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Abstract

Given integers k, s, t with 0 ≤ s ≤ t and k ≥ 0, a (k, t, s)-linear forest F is a graph that is the vertex disjoint union of t paths
with a total of k edges and with s of the paths being single vertices. If the number of single vertex paths is not critical, the forest
F will simply be called a (k, t)-linear forest. A graph G of order n ≥ k + t is (k, t)-hamiltonian if for any (k, t)-linear forest
F there is a hamiltonian cycle containing F . More generally, given integers m and n with k + t ≤ m ≤ n, a graph G of order
n is (k, t, s,m)-pancyclic if for any (k, t, s)-linear forest F and for each integer r with m ≤ r ≤ n, there is a cycle of length r
containing the linear forest F . Minimum degree conditions and minimum sum of degree conditions of nonadjacent vertices that
imply that a graph is (k, t, s,m)-pancyclic (or just (k, t,m)-pancyclic) are proved.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

We consider only finite graphs without loops or multiple edges. Notation will be standard, and generally follow
that of Chartrand and Lesniak [2]. For a graph G we will use G to represent the vertex set V (G) and the edge set
E(G) when the context is clear. Given a subset H of vertices of a graph G, the subgraph induced by H will also be
denoted by H when its meaning is clear. Thus, for example, G − H will denote a set of vertices in G not in H as well
as a subgraph spanned by these vertices, depending on the context.

Various degree conditions have been investigated which imply that a graph has hamiltonian type properties. The
most common is the minimum degree of a graph G denoted by δ(G). Another common degree condition is the sum
of degrees of nonadjacent vertices. For a graph G, σ2(G) ≥ p means that d(u) + d(v) ≥ p for each pair u and
v of nonadjacent vertices in G. The classical results of Dirac [3] and Ore [7] give degree conditions that imply the
existence of a spanning cycle, and so G is hamiltonian. Posa generalized this [8] by considering degree conditions that
implied the existence of hamiltonian cycles that contain specified edges, or more generally specified vertex disjoint
paths (linear forests). This leads to a series of definitions which will formalize this concept.
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Definition 1. Let k ≥ 0, t ≥ 1, and 0 ≤ s ≤ t be integers. A (k, t, s)-linear forest F is a vertex disjoint union of t
paths with a total of k edges and with s of the paths just a single vertex. When the number of single vertex paths is not
critical for F , it will be denoted as simply a (k, t)-linear forest. Further, a graph G is (k, t)-hamiltonian if for each
(k, t)-linear forest F of G, there is a hamiltonian cycle of G containing F .

A σ2 condition that implies a graph is (k, t, 0)-hamiltonian was proved by Posa [8] and Kronk [6]. The precise
result will be stated in Section 2. In Section 3 we prove the following result, which sharpens the results of Posa and
Kronk.

Theorem 1. Let k, t and n be positive integers with 2 ≤ k + t ≤ n, and let F be a (k, t)-linear forest. If

(i) σ2(G) ≥ n + k when F = Pk+1 ∪ (t − 1)K1, and
(ii) σ2(G) ≥ n + k − ε(k, n) otherwise,

then G is (k, t)-hamiltonian, where ε(n, k) = 1 if 2|(n − k) and ε(n, k) = 0 otherwise. Furthermore, the condition
on σ2(G) is sharp.

For convenience, we will employ this use of ε(n, k) throughout this paper.
Next we give a consequence of Theorem 1.

Corollary 1. Let k, t and n be positive integers with 2 ≤ k + t ≤ n, and let F be a (k, t)-linear forest. If
δ(G) ≥ (n + k)/2 then G is (k, t)-hamiltonian. The condition on δ(G) is sharp.

Theorem 1 verifies that for some (k, t)-linear forests and for some integers n, σ2(G) ≥ n + k − 1 is sufficient to
imply a graph G of order n is (k, t)-hamiltonian. However, σ2(G) ≥ n + k is the universal bound.

A graph G of order n is called pancyclic whenever G contains a cycle of each length r for 3 ≤ r ≤ n. Various
generalizations of pancyclic graphs have been studied. For example in [1] Bondy considered vertex pancyclic graphs
G, which require any fixed vertex of G be on a cycle of every length. A natural generalization of vertex pancyclic is
to require that graphs have cycles that contain specified vertices and edges or more generally specified vertex disjoint
paths (linear forests). This leads to the following:

Definition 2. Let k ≥ 0, s ≥ 0, and t ≥ 1 be fixed integers with s ≤ t and G a graph of order n. For an integer m
with k + t ≤ m ≤ n, a graph G is (k, t, s,m)-pancyclic (or just (k, t,m)-pancyclic if s is not critical) if for each
(k, t, s)-linear forest ((k, t)-linear forest) F , there is a cycle Cr of length r in G containing F for each m ≤ r ≤ n.

In [4] generalizations of the classical results of Dirac [3], Ore [7] and Bondy [1] were proved that give both δ(G)
and σ2(G) conditions that imply a graph is (0, t,m)-pancyclic. These results will be stated in Section 2.

In Section 4 we prove the following theorem on (k, t,m)-pancyclic graphs, which extends the results in [4] from
cycles containing vertices to cycles containing linear forests.

Theorem 2. Let k, t and n be positive integers with 2 ≤ k+t ≤ n. If σ2(G) ≥ n+k, then G is (k, t, 2t+k)-pancyclic.
The condition on σ2(G) is sharp for infinitely many n.

An immediate consequence of Theorem 2 is the following:

Corollary 2. Let k, t and n be positive integers with 2 ≤ k + t ≤ n. If δ(G) ≥ (n + k)/2, then G is (k, t, 2t + k)-
pancyclic. The condition on δ(G) is sharp for all n.

For m < 2t+k, the σ2(G) bound that implies G is (k, t,m)-pancyclic is significantly larger than that of Theorem 2
and depends on m. In fact, if F is a (k, t)-linear forest, then H = F + Kn−t−k will have no cycle containing F with
less than 2t + k vertices, since any cycle containing F must contain at least one vertex of H − F between each path
of F . Since σ2(H) ≥ 2n − 2t − 2k, this gives a strict lower bound for σ2 to imply that G is (k, t,m)-pancyclic for
m < 2t + k. The following sharp bound on σ2(G) for linear forests will also be proved in Section 4. This settles the
case when m is small (e.g. t + k ≤ m < 2t + k).

Theorem 3. Let k, t, s,m and n be nonnegative integers with 1 ≤ k + t ≤ m < k + 2t ≤ n and G a graph of
sufficiently large order n. If



1180 R.J. Faudree et al. / Discrete Mathematics 309 (2009) 1178–1189

(i) σ2(G) ≥ 2n + 2k − 2m + 1− ε(m, k) if t + k + 1 < m < 2t + k, and s = 0,
(ii) σ2(G) ≥ 2n + 2k − 2m + 1 if m = t + k or t + k + 1 and s = 0,

(iii) σ2(G) ≥ 2n + 2t − 2m − 1 if k + t + 1 ≤ m < k + 2t and 2 ≤ s ≤ 2k,
(iv) σ2(G) ≥ 2n + 2t − 2m if k + t + 1 ≤ m < k + 2t and s = 1,
(v) σ2(G) ≥ 2n − t if m = t + k and 1 ≤ s ≤ 2k.

(vi) σ2(G) ≥ 2n + 2t − 2m − 1 if 2t − k ≤ m < 2t + k, and s > 2k,
(vii) σ2(G) ≥ 2n + k − m if k + t ≤ m < 2t − k, and s > 2k.

then G is (k, t, s,m)-pancyclic. The condition on σ2(G) is sharp.

An immediate corollary to Theorem 3 is the following:

Corollary 3. Let k, t, s,m and n be positive integers with 1 ≤ k + t ≤ m < k + 2t ≤ n and G a graph of sufficiently
large order n. If

(i) δ(G) ≥ n + k − m + (1− ε(m, k))/2 if t + k + 1 < m < 2t + k, and s = 0,
(ii) δ(G) ≥ n + k − m + 1 if m = t + k or t + k + 1 and s = 0,

(iii) δ(G) ≥ n + t − m if k + t + 1 ≤ m < k + 2t and 2 ≤ s ≤ k,
(iv) δ(G) ≥ n + t − m if k + t + 1 ≤ m < k + 2t and s = 1,
(v) δ(G) ≥ n − t/2 if m = t + k and 1 ≤ s ≤ 2k.

(vi) δ(G) ≥ n + t − m if 2t − k ≤ m < 2t + k, and s > 2k,
(vii) δ(G) ≥ n + (k − m)/2 if k + t + 1 < m < 2t − k, and s > 2k

then G is (k, t, s,m)-pancyclic. The condition on δ(G) is sharp.

2. Known results

The following result in [4] gives sharp sum of degree conditions for a graph to be (0, t,m)-pancyclic, and
generalizes the results of Ore [7] and Bondy [1].

Theorem 4 ([4]). Let 1 ≤ t ≤ m ≤ n be integers, and G be a graph of order n. The graph G is (0, t,m)-pancyclic if
σ2(G) satisfies any of the following conditions:

(i) σ2(G) ≥ n when m = n,
(ii) σ2(G) ≥ b(4n + 1)/3c when t = 1 and m = 3,

(iii) σ2(G) ≥ 2n − 3 when t = 2 or 3 and m = 3,
(iv) σ2(G) ≥ 2n − m when t = 3 and m = 4 or 5,
(v) σ2(G) ≥ 2n − 2d(m − 1)/2e − 1 when 4 ≤ t ≤ m < 2t , n > m,

(vi) σ2(G) ≥ n + 1 when t ≥ 1, m ≥ max{4, 2t}, and n > m.

Also, all of the conditions on σ2(G) are sharp.

The corresponding result for minimum degree implying that G is (0, t,m)-pancyclic follows directly from
Theorem 4 with only a few observations in special cases. In most cases, but not all, the minimum degree condition is
precisely half of the degree sum condition (e.g. δ(G) = σ2(G)/2).

Corollary 4 ([4]). Let (1 ≤ k ≤ m ≤ n) be positive integers, and let G be a graph of order n. The graph G is
(0, t,m)-pancyclic if δ(G) satisfies any of the following conditions:

(i) δ(G) ≥ n/2 when m = n,
(ii) δ(G) ≥ (n + 1)/2 then t = 1 and m = 3,

(iii) δ(G) ≥ n − 1 when t = 2 or 3 and m = 3,
(iv) δ(G) ≥ n − 2 when t = 3 and m = 4 or 5,
(v) δ(G) ≥ n − (m/2) when 4 ≤ t ≤ m < 2k, n > m,

(vi) δ(G) ≥ (n + 1)/2 when t ≥ 2, m ≥ 2t , and n > m.

Also, all of the conditions on δ(G) are sharp.
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Degree conditions that imply the existence of hamiltonian cycles containing independent edges were investigated
by Posa [8] and extended by Kronk [6]. The following sharp bound was proved for a general linear forest, but the
bound is not sharp for a fixed linear forest.

Theorem 5 (Posa [8]). Let 0 ≤ t ≤ k be integers and G a graph of order n. If σ2(G) ≥ n + k, then for any (k, t, 0)-
linear forest F, there is a hamiltonian cycle of G that contains the linear forest F. Also, the σ2(G) bound is sharp
with respect to general n and general (k, t, 0)-linear forests.

3. Hamiltonian proofs

We begin this section by providing a graph that shows the sharpness of Theorem 5.

Example 1. Let H1 = Kk+1 + (Kb(n−k−1)/2c ∪ Kd(n−k−1)/2e) with the linear forest F being a path Pk+1 in the
complete graph Kk+1. There is no hamiltonian cycle containing F and σ2(H1) = n + k − 1.

The linear forest in this case is a path with k edges, and so there is the possibility that for other fixed linear forests
with k edges a different condition on σ2(G) could be optimal. This is in fact true, and is indicated by Theorem 1. In
proving Theorem 1, the following result will be useful.

Theorem 6. Let G be a graph of order n and t a fixed integer with 2 ≤ t < n. If σ2(G) ≥ n − t − ε(n, t), then G
contains a spanning linear forest with t paths. The condition on σ2(G) is sharp.

Proof. Let G be a graph of order n with σ2(G) ≥ n − t − ε(n, t), and assume that G contains no spanning linear
forest with t paths. We can assume that G is edge maximal, so the addition of any edge will give the required spanning
linear forest. Hence, there is a spanning linear forest F with t+1 paths, say F = P1∪ P2∪· · ·∪ Pt+1. We can assume
that |P1| ≤ |P2| ≤ · · · ≤ |Pt+1|. If t = n − 1, the result is clear, so we can assume that |Pt+1| > 1, and that F is
chosen to maximize the number of paths with just one vertex. For each i denote the first and last vertices of Pi by xi
and yi respectively, with xi = yi if the path has only one vertex. Clearly there are no adjacencies between xi and any
x j or y j for j 6= i .

Consider the vertices x1 and x2. If z is an adjacency of x2 on a path Pj for j ≥ 2, then x1 is not adjacent to
z−, since this would imply a spanning linear forest with just t paths. Likewise if z is an adjacency of x2 on the path
P1, then x1 is not adjacent to z+, since this would imply a spanning linear forest with just t paths. This implies that
d(x1) ≤ n − (t + 1) − d(x2), since x1 is not adjacent to x1 or any y j for j ≥ 2. Thus d(x1) + d(x2) ≤ n − t − 1, a
contradiction when ε(n, t) = 0. Hence we can assume that ε(n, t) = 1 and so 2|(n − t). Furthermore, by repeating
this count, it can be seen that neither |Pt+1| = 2 nor xt+1 yt+1 ∈ G.

If |Pt | > 1, then note that xt is not adjacent to y−t+1, since this allows the two paths Pt and Pt+1 to be replaced
by two paths with one of the paths having only a single vertex, contradicting our choice of paths. These observations,
along with the argument used on vertices x1 and x2 implies that d(xt )+ d(xt+1) ≤ n − t − 2, a contradiction. Hence
we can assume that |Pt | = 1, and so |Pt+1| = n − t . Neither x1 nor x2 can be adjacent to two consecutive vertices
of Pt+1 or xt+1 or yt+1. Since n − t is even, this implies that d(x1), d(x2) ≤ (n − t − 2)/2, which implies that
σ2(G) ≤ n − t − 2, a contradiction. The sharpness of the σ2 condition is established by Example 2 which follows.
This completes the proof of Theorem 6. �

The following edge analogue result follows directly from Theorem 6.

Theorem 7. Let G be a graph of order n and p a fixed integer with 1 ≤ p ≤ n/2. If σ2(G) ≥ 2p−1, then G contains
a spanning linear forest with 2p edges. The condition on σ2(G) is sharp.

Proof. Let r = n− (2p− 1), and note that ε(n, r) = 1. Therefore, σ2(G) = n− r = n− (r − 1)− ε(n, r). Thus, by
Theorem 6, G has a spanning linear forest F with r − 1 paths. Hence, F has n − (r − 1) = 2p edges. The sharpness
of the σ2(G) condition is established by Example 2 which follows. This completes the proof of Theorem 7. �

We now describe an example providing sharpness for the σ2(G) condition in Theorems 1, 6 and 7.
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Fig. 1. F = (k, t)-linear forest.

Example 2. Consider the complete bipartite graph B = K(n−2t−k−1−ε(k,n))/2,(n−k+1+ε(n,k))/2 when n > 2t+k+1+ε.
Then, σ2(B) = n − 2t − k − 1 − ε(n, k) and any spanning linear forest of B will contain at least t + 1 + ε(n, k)
paths. For any (k, t)−linear forest F , let H(k, t, n) = F + B (see Fig. 1). There is no hamiltonian cycle of H(k, t, n)
containing F , since B has no spanning linear forest with t paths. Also, σ2(H(k, t, n)) = n + k − 1 − ε(n, k), and
δ(H(k, t, n)) = (n + k − 1 − ε(n, k))/2. The graph B with n′ = n − 2t vertices and σ2(B) = n′ − k − 1 − ε(n, k)
implies the sharpness of the σ2 condition in Theorems 6 and 7.

Proof of Theorem 1. The fact that the σ2(G) condition is sharp follows from Example 1 in the case when the linear
forest F contains a Pk+1 and from Example 2 for all of the other linear forests.

Clearly we need to only consider forests F with no isolated vertices, since all vertices of the graph are on a
hamiltonian cycle. Let F ⊆ G be such a linear forest. If the result fails, then we can assume that G is edge maximal,
that is, the addition of any edge to G will result in the required hamiltonian cycle.

Choose x and y so that e = xy 6∈ E(G). Hence, there is a hamiltonian cycle in G + xy containing F and also xy.
Thus, there is a hamiltonian path P = (x = x1, x2, . . . , xn = y) of G containing the k edges of F . If x is adjacent to
x j , then y is not adjacent to x−j , unless x−j x j ∈ F , since this would give the required hamiltonian cycle in G. Hence,
d(y) ≤ n − 1 − (d(x) − k). This implies that d(x) + d(y) ≤ n + k − 1, a contradiction unless F is not a path
and ε(n, k) = 1. Note that if x1x2 is an edge in F , then this implies that d(y) ≤ n − 1 − (d(x) − (k − 1)), giving
d(x)+ d(y) ≤ n + k − 2, a contradiction.

We now assume that each vertex in the graph H = G − F is adjacent to each endvertex of every path in F . Also,
H has n−k− t vertices and σ2(H) ≥ σ2(G)−2(k+ t) ≥ |H |− t−1. Since ε(n−k− t, t) = ε(n, k) = 1, Theorem 6
implies that there is a spanning forest of H with t paths. Thus, a hamiltonian cycle of G containing F can be formed
using F , the linear forest of H with t paths, and the edges between H and the endvertices of F . This contradiction
completes the proof of Theorem 1. �

4. Pancyclic proofs

Since for a graph G of order n, σ2(G) ≥ n + k implies G is (k, t)-hamiltonian, it is reasonable to ask what other
length cycles does G have that also contain F . The following example provides a lower bound on the order of a cycle
containing F .

Example 3. For positive integers k, t ≥ 1 and n ≥ k + 2t , let F be a (k, t)-linear forest, and let H = F + Kn−k−t .
Then |H | = n and the smallest cycle containing F has order at least k + 2t , since any cycle containing F must have
at least t vertices not in F . Also, σ2(H) ≥ 2(n − k − t), and so σ2(H) ≥ n + k if n ≥ 3k + 2t .

Before proving Theorem 2, we consider the case of a linear forest with paths of length 0 or 1 only.

Theorem 8. Let 1 ≤ k ≤ t be fixed integers, and let G be a graph of order n ≥ 3k+2t . Let F be a (k, t, t− k)-linear
forest of G. If σ2(G) ≥ n+k, then for each r ≥ max{4, k+2t}, G has a cycle of length r containing F. The condition
on σ2(G) is sharp for general n.
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Proof. Since σ2(G) ≥ n+ k, it follows that every pair of nonadjacent vertices have at least k + 2 common neighbors.
We show there is a cycle containing F of length at most max{4, k+2t}. If t = k = 1, then consider an edge e = xy. If
x and y have no common adjacency, then any vertex z adjacent to x that is nonadjacent to y has at least two common
adjacencies with y, and so e is on a cycle of length 4. Now assume that t ≥ 2.

Assume that G does not contain a cycle of length at most k + 2t containing F ; that is, more specifically there is
no cycle with at most one vertex between consecutive paths of F . Also assume G is edge maximal with respect to
this property. Select some nonadjacent pair x and y such that x and y are endvertices of distinct paths of F , and let
e = xy. Thus, in G + e there is a cycle D = (x = x1, x2, . . . , x p = y, x) of length p ≤ k + 2t − 1. If x and y have a
common adjacency in H = G − D, then the required cycle is in G, so we can assume that dH (x)+ dH (y) ≤ n − p.
Note that if x is adjacent to xi and y is adjacent to xi−1 with xi−1xi 6∈ F , then this gives the required cycle. Hence,
dD(y) ≤ p − 1 − (dD(x) − k), and so d(x) + d(y) ≤ n + k − 1, a contradiction. Thus, there is a cycle of length at
most k + 2t containing F .

Let D′ = (y1, y2, . . . , yp, y1) be a cycle containing F of maximum length p ≤ k + 2t . We need p = k + 2t or
p = k + 2t − 1. Assume that p < k + 2t − 1. With no loss of generality we can assume that y1 has an adjacency, say
z, in H ′ = G − D′ and that y1 y2 6∈ F . The maximality of p implies that y2 and z are nonadjacent, and that y2 and z
have no common adjacency in H ′. Therefore, dH ′(y2)+ dH ′(z) ≤ n − p − 1. Also, just as in the previous argument,
dD′(y2)+ dD′(z) ≤ p + k. However, this implies that d(y2)+ d(z) ≤ n + k − 1, a contradiction. Thus, p = k + 2t
or k + 2t − 1.

Select a cycle B = (u1, u2, . . . , um, u1) of G containing F such that m is maximum with respect to the property
that there are cycles in G containing F of each length r between p (where p = k + 2t − 1 or k + 2t) and m. If
m = n, the proof is complete, so assume that m < n, and there is no cycle of length m + 1 containing F . We show
this leads to a contradiction. Let H = G − B. Consider a vertex u j ∈ B having an adjacency v in H . We assume that
u j u j+1 6∈ F . The maximality of B implies that vu j+1 6∈ G. Also, if vui ∈ G, then u j+1ui+1 6∈ G if ui+1ui 6∈ F .
Thus, dB(v)+dB(u j+1) ≤ m+k, and so dH (v)+dH (v j+1) ≥ n−m. Hence, there is a vertex v′ ∈ H that is adjacent
to both v and u j+1, which implies the existence of a cycle of length m + 2 containing F . By the connectivity of G
there are several such vertices u j and it follows that there are no chords of B that skip precisely one vertex of B not
in F .

We claim there is a vertex ui ∈ B that has an adjacency in H with ui+1 6∈ F (or ui−1 6∈ F). Assume this is not
true. Choose a vertex u j ∈ B − F . Note, it cannot have an adjacency in H , since this implies that u j−1 (and likewise
u j+1) has an adjacency in H by the argument above, which gives the claim. Also, neither u j+1 nor u j−1 can have
adjacencies in H and u j−1u j+1 6∈ G. Thus, dB(u j−1) + dB(u j+1) > n + k, and so there exists ui , ui+1 ∈ B with
ui ui+1 6∈ F , and with u j+1ui+1, u j−1ui ∈ G. Thus, using one of the previously mentioned cycles of length m + 2
derived from B, there is a cycle of length m + 1 containing F that avoids u j . This gives a contradiction, and verifies
the claim.

With no loss of generality we can assume that u1 has an adjacency, say v1, in H , and that u2 is not in F . The
maximality of m implies that u2 is not adjacent to v1 and in fact

dH (u1)+ dH (u2) ≤ n − m.

Also, as before, dB(v1)+ dB(u2) ≤ m+ k. This implies dH (v1)+ dH (u2) ≥ n−m, and so v1 and u2 have a common
adjacency in H , say v2. Note that v2 is not adjacent to either u1 or u3. As noted above, u1u3 6∈ E(G). Also, a repeat
of a common previous argument, implies that

dB(u1)+ dB(u3) ≤ m + k.

Thus, u1 and u3 have a common adjacency in H , say v3. To avoid a cycle of length m + 1 avoiding u2, we have that

dH (v3)+ dH (u3) ≤ n − m,

since v3 and u3 cannot have a common neighbor in H . Also, each of u2 and v3 cannot be adjacent to two consecutive
vertices of B unless they are endvertices of an edge in F . Hence, each is adjacent to at most (m + k)/2 vertices of B.
Thus,

dB(u2)+ dB(v3) ≤ m + k.
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The four inequalities in the previous paragraph gives in the following inequality:

2(n + k) ≤ d(u1)+ d(u3)+ d(u2)+ d(v3) ≤ 2(n − m)+ 2(m + k).

Therefore these five inequalities are, in fact, equalities. It follows that

dH (u2)+ dH (v3) = dH (u1)+ dH (u3) = n − m.

Since the neighborhoods in H of u1 and u3 are disjoint from the neighborhoods of u2 and v3, the vertices of H are
partitioned into two disjoint sets H1 and H2, where H1 = N (u1) = N (u3) and H2 = N (u2) = N (v3). The set H1
is independent, and each vertex in H1 has the same properties as v3. Hence each vertex in H1 is adjacent to precisely
(m + k)/2 vertices of B, is adjacent to the endvertices of an edge of F , and is not adjacent to any other pair of
consecutive vertices of B. Therefore each vertex in H1 is nonadjacent to (m − k)/2 vertices of B, which we denote
by B1. Each of the vertices in B1 will have the same properties as the vertices in H1, since they can be interchanged
with a vertex in H1, and so the set B1 ∪ H1 is an independent set with (n − k)/2 vertices, and each vertex in B1 ∪ H1
is adjacent to the remaining (n + k)/2 vertices of G. With this structure it is easily seen that a cycle containing F of
each length from k+ 2t to n can be formed. To see this, recall that F has k edges and t paths, say R1, R2, . . . , Rt , and
hence |V (F)| = k + t . Now select vertices x1, . . . , xt in H1 ∪ B1. As each xi is adjacent to all of G − (H1 ∪ B1), we
form the cycle x1, R1, x2, R2, . . . , Rt , xt which contains F and has k + 2t vertices. Extending this cycle in each of
the remaining cases amounts to either including an extra edge from G − (H1 ∪ B1) adjacent to an endvertex of some
Ri or replacing that edge with two vertices in the bipartite structure (one from G− (H1 ∪ B1) and one from H1 ∪ B1).

The graph H(k, t, n) described in Example 2 gives the sharpness of the σ2 condition. This completes the proof of
Theorem 8. �

Completing this, the proof of Theorem 2 now follows easily.

Proof. Let G be a graph of order n with σ2(G) ≥ n + k containing a (k, t)-linear forest F . Consider the graph G ′

obtained from G by deleting all of the interior vertices, say k − k′ for some k′ ≤ k, of the paths in F and replacing
each path by an edge. Thus, the forest F becomes a (k′, t)-linear forest F ′ with only paths of length 0 or 1 (e.g. F ′

is a (k′, t, t − k′)-linear forest), G ′ has order n′ = n − k + k′, and σ2(G ′) ≥ n + k − 2(k − k′) = n′ + k′. Thus, by
Theorem 8, G ′ has cycles containing F ′ of each length from max{4, k′ + 2t} to n′. Replacing each edge in F ′ with
the corresponding path in each of the cycles of G ′ in F gives the required cycles in G. Again, the graph H2(k, t, n) of
Example 2 gives the sharpness of the σ2 condition. This completes the proof of Theorem 2. �

Before proving Theorem 3, we present some sharpness examples.

Example 4. (i) Let k < r ≤ 2k with k ≥ 2 and n ≥ 2k be fixed integers, and let F∗r = (r/2)K2 when r is
even and F∗r = ((r − 1)/2)K2 ∪ K1 when r is odd. Define Hk,r = F∗r + Kn−r . Then Hk,r has order n and
σ2(Hk,r ) = 2n − 2r − ε(r − 1, 0). Consider a linear forest F = kK2 in Hk,r having r of its vertices and br/2c
of its edges in F∗r . Any cycle of Hk,r that contains F will have length at least k + r .

(ii) Modify the example in (i) by adding the positive integer t with k+2 ≤ t , n ≥ k+ t , and k < r ≤ t+k. For any
r , let F∗r = ((r − t + k)/2)K2 ∪ (t − k)K1 when r − t + k is even and F∗r = ((r − t + k− 1)/2)K2 ∪ K1 ∪ (t − k)K1
when r − t + k is odd. Define Hk,t,r = F∗r + Kn−r . Then Hk,t,r has order n and σ2(Hk,t,r ) = 2n − 2r . Consider a
linear forest F = kK2 ∪ (t − k)K1 in Hk,t,r having r of its vertices and b(r − t + k)/2c of its edges in F∗r . Any cycle
of Hk,t,r that contains F will have length at least t + r .

(iii) Modify the example in (ii) for the case when t > 2k, so that the number of independent vertices dominates
the number of independent edges in the linear forest. Thus, t > 2k, n ≥ k + t , and t/2 ≤ r ≤ t − k. For any r , let
F∗r = r K1. Define Hk,t,r = F∗r + Kn−r . Then Hk,t,r has order n and σ2(Hk,t,r ) = 2n− 2r . Consider the linear forest
F = kK2 ∪ (t − k)K1 in Hk,t,r having r vertices in F∗r . Any cycle of Hk,t,r containing F will have length at least
k + 2r .

The next result concerns the special case of F being a matching.

Lemma 1. Let k,m and n be integers with 2 ≤ 2k ≤ m ≤ 3k − 1 ≤ n. If n is sufficiently large and
(i) σ2(G) ≥ 2n + 2k − 2m + 1− ε(m, k) if 2k + 1 < m < 3k,

(ii) σ2(G) ≥ 2n + 2k − 2m + 1 if m = 2k or 2k + 1,

then G is (k, k, 0,m)-pancyclic. The condition on σ2(G) is sharp.
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Proof. (i) Let M be a fixed set of k independent edges in G, and let H be the graph spanned by the vertices in M . Let
p = 3k−m, and so condition (i) implies that σ2(H) ≥ σ2(G)−2(n−2k) = 2p+1−ε(3k− p, k) = 2p+1−ε(p, 0).
To verify (i) it is sufficient to show that σ2(H) ≥ 2p + 1 − ε(p, 0) implies that there is a linear forest F in H such
that M ⊆ F and F has k + p edges. This can be seen from an induction on p, keeping in mind the degree conditions
and the fact the p edges beyond those of M form a matching. The existence of a cycle of length m follows, since the
degree condition for G implies that any pair of nonadjacent vertices has at least n + 2k − 2m + 2 = n − 2k − 2
(when m = 2k + 2, the smallest possible value) common neighbors. As n is sufficiently large, a cycle of length
3k − p = m containing the forest F is easily constructed as any pair of nonadjacent vertices have so many common
adjacencies that there remain many choices, even after some of the paths of F have been linked together by these
common neighbors. The existence of cycles of each length from m to n containing M also follows from the fact that
the degree condition always implies the existence of a vertex not on a cycle that is adjacent to two consecutive vertices
on the cycle that are not the endvertices of an edge of M .

The existence of the desired forest F is shown by induction on p. If p = 1, then σ2(H) ≥ 3, and so there is an
edge e in H not in M . This gives the required linear forest F = M ∪ {e}. If p = 2, then σ2(H) ≥ 4 can easily be
shown to imply the existence of two independent edges e1 and e2 in H that are disjoint from M and do not form a
cycle with the edges of M . Thus, M ∪ {e1, e2} gives the required linear forest F with k + 2 edges.

Now assume that 3 ≤ p ≤ k − 2, and the appropriate linear forest exists for any j < p. Partition the vertices of
H into a minimum number of paths, say P1, P2, . . . , Pq , which start and end in edges of M and contain all of M . Let
F = P1 ∪ P2 ∪ · · · ∪ Pq . Let N be the edges in these paths that are not in M . Therefore, |M | + |N | + q = 2k. Let
xi and yi be the endvertices of Pi for 1 ≤ i ≤ q . Assume for some p that the required linear forest does not exist,
and so by induction we can assume that |N | = p − 1. Note that q ≥ 3, since p ≤ k − 2. It is possible that xi yi is an
edge of H . When this occurs and the path Pi has more than one edge, this implies that the vertices of Pi form a cycle.
Otherwise, Pi is just an edge. Assume the first q ′ paths are either just an edge or induce a cycle, but this is not true
for the remaining q − q ′ paths. We also assume that the path system was chosen to maximize the number q ′ (possibly
q ′ = 0).

First let q ′ = q so that all of the paths induce cycles or are just edges. Select vertices x1 and x2 in P1 and P2
respectively. In this case, without loss of generality, we can assume that |P1| ≤ |P2| ≤ · · · ≤ |Pq |. Note that there are
no edges between x1 (or x2) and any of the vertices of the other q − 1 paths, since then two paths can be collapsed
into one longer path, contradicting the choice of F . In this case |P1| + |P2| ≥ d(x1) + d(x2) + 2 ≥ 2p + 2. This
implies that there are at least p− 1 edges of N in P1 ∪ P2 and at least one edge of N in P3. This gives a contradiction,
so we can assume that q ′ < q. Next consider the case when q ≥ q ′ + 2, and consider the vertices xq−1 and xq . There
are no edges between xq−1 or xq and any of the vertices in P1 ∪ · · · ∪ Pq ′. Select an edge e = z1z2 ∈ N that is on
one of the paths Pj for j > q ′. Note that if there are as many as 3 edges between {xq−1, xq} and {z1, z2}, then in
the case when the edge z1z2 is not on paths Pq−1 or Pq , three paths can be collapsed into two paths with one more
edge in N . If z1z2 is on either the path Pq−1 or Pq , the two paths can be replaced by just one path or the two paths
can be replaced by two paths with the same number of edges in N , but one of the paths is either an edge or induces
a cycle. Each condition contradicts the choice of the forest F , and so there are at most two edges between {xq−1, xq}

and {z1, z2}. Therefore, the number of edges of N in the paths Pq ′+1 ∪ · · · ∪ Pq is at least (d(xq−1)+ d(xq))/2 ≥ p,
a contradiction.

We are left with the case when q ′ = q − 1. In this final case, consider the vertices xq−1 and xq and observe that the
number of edges of N in the paths Pq−1 ∪ Pq is at least (d(xq−1)+ d(xq))/2 ≥ p, a contradiction. The sharpness of
the conditions of (i) follow from Example 4. This completes the proof of (i).

The proof of (ii) uses the same proof techniques as (i). By (i) we have that the maximal linear forest F = P1 ∪ P2
will have two paths, and so q = 2. By assumption σ2(H) = 2k − 1. There are three possibilities for the paths P1 and
P2, both are cycles, precisely one is a cycle, or neither is a cycle. However, in each of the cases the previous arguments
imply that d(x1) + d(x2) ≤ 2k − 2, a contradiction. The sharpness of the condition of (ii) is a consequence of the
graph Kn−2k + (K4 ∪ K2k−4), where the forest F ⊆ K4 ∪ K2k−4. This completes the proof of (ii) when m = 2k + 1.
The proof of (ii) when m = 2k follows directly from the results of Häggkvist in [5]. This competes the proof of
Lemma 1. �

The next result concerns a more general case when the linear forest F has both edges and single vertices, but the
number of edges dominates the number of single vertex paths.
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Lemma 2. Let k < t < m < n be integers with 2 ≤ k+ t < m ≤ k+ 2t − 1 < n and t ≤ 3k. If n is sufficiently large
and

(i) σ2(G) ≥ 2n + 2t − 2m − 1 if k + t < m < k + 2t and t ≥ k + 2,
(ii) σ2(G) ≥ 2n + 2t − 2m if k + t < m < k + 2t and t = k + 1,

(iii) σ2(G) ≥ 2n − t if m = k + t and k + 1 ≤ t ≤ 3k,

then G is (k, t, t − k,m)-pancyclic. The condition on σ2(G) is sharp.

Proof. (i) Let M be a fixed set of k independent edges and t − k independent vertices in G, and let H be the graph
spanned by the vertices in M . Let p = k+ 2t −m, and so condition (i) implies that σ2(H) ≥ σ2(G)− 2(n− k− t) =
2p − 1. To verify (i) it is sufficient to show that σ2(H) ≥ 2p − 1 implies that there is a linear forest F in H such
that M ⊆ F and F has k + p edges. The existence of a cycle of length m follows, since the degree condition for G is
sufficiently large that any pair of nonadjacent vertices have many common adjacencies and so the linear forest can be
extended to a cycle of length k + 2t − p = m. The existence of cycles of each length from m to n containing M also
follows from the fact that the degree condition always implies the existence of a vertex not on a cycle that is adjacent
to two consecutive vertices on the cycle that are not the endvertices of an edge of M .

The existence of the required forest F is proved by induction on p. If p = 1, then σ2(H) ≥ 1, and there is an edge
e in H not in M , since M contains at least two independent vertices. This gives the required linear forest F = M∪{e}.
If p = 2, then σ2(H) ≥ 3 can easily be shown to imply the existence of two edges e1 and e2 in H that are disjoint
from the edges of M and do not form a cycle with the edges of M . Thus M ∪ {e1, e2} gives the required linear forest
F with k + 2 edges.

We now assume that 3 ≤ p ≤ t − 1, and the appropriate linear forest exists for any j < p. Partition the vertices
of H into a minimum number of paths, say P1, P2, . . . , Pq . Let F = P1 ∪ P2 ∪ · · · ∪ Pq , and let N be the edges in
these paths that are not in M . Therefore, |M | + |N | + q = k + t . Let xi and yi be the endvertices of Pi for 1 ≤ i ≤ q .
Assume for some p that the required linear forest does not exist, and so by induction we can assume that |N | = p−1.

Note that q ≥ 2, since p ≤ t − 1. It is possible that xi = yi and Pi is just a vertex. It is also possible that xi yi is
an edge of H . When this occurs and the path Pi has more than one edge, this implies that the vertices of Pi induce a
cycle. Otherwise, Pi is just an edge. Assume that the first q ′ paths are either just a vertex, an edge, or induce a cycle
(we call this collection generalized cycles), but this is not true for the remaining q − q ′ paths. We will also assume
that the path system was chosen to maximize the number q ′ (possibly q ′ = 0). We will also assume that the number
of vertices in the q ′ generalized cycles is maximized relative to the other properties being maximized.

Case 1: q ′ ≥ 2.
Select vertices x1 and x2 in P1 and P2 respectively. Each adjacency of x1 and x2 is an endvertex of an edge of N .

If e = z1z2 is an edge in N and also in Pi for i ≥ 3, then the total number of adjacencies of x1 and x2 relative to
e is a most two, for otherwise the three paths P1, P2, and Pi could be collapsed into just two paths, a contradiction.
Also, since P1 is a generalized cycle, x2 cannot be adjacent to any vertex of P1, and the same is true for x1 relative
to P2. Therefore, the total number of adjacencies of x1 and x2 relative to any e of N is a most two. This implies
d(x1)+ d(x2) ≤ 2|N | = 2p − 2, which contradicts the σ2(G) condition. Thus, we can assume that q ′ < 2.

Case 2: q ′ = 0.
Again, select vertices x1 and x2 in P1 and P2 respectively. As before, the total number of adjacencies of x1 and

x2 relative to any e ∈ N on a path Pi for i ≥ 3 is a most two. Therefore, there must be some edge e = z1z2 in
P1 ∪ P2 such that the total number of adjacencies of x1 and x2 relative to e is at least three, for otherwise we have a
contradiction to the σ2 condition. With no loss of generality we assume that e ∈ P2, and that z1 proceeds z2 on the
path. Note that e cannot be the first edge of P2, since each of x1 and x2 can have at most one adjacency to e. Consider
the case when x2 is adjacent to both z1 and z2. If x1 is adjacent to z1, then the two paths can be collapsed into a
single path, and if x1 is adjacent to z2, then the two paths can be replaced by two paths with one of the paths being a
generalized cycle. Each of these subcases gives a contradiction. A symmetric argument applies when x1 is adjacent to
both z1 and z2. This gives a contradiction that completes the proof of Case 2.

Case 3: q ′ = 1 and |P1| = 1.
As before consider the vertices x1 and x2 in P1 and P2 respectively, and recall that there must be some edge

e = z1z2 in P2 such that the total number of adjacencies of x1 and x2 relative to e is at least three. We can also assume
that z1 proceeds z2 on the path P2. Consider the case when x2 is adjacent to both z1 and z2. Then if x1 is adjacent to
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z1, then the two paths can be collapsed into a single path, and if x1 is adjacent to z2, then the two paths can be replaced
by two paths with one of the paths being a generalized cycle larger than the single vertex generalized cycle. Each of
these subcases gives a contradiction. When x1 is adjacent to both z1 and z2, then x1 can be inserted into P2 and the
two paths can be collapsed into one path. This gives a contradiction that completes the proof of Case 3.

Case 4: q ′ = 1 and |P1| ≥ 2.
Recall that for both pairs x1 and x2, as well as y1 and x2, there must be some edge e = z1z2 in P2 ∩ N (z1 < z2)

such that the total number of adjacencies of x1 and x2 (or y1 and y2) relative to e is at least three. Select e to be the
last such pair of P2 with this property starting with the vertex x2. We can assume with no loss of generality that e is
associated with the pair x1 and x2. Note that z1 6= x2, since x2 is not adjacent to either x1 or y2. Thus, |P2| ≥ 3.

Select z1 and z2 to be the last pair of vertices of P2 starting with the vertex x2. First consider the case when
x1z1, x1z2 ∈ G. Observe that x2z2 6∈ G, since then P1 and P2 can be collapsed into one path. Thus, x2z1 ∈ G.
Note that neither y1 nor y2 can have any adjacencies in the interval of P2 from x1 to z1, since then two paths could be
collapsed into one path. Thus for the pair of vertices y1 and x2 the edge z1z2 is the edge in which y1 and x1 collectively
have three adjacencies. Hence, y1z1, y1z2 ∈ G. This gives a contradiction, since then the path P1 can be inserted into
P2 to form one path.

Therefore we assume that x2z1, x2z2 ∈ G. To avoid the paths P1 and P2 from collapsing into one path, x1z2 ∈ G
and x1z1 6∈ G. Just as before, each of y1 and y2 have no adjacencies in the interval of P2 from x1 to z1. Also, y1z2 ∈ G.
Hence, z1z2 is the only edge of P2∩N where x1 and x2 collectively have three adjacencies. Likewise there is only one
edge in P2∩N to which x1 and y2 collectively have three adjacencies. There can be no such edge of N between x2 and
z1, since then there would be an edge of N in which y1 and y2 (and likewise x1 and y2) would have no adjacencies,
which contradicts the sum of degrees of y1 and y2. This implies that z1 = x+2 and z2 = x++2 .

By symmetry the same applies to x1 and y2 and so y2 y−−2 , x1 y−−2 , y1 y−−2 ∈ G, and y−−2 y−2 is the edge
of N where x1 and y2 collectively have three adjacencies. Consider the three disjoint generalized cycles C∗ =
(x1, . . . , y1, x++2 , . . . , y−−2 , x1), x2x+2 and y2 y−2 that have the same vertices as P1∪ P2. By the σ2 condition x2 and y2
must collectively have three adjacencies into some edge f = w1w2 ∈ N ∩ C∗, say x2w1, x2w2, y2w2. However this
implies immediately that there is one path (x+2 , x2, w1, . . . , w2, y2, y−2 ) that contains all of the vertices of P1 ∪ P2.
This gives a contradiction that completes the proof of Case 4.

The proof of (ii) is essentially identical to that of (i). Using the same notation as in (i), note that in the case of
p = 1 the stronger condition that σ2(H) ≥ 2 is needed to get the linear forest with k + 1 edges, but from that point
forward the proof is identical. This completes the proof of (ii).

Note that the linear forest F has k edges and t − k vertices. As we want m = k + t , then the graph F∗ induced by
V (F)must be hamiltonian. As σ2(G) ≥ 2n−t and |V (F∗)| = k+t , then we see that σ2(F∗) ≥ 2n−t−2(n−k−t) >
k + t , hence F∗ is hamiltonian. The remaining cycle lengths are easily constructed since the degree sum condition is
so large. This completes the proof of Lemma 2. �

The next lemma deals with the case when the linear forest has both edges and single vertices, but the number of
vertices dominates the number of edges.

Lemma 3. Let k < t < m < n be integers with 2 ≤ k+ t < m ≤ k+ 2t − 1 < n and t > 2k. If n is sufficiently large
and

(i) σ2(G) ≥ 2n + 2t − 2m − 1 if 2t − k ≤ m < 2t + k,
(ii) σ2(G) ≥ 2n + k − m if k + t ≤ m < 2t − k,

then G is (k, t, t − k,m)-pancyclic. The condition on σ2(G) is sharp.

Proof. (i) The proof of this case is identical to that of Lemma 2(i), and so will not be repeated here.
(ii) Let M be a fixed set of k independent edges and t−k independent vertices in G, and let H be the graph spanned

by the vertices in M . Let p = k+ 2t −m, and so condition (ii) implies that σ2(H) ≥ σ2(G)− 2(n− k− t) = 2k+ p.
To verify (ii) it is sufficient to show that σ2(H) ≥ 2k+ p implies that there is a linear forest F in H such that M ⊆ F
and F has 2k + p edges. The existence of a cycle of length m follows, since the degree condition for G is sufficiently
large that any pair of nonadjacent vertices have many common adjacencies and so the linear forest can be extended
to a cycle of length k + 2t − p = m. The existence of cycles of each length from m to n containing M also follows
from the fact that the degree condition always implies the existence of a vertex not on a cycle that is adjacent to two
consecutive vertices on the cycle that are not the endvertices of an edge of M .
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The remainder of the proof is by induction on p, where in this case 2k < p < t . The case when p = t follows
directly from Theorem 1. The case p = 2k is a consequence of (i), and the induction can be started with p = 2k. We
now assume that 2k < p ≤ t − 1, and the appropriate linear forest exists for any j < p. Partition the vertices of H
into a minimum number of paths, say P1, P2, . . . , Pq . Let F = P1 ∪ P2 ∪ · · · ∪ Pq , and let N be the edges in these
paths that are not in M . Therefore, |M | + |N | + q = k + t . Let xi and yi be the endvertices of Pi for 1 ≤ i ≤ q.
Assume for some p that the required linear forest does not exist, and so by induction we can assume that |N | = p−1.

Observe that if x1z ∈ H for a vertex z ∈ P1, then x2z− 6∈ H unless z−z ∈ M , since this would allow the paths
P1 and P2 to be collapsed into one path with an additional edge in N , a contradiction. Also, if x1z ∈ H for a vertex
z ∈ Pi for i ≥ 2, then x2z+ 6∈ H unless zz+ ∈ M , since this would allow the paths P1 and P2 and Pi if i > 2 to
be collapsed into one path (or two paths if i > 2) with an additional edge in N , a contradiction. This implies that
dH (x2) ≤ k + t − (dH (x1)− k)− q , since there are no adjacencies between endvertices of distinct paths Pi and Pj .
Thus,

dH (x1)+ dH (x2) ≤ t + 2k − q = 2k + p − 1,

a contradiction. This completes the proof for 2k < p < t , which completes the proof of Lemma 3. �

Theorem 3 is a corollary of Lemmas 1–3.

Proof of Theorem 3. (i) Let L be a (k, t, 0)-linear forest in a graph G of order n such that σ2(G) ≥ 2n + 2k − 2m +
1−ε(m, k). Let G ′ be the graph obtained from G by deleting the k− t interior vertices of the paths in F and replacing
the path by an edge. Thus, the forest L becomes a (t, t, 0)-linear forest L ′ with only paths of length 1 and G ′ has order
n′ = n−k+t . Let m′ = m−k+t . Then σ2(G ′) ≥ 2n+2k−2m+1−ε(m, k)−2(k−t) = 2n′+2t−2m′+1−ε(m′, t).
Thus, by Lemma 1(i), G ′ has cycles containing L ′ of each length from m′ to n′. Replacing each edge in L ′ with the
corresponding path in L for each of the cycles in G ′ gives the required cycles in G. The sharpness of the condition
for (i) is a result of the graphs obtained from Example 4(i) by starting with the forest F = t K2 instead of F = kK2
and replacing each edge in F with the corresponding path in L (with interior vertices of the paths adjacent to all other
vertices) to obtain L and a graph H . This completes the proof of (i).

(ii) The proof of this case is identical to (i) in that each path is reduced to an edge and Lemma 2(ii) is applied to a
graph G ′ of order n′ = n−k+t with m′ = m−k+t and with σ2(G ′) ≥ 2n+2k−2m+1−2(k−t) = 2n′+2t−2m′+1.
Also, the sharpness comes from expanding the edges in the sharpness example in Theorem 1(ii) to the corresponding
length paths in L . This completes the proof of (ii).

(iii) and (vii) The proof of the last five cases have precisely the same form as the first two cases. Each of the t − s
paths with edges are reduced to a single edge, which decreases the number of vertices in G by k − t + s, and reduces
the σ2(G) bound by 2(k− t+s) in the new graph G ′. Then, Lemmas 2 and 3 are applied to complete the proof of these
four cases. The sharpness examples come from Example 4(ii) and (iii), and so this completes the proof of Theorem 3.

�

5. Concluding remark

The bounds in Theorem 1 are sharper when k and n have the same parity, so it is natural to ask if these sharper
bounds are also valid for Theorem 2. More specifically, there is the following question.

Question 1. Let k, t and n be positive integers with 1 ≤ k + t ≤ n, and let F be a (k, t)-linear forest. If

(i) σ2(G) ≥ n + k when Pk+1 ⊆ F and
(ii) σ2(G) ≥ n + k − ε(k, n) otherwise,

then is G(k, t, 2t + k)-pancyclic?
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