

≥ n− k. (9)

In G, the minimum degree of a vertex in the subgraph induced by B is n − (|AY | + λ) ≥ n − 6k. In removing the edges
from the t− 1 other hamiltonian cycles, each vertex loses 2t− 2 < 2k− 2 adjacencies. Thus, it is clear that σ 22 (Gt) certainly
exceeds n− k, completing this case.
Case 2: Suppose |AY | ≥ 2k. Let A′X be a subset of |AY | vertices of AX . As A is a complete bipartite graph, there are k edge-
disjoint hamiltonian cycles in (A′X × AY )G, and we let x1y1, . . . , xkyk be independent edges of (A

′

X × AY )G such that xiyi is an
edge of the ith hamiltonian cycle.
Using Claim 5 we get that δ(A′X , BY ) ≥ 2k− 1 and δ(AY , BX ) ≥ 2k− 1− λ so

δ(AY , B′X ) ≥ |AX − A
′

X | + δ(AY , BX )
≥ 2k− 1.

Let B′ = G− A′X − AY . We have

σ2(B′) ≥ δ(AX − A′X , BY )+ |BX |
≥ |BX | + λ+ 2k− 1
= |B′| + 2k− 1.

One may then use the edges of E(A′X , BY ) and E(AY , X − A
′

X ) along with Theorem 2.3 to find k edge-disjoint hamiltonian
cycles in G. �
Before we proceed to prove the main theorem, we give one final technical lemma.

Lemma 3.6. Let G be a graph containing a Hamiltonian cycle C and let S and R be non-empty disjoint subsets of V (G). If
|S| ≤ |E(R, S)| − |R| then there are four distinct vertices c1, c2, c3, c4, encountered in that order on C, such that one of the
following holds:

(a) c1, c3 ∈ R, c2, c4 ∈ S, c1c2 ∈ E(G), and c3c4 ∈ E(G), or
(b) c1, c4 ∈ R, c2, c3 ∈ S, c1c3 ∈ E(G), and c2c4 ∈ E(G), or
(c) c1, c4 ∈ S, c2, c3 ∈ R, c1c3 ∈ E(G), and c2c4 ∈ E(G).

Proof. First, note that if R′ = {r ∈ R : d(r, S) > 0} and S ′ = {s ∈ S : d(s, R) > 0}, then

|R′| + |S ′| ≤ |R| + |S| ≤ |E(R, S)| = |E(R′, S ′)|

so we may assume that every vertex of R is adjacent to at least one vertex of S, and vice versa. Further, observe that the
inequality in the statement of the lemma cannot hold if |R| = 1 or |S| = 1. Thus, both R and S have at least two vertices.
If |R| = |S| = 2, then |E(R, S)| = 4, and one of (a), (b), or (c) must occur. So assume without loss of generality that

|R| ≥ 3, and let R = {u1, . . . , ur}, where the labels on the vertices of R are determined by a chosen orientation of C . Suppose
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the theorem is not true. Then we claim that C can be traversed such that all of the vertices of R are encountered before all
of the vertices of S. Let P and P ′ be the two [u1, ur ] paths on C , with P being the path containing all of the ui for 1 ≤ i ≤ r .
To avoid (a), all of u1’s neighbors in S and all of ur ’s neighbors in S must lie either entirely in P or entirely in P ′. If

(N(u1) ∪ N(ur)) ∩ S ⊂ P ′ no vertex of S can lie in P , for then the edge between this vertex and any of its neighbors in
Rwould cause (a), (b), or (c) to occur. But this means that the claim is proven for this case.
So suppose that (N(u1) ∪ N(ur)) ∩ S ⊂ P . Also, define vi to be the vertex with highest index i such that vi ∈ N(u1) ∩ S,

and let vj be the vertex with lowest index j such that vj ∈ N(ur)∩S. Then i ≤ j, or else (b) occurs. No vertex of R lies between
vi and vj, or else (a), (b), or (c) would occur. Then u1, . . . , uk lie along the path [u1, v−i ], and uk+1, . . . , ur lie along the path
[v+j , ur ] for some k between 1 and r − 1. All vertices of S on the path [u1, vi], must lie on the path [u

+

k , vi], or else (a), (b) or
(c) will occur. Similarly, all vertices of S on the path [vj, ur ], must lie on the path [vj, u−k+1]. But this implies that the claim
holds. If necessary, relabel the vertices of R such that P = [u1, ur ] contains no elements of S. Since (b) or (c) will be violated
if two chords from R to S cross, a simple count reveals that |S| ≥ |E(R, S)| − (|R| − 1), a contradiction. �

3.3. Proof of Theorem 1.4

Proof. Let C be a cycle of L of maximal order which minimizes dL(T , C), where T = L− C . By Lemma 3.2

t =
|T |
2
≤ 2k− 2. (10)

Let u ∈ TX and v ∈ TY such that dL(u, C)+ dL(v, C) is maximal. Let α = dL(u, C) and β = dL(v, C). We assume, without
loss of generality, that α ≤ β .
We may assume that

α ≥ 2k+ 4. (11)

Indeed, by Fact 1, every vertex of Y−NG(u) has degree greater or equal to n−2k+3− t−α in L. If α ≤ 2k+3, this would
yield that there are at least n−t−(2k+3)−2(k−1) ≥ n−6k vertices that have degree at least n−2k+3−t−(2k+3) ≥ n−6k
in L. Let S ⊆ Y denote this set of vertices.
Let the vertices x and y, in X and Y respectively, be such that (x, y) is a proper pair in G. Assume first that there is some

vertex s in S such that (x, s) is a proper pair in G. Then since dL(s) ≥ n − 6k, Fact 2 implies that dL(x) < 6k + 1. Therefore
dL(x)dL(y) < (6k+ 1)n.
Suppose then that x is adjacent to every vertex in S. Then dG(x) ≥ |S| ≥ n− 6k and hence dL(x) ≥ n− 8k− 1. By Fact 2,

it follows that dL(y) < 8k+ 1 and hence dL(x)dL(y) < (8k+ 1)n. Since n ≥ 128k2, both (6k+ 1)n and (8k+ 1)n are strictly
less than 12k(n− 12k). Therefore, if α ≤ 2k+ 3, G contains k disjoint hamiltonian cycles by Lemma 3.5 and hence we may
assume that α ≥ 2k+ 4.
Note that

α + β ≤ n− t + 1 ≤ n− 2k+ 3

or else C could be extended.
We must have |NL(u, C)+ ∩ NL(v, C)| ≤ 1 and |NL(u, C) ∩ NL(v, C)+| ≤ 1. Let R = NL(v, C)+ − NG(u, C). Then

|R| ≥ dL(v, C)− dH(u, C)− |NL(u, C) ∩ NL(v, C)+|
≥ β − 2(k− 1)− 1
= β − 2k+ 1. (12)

For every r ∈ R ru 6∈ E(G), so by Fact 1,

dL(r)+ dL(u) = dL(r, T )+ dL(r, C)+ dL(u) ≥ n− 2k+ 3,

hence

dL(r, C) ≥ n− 2k+ 3− dL(u, C)− dL(u, T )− dL(r, T )
≥ n− 2k+ 3− α − t − t. (13)

Together with the fact that
∑
r∈R dL(r, T ) ≤ t − 1 (since otherwise, we could extend C), we get

dL(R, C) =
∑
r∈R

dL(r, C)

≥

∑
r∈R

(n− 2k+ 3− dL(u, C)− dL(u, T )− dL(r, T )) (14)

= |R|(n− 2k+ 3)− |R|(α + t)−
∑
r∈R

dL(r, T ) (15)

≥ |R|(n− 2k+ 3− α − t)− t + 1. (16)
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Let S = NL(u, C). We have

dL(R, S) ≥ dL(R, C)− |CX − S|
≥ |R|(n− 2k+ 3− α − t)− t + 1− (n− t)+ |S|
= |R|(n− 2k+ 3− α − t)+ |S| + 1− n.

If Lemma 3.6 with G = C , R = R, and S = S+ were to hold, then we could extend C . Therefore, the assumption of
Lemma 3.6 fails, and we have

|S| − (dL(R, S)− |R| + 1) ≥ 0
|S| − ((|R|(n− 2k+ 3− α − t)+ |S| + 1− n)− |R| + 1) ≥ 0
n− 2− |R|(n− 2k+ 2− α − t) ≥ 0. (17)

By (12) and (11), we have |R| ≥ α − 2k+ 1 ≥ 3, so (17) yields

n− 2− 3(n− 2k+ 2− α − t) ≥ 0 (18)
3α ≥ 2n− 2k+ 9 (19)

α ≥
2
3
n−

2
3
k− 3t + 3. (20)

Yet, as α ≤ β , t ≤ 2k− 1, and n ≥ 128k2 ≥ 46k), this would imply

α + β ≥
4
3
n−

4
3
k− 6(2k− 1)+ 6 > n+ 2k

contradicting (3.3). �Theorem 1.4
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