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Abstract

A book Bp is a union of p triangles sharing one edge. This idea was extended
to a generalized book Bb,p, which is the union of p copies of a Kb+1 sharing a
common Kb. A graph G is called an H-saturated graph if G does not contain H as
a subgraph, but G∪ {xy} contains a copy of H, for any two nonadjacent vertices x
and y. The saturation number of H, denoted by sat(H,n), is the minimum number
of edges in G for all H-saturated graphs G of order n. We show that

sat(Bp, n) =
1

2

(

(p + 1)(n − 1) −
⌈p

2

⌉ ⌊p

2

⌋

+ θ(n, p)
)

,

where θ(n, p) =

{

1 if p ≡ n − p/2 ≡ 0 mod 2

0 otherwise
, provided n ≥ p3 + p.

Moreover, we show that

sat(Bb,p, n) =
1

2

(

(p + 2b − 3)(n − b + 1) −
⌈p

2

⌉ ⌊p

2

⌋

+ θ(n, p, b) + (b − 1)(b − 2)
)

,

where θ(n, p, b) =

{

1 if p ≡ n − p/2 − b ≡ 0 mod 2

0 otherwise
, provided n ≥ 4(p + 2b)b.

∗The work was partially supported by NSF grant DMS-0070514
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1 Introduction

In this paper we consider only graphs without loops or multiple edges. For terms not
defined here see [1]. We use A := B to define A as B. Let G be a graph with vertex set
V (G) and edge set E(G). We call n := |G| := |V (G)| the order of G and ||G|| := |E(G)|
the size of G. For any v ∈ V (G), let N(v) := {w : vw ∈ E} be the neighborhood of v,
N [v] := N(v) ∪ {v} be the closed neighborhood of v, and d(v) := |N(v)| be the degree of
v. Furthermore, if U ⊂ V (G), we will use 〈U〉 to denote the subgraph of G induced by U .
Let NU(v) := N(v) ∩ U , and dU(v) := |NU(v)|. The complement of G is denoted by G.

Let G and H be graphs. We say that G is H-saturated if H is not a subgraph of G,
but for any edge uv in G, H is a subgraph of G + uv. For a fixed integer n, the problem
of determining the maximum size of an H-saturated graph of order n is equivalent to
determining the classical extremal function ex(H, n). In this paper, we are interested
in determining the minimum size of an H-saturated graph. Erdős, Hajnal and Moon
introduced this notion in [3] and studied it for cliques. We let sat(H, n) denote the
minimum size of an H-saturated graph on n vertices.

There are very few graphs for which sat(H, n) is known exactly. In addition to cliques,
some of the graphs for which sat(H, n) is known include stars, paths and matchings [6],
C4 [7], C5 [2], certain unions of complete graphs [4] and K2,3 in [8]. Some progress has
been made for arbitrary cycles and the current best known upper bound on sat(Ct, n) can
be found in [5]. The best upper bound on sat(H, n) for an arbitrary graph H appears
in [6], and it remains an interesting problem to determine a non-trivial lower bound on
sat(H, n)

A book Bp is a union of p triangles sharing one edge. This edge is called the base of
the book. The triangles formed on this edge are called the pages of the book. This idea
was extended to a generalized book Bb,p, b ≥ 2, which is a union of p copies of complete
the graph Kb+1 sharing a base Kb. Again the generalized book has p pages. In particular,
Bp = B2,p denotes the standard book and also note that K1,p = B1,p.

Our goal is the saturation number of generalized books. We begin however with Bp.
In order for this to be nontrivial, we must have n ≥ |Bp| = p + 2.

Consider first the graph G(n, p), where p is odd and n ≥ p+1

2
+ p = 3p+1

2
. This graph

has a vertex x of degree n− 1. On p−1

2
of the vertices in N(x) is a complete graph, while

on the remaining vertices is a (p − 1)-regular graph R (see Figure 1(a)). Then,

2||G(n, p)|| = (p + 1)(n − 1) −
p − 1

2

p + 1

2
.

Next, suppose p is even. Then a similar graph exists, this time with Kp/2 in one part
of N(x) and again a (p − 1)-regular graph R on the rest. (Note that in either situation,
the parity of n and p may force the (p − 1)-regular graph to be “almost” (p− 1)-regular,
that is, to have all but one vertex of degree p − 1, the other of degree p − 2, and this
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Figure 1: Sharpness examples for Bp.

vertex will have one edge to the Kp/2 (see Figure 1(b)). Here n ≥ 3p+1

2
and p − 1 and

n − p/2 − 1 are odd.

Finally, note that in the small order case when n < (3p + 1)/2 we have Ks and Kp in
N(x) when n = p + 1 + s and here 2||G(n, p)|| = (p + 1)(n − 1) − s(p − s).

Conjecture 1.1 sat(Bp, n) ≥ ||G(n, p)||.

We show the above conjecture is true for n much larger than p and a similar result
holds for generalized books Bb,p. However, in order for the reader to follow the main
proof ideas without going through too many tedious details and cumbersome notation,
we give the proof of the values of sat(Bp, n) first and then prove the generalized case. The
following notation and terminology are needed.

Let G be a connected graph. For any two vertices u, v ∈ V (G), the distance dist(u, v)
between u and v is the length of a shortest path from u to v. The diameter, diam(G),
is defined as max{dist(u, v) : u, v ∈ V (G)}. Clearly, diam(G) = 1 if and only if G
is a complete graph. For any v ∈ V (G), let Ni(v) := {w : dist(v, w) = i} for each
nonnegative integer i. Clearly, N0(v) = {v} and N1(v) = N(v). For any two vertex sets
A, B ⊆ V (G), let E(A, B) := {ab ∈ E : a ∈ A and b ∈ B} and let e(A, B) := |E(A, B)|.

2 Basic properties of Bb,p-saturated graphs

We begin with some useful facts necessary to prove the main results.

Lemma 2.1 Let b ≥ 2 be an integer and G be a Bb,p−saturated graph. Then diam(G) =
2.
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Proof: Since G does not contain Bb,p as a subgraph, G is not a complete graph; hence
diam(G) ≥ 2 holds. We now show that diam(G) ≤ 2. Let x and y be two nonadjacent
vertices of G. Since G + xy contains a copy of Bb,p, this book must contain the edge xy.
Consequently, dist(x, y) = 2. �

Lemma 2.2 If G is a Bb,p−saturated graph, then L := {v ∈ V (G) : d(v) ≤ p + b − 3}
induces a clique in G.

Proof: Suppose the result fails to hold. Further, say x, y ∈ L such that xy /∈ E(G).
Then, G + xy contains a copy of Bb,p. Since G does not contain Bb,p as a subgraph, at
least one of x and y must be in the base of the book Bb,p. But, every vertex in the base
of Bb,p has degree at least p + b − 1, which leads to a contradiction. �

Lemma 2.3 Let G be a Bb,p-saturated graph and let v ∈ V (G). For any w ∈ N2(v),
|N(w) ∩ N(v)| ≥ b − 1. Consequently, |E(N(v), N2(v))| ≥ (b − 1)|N2(v)|.

Proof: Let Bb,p be a subgraph of G+vw with base B. Since G does not contain Bb,p, at
least one of v and w must be in the base B. If they are both in B then |N(v) ∩N(w)| ≥
(b− 2) + p ≥ b− 1. If exactly one of them is in B, then |N(v)∩N(w)| ≥ |B| − 1 = b− 1.

�

3 The saturation numbers for books Bp

Theorem 3.1 Let n and p be two positive integers such that n ≥ p3 + p. Then,

sat(Bp, n) =
1

2

(

(p + 1)(n − 1) −
⌈p

2

⌉ ⌊p

2

⌋

+ θ(n, p)
)

,

where θ(n, p) =

{

1 if p ≡ n − p/2 ≡ 0 mod 2

0 otherwise.

Proof: It is straight forward to verify that G(n, p) is Bp-saturated in each of the cases.
We will show that sat(Bp, n) ≥ ||G(n, p)||. Suppose the contrary: There is a Bp-saturated

graph G of order n ≥ p3 +p such that ||G|| < ||G(n, p)||. If p = 1, then ||G(n, 1)|| = n−1.
Since G is connected, ||G|| ≥ n − 1 = ||G(n, 1)||, so the result is true for p = 1. We now
assume that p ≥ 2. Moreover, we notice that δ(G) ≤ p since the average degree of G(n, p)
is less than p + 1.

The following claim plays the key role in the proof.

Claim 3.2 There is a unique vertex u ∈ V (G) such that d(u) ≥ n/2 and N(u) ⊇ {v ∈
V (G) : d(v) ≤ p}.
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To prove this claim, let v ∈ V (G) such that d(v) ≤ p. Since δ(G) ≤ p such a vertex v
exists. Let Vi := Ni(v) for each nonnegative integer i. By Lemma 2.1, V (G) = {v}∪V1∪V2.
Let n1 = |V1| and n2 = |V2| and let e1,2 = |E(V1, V2)|. Clearly, n1 ≤ p. We now obtain
∑

w∈V1
d(w) ≥ e({v}, V1)+e1,2 = n1 +e1,2. Counting the total degree sum of G, we obtain

that
2||G|| ≥ n1 + (n1 + e1,2) +

∑

w∈V2

d(w).

Using the fact 1 + n1 + n2 = n, we deduce the following inequality from the above.

2||G|| ≥ (n − 1)(p + 1) + n1 − n1p + (e1,2 − n2) +
∑

w∈V2

(d(w) − p).

Since 2||G|| < 2||G(n, p)|| = (n − 1)(p + 1) −
⌈

p
2

⌉ ⌊

p
2

⌋

+ θ(n, p), the following holds

(e1,2 − n2) +
∑

w∈V2

(d(w) − p) < n1p − n1 −
⌈p

2

⌉ ⌊p

2

⌋

≤
3

4
p2. (3.1)

Let S := {w ∈ V2 : d(w) = p and dV1
(w) = 1}, T := V2 − S, T1 := {w ∈ T :

d(w) < p}, t1 := |T1|, T2 := T − T1 and t2 := |T2|.

By Lemma 2.2, T1 is a clique and every vertex in T1 has degree at least |T1|, and so

∑

w∈T1

(d(w) − p) ≥ |T1|
2 − |T1|p ≥ −

⌈p

2

⌉ ⌊p

2

⌋

,

which, combining with (3.1), gives

e1,2 − n2 +
∑

w∈T2

(d(w) − p) < n1p − n1 ≤ p2 − p. (3.2)

Since, for each w ∈ T2, either d(w) ≥ p+1 or dV1
(w) ≥ 2, t2 ≤ e1,2−n2 +

∑

w∈T2
(d(w)−p).

So,
t2 ≤ p2 − p. (3.3)

Since e1,2 − n2 ≥ 0, inequalities (3.1) and (3.3) give the following

∑

w∈T2

d(w) < p2 − p + pt2 ≤ p3 − p. (3.4)

and
∑

w∈T2

(d(w) − 1) < p2 − p + (p − 1)t2 ≤ p3 − p2. (3.5)

The remainder of the proof of this claim is divided into a few sub-claims.
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(A). Let s1 and s2 ∈ S and let x1 and x2 be the corresponding neighbors in V1 of s1 and
s2, respectively. If x1 6= x2 and s1s2 /∈ E(G) then N(s1) ∩ N(s2) ∩ T2 6= ∅.

To prove (A), let Bp be obtained from G + s1s2 and B be the base. Since d(s1) =
d(s2) = p and N(s1) 6= N(s2), the edge s1s2 6= B. Let w ∈ B such that w /∈ {s1, s2}.
Since w is one vertex in the base of Bp, d(w) ≥ p + 1. Consequently, w /∈ S ∪ T1. Since
dV1

(s1) = dV1
(s2) = 1 and x1 6= x2, w /∈ V1, this leaves w ∈ T2 as the only possibility.

Thus, N(s1) ∩ N(s2) ∩ T2 6= ∅.

Let x ∈ V1 such that dS(x) is maximum among all vertices w ∈ V1 and let Y = NS(x)
and Z = S − Y .

(B). |S| ≥ n − p2 − p and |Y | ≥ |S|/n1 ≥ |S|/p ≥ p.

We note that n1 ≤ p and t1 ≤ p − 1 since T1 is a clique and connected to the
rest of the graph. Now the first inequality follows since |S| = n − 1 − n1 − t1 − t2 ≥
n−1−p−(p−1)−(p2−p) = n−p2−p. Since dV1

(s) = 1 for each s ∈ S, {NS(u) : u ∈ V1}
gives a partition of S, so that

|Y | ≥ |S|/n1 ≥ |S|/p ≥ (n − p2 − p)/p ≥ p2 − p ≥ p.

(C). |Z| ≤ p − 1. Consequently, d(x) ≥ |Y | = |S| − |Z| ≥ n/2.

Assume |Z| ≥ p. For each y ∈ Y ⊆ S, since d(y) = p, Z − N(y) 6= ∅; since
|Y | ≥ p, for each z ∈ Z, Y − N(z) 6= ∅. So for any s ∈ S there exists s1 ∈ S such that
ss1 /∈ E(G). Thus by (A), S ⊆ N(T2). Since every vertex w ∈ T2 has a neighbor in V1,
∑

w∈T2
(d(w) − 1) ≥ |S|. Using (3.5) and (B) we obtain

n − p2 − p ≤ |S| ≤
∑

w∈T2

(d(w) − 1) < p3 − p2,

so n < p3 + p, a contradiction.

(D). For each y 6= x, d(y) < n/2.

Suppose to the contrary that there is a y 6= x such that d(y) ≥ n/2. Then a
contradiction is reached by the followings facts. (1) y 6= v since d(v) ≤ p < n/2;
(2) y /∈ V1 − {x} since N(Y ) ∩ V1 = {x} and |Y | ≥ n/2;
(3) y /∈ S ∪ T1 since d(w) ≤ p for every vertex w ∈ S ∪ T1, and
(4) y /∈ T2 since, by (3.2) and e1,2 − n2 ≥ 0 and d(w) ≥ p for each w ∈ T2, we have, for
each u ∈ T2,

d(u) − p ≤ e1,2 − n2 +
∑

w∈T2

(d(w) − p) ≤ p2 − p,

which gives d(u) ≤ p2 < n/2.
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Thus, x is the unique vertex of G such that d(x) ≥ n/2. Since v is an arbitrary vertex
such that d(v) ≤ p, we conclude that x is adjacent to all vertices of degree at most p.
This completes the proof of Claim 3.2.

We are now in the position to finish the proof of Theorem 3.1.

Let L := {v ∈ V (G) : d(v) < p}, M := {v ∈ V (G) : d(v) = p}, and Q := {v ∈
V (G) − {x} : d(v) ≥ p + 1}. Let ` = |L|, m = |M |, and q = |Q|. By Lemma 2.2, we
have L induces a clique and each vertex in L has degree at least `. By counting degrees
in {x}, L, M , and Q, we obtain the following set of inequalities.

2||G|| ≥ (` + m) + `2 + mp + q(p + 1)

= (p + 1)(` + m + q) − `p + `2

≥ (p + 1)(n − 1) −
⌈p

2

⌉ ⌊p

2

⌋

.

Thus, Theorem 3.1 holds with only one exception, when p ≡ n− p/2 ≡ 0 mod 2. But
this is also true if one of the inequalities above is strict. So we may assume that all
equalities hold in the set of inequalities above, which gives us the following statements:

• ` = p/2;

• each vertex in L is only adjacent to x and all other vertices in L;

• N(x) ∩ Q = ∅.

If Q 6= ∅, we have dist(v, w) ≥ 3 for any v ∈ L and w ∈ Q, which contradicts diam(G) = 2.
Therefore, Q = ∅. In this case m = n−p/2−1 ≡ 1 mod 2 and the subgraph 〈M〉 induced
by M is a p− 1 regular graph, which is impossible since both m and p− 1 are odd. This
contradiction completes the proof of Theorem 3.1 �

4 Generalized books Bb,p

We first generalize the graph G(n, p) to G(n, b, p). Suppose p is odd and n ≥ p+1

2
+ p +

b − 2 = 3p+1

2
+ b − 2. The graph G(n, b, p) contains a set X of b − 1 vertices of degrees

n − 1, a clique L of p−1

2
vertices, a subgraph T of n − (p − 1)/2 − b + 1 vertices inducing

a (p − 1)-regular graph where E(L, T ) = ∅. Then,

2||G(n, b, p)|| = (p + 2b − 3)(n − b + 1) −
⌈p

2

⌉ ⌊p

2

⌋

+ (b − 1)(b − 2).

Suppose p is even and n − p/2 − b + 1 is even. Then a similar graph exists, that is,
the graph has a set X of b − 1 vertices, each of degree n − 1, a clique L of p

2
vertices, a
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set T of n− p/2− b + 1 vertices inducing a (p− 1)-regular graph, and E(L, T ) = ∅. Then
again ,

2||G(n, b, p)|| = (p + 2b − 3)(n − b + 1) −
⌈p

2

⌉ ⌊p

2

⌋

+ (b − 1)(b − 2).

Suppose p is even and n − p/2 − b + 1 is odd. Then again a similar graph exists with
some modification due to parities (see Figure 2). This time, the graph has a set X of b−1
vertices, each of degree n − 1, a clique L of p

2
vertices, a set T of n − p/2 − b + 1 vertices

inducing an almost (p − 1)-regular graph which contains a vertex y of degree p − 2, and
E(L, T ) = {xy}, where x is a vertex in L. Then,

2||G(n, b, p)|| = (p + 2b − 3)(n − b + 1) −
⌈p

2

⌉ ⌊p

2

⌋

+ 1 + (b − 1)(b − 2). (4.1)

Kb−1

Kp/2 T

G(n, b, p)

Figure 2: A sharpness example for Bb,p.

Let f(n, b, p) = (p + 2b − 3)(n − b + 1) −
⌈

p
2

⌉ ⌊

p
2

⌋

+ (b − 1)(b − 2) + θ(n, b, p), where
θ(n, b, p) = 1 if p ≡ n − p/2 − b ≡ 0 mod 2 and 0 otherwise.

Theorem 4.1 Let n, b ≥ 3 and p be three positive integers such that n ≥ 4(p + 2b)b.

Then, sat(Bb,p, n) = 1

2
f(n, b, p).

Proof: It is readily seen that graphs G(n, b, p) defined above are Bb,p-saturated graphs
of size 1

2
f(n, b, p), so that sat(Bb,p, n) ≤ 1

2
f(n, b, p). We will show that sat(Bb,p, n) ≥

1

2
f(n, b, p). Suppose the contrary: There is a Bb,p-saturated graph G with n vertices such

that 2||G|| < f(n, b, p).

The main part of the proof is dedicated to establishing the following claim which plays
a key role in calculating the total degree sum of G.

Claim 4.2 There exists a clique X in G of order b− 1 such that | ∩x∈X N(x)| ≥ n/2 and

∩x∈XN(x) ⊇ {v : d(v) < p + 2b − 3}.
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To prove Claim 4.2, let v be an arbitrary vertex of V (G) such that d(v) ≤ p + 2b− 4.
Since 2||G|| < f(n, b, p) < (p + 2b − 3)n such a vertex v exists. Let Vi := Ni(v) for each
nonnegative integer i. By Lemma 2.1, V (G) = {v} ∪ V1 ∪ V2. Let n1 = |V1|, n2 = |V2|,
and e1,2 := |E(V1, V2)|. Clearly, n1 = d(v) ≤ p + 2b − 4. By Lemma 2.3, dV1

(w) ≥ b − 1
for each w ∈ V2. Clearly,

∑

u∈V1

dV2
(u) =

∑

w∈V2

dV1
(w) = e1,2 ≥ (b − 1)n2. (4.2)

Counting the total degree sum of G, we obtain the following inequalities:

2||G|| = d(v) +
∑

u∈V1

d(u) +
∑

w∈V2

d(w)

≥ n1 + (n1 + e1,2) +
∑

w∈V2

d(w)

= n1 + (n1 + (b − 1)n2) +
∑

w∈V2

(dV1
(w) − (b − 1)) +

n2(p + b − 2) +
∑

w∈V2

(d(w) − p − b + 2)

= (p + 2b − 3)n2 + 2n1 +
∑

w∈V2

((dV1
(w) − b + 1) + (d(w) − p − b + 2))

= (p + 2b − 3)(n − b + 1) − (p + 2b − 3)(n1 + 2 − b) + 2n1 +
∑

w∈V2

((dV1
(w) − b + 1) + (d(w) − p − b + 2)) .

Using (4.1), we obtain that
∑

w∈V2

((dV1
(w) − b + 1) + (d(w) − p − b + 2))

≤ (b − 1)(b − 2) −
⌈p

2

⌉ ⌊p

2

⌋

− 2n1 + (p + 2b − 3)(n1 + 2 − b). (4.3)

Let

S := {w ∈ V2 : d(w) = p + b − 2 and dV1
(w) = b − 1},

T := V2 − S,

T1 := {w ∈ T : d(w) < p + b − 2},

T2 := T − T1 = {w ∈ V2 : d(w) > p + b − 2 or (d(w) = p + b − 2 and dV1
(w) ≥ b)},

and

s := |S|, t1 := |T1|, t2 := |T2|.

By the definition, we have s + t1 + t2 = n2 and
∑

w∈S

((dV1
(w) − b + 1) + (d(w) − p − b + 2)) = 0. (4.4)
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By Lemma 2.2, T1 is a clique, and so, for each w ∈ T1, d(w) = dV1
(w) + dV2

(w) ≥
b − 1 + t1 − 1 = t1 + b − 2. Hence,

∑

w∈T1

((dV1
(w) − b + 1) + (d(w) − p − b + 2)) ≥ t1(t1 − p) ≥ −

⌈p

2

⌉ ⌊p

2

⌋

. (4.5)

Combining (4.3), (4.4), and (4.5), we obtain

∑

w∈T2

((dV1
(w) − b + 1) + (d(w) − p − b + 2))

≤ (b − 1)(b − 2) − 2n1 + (p + 2b − 3)(n1 + 2 − b) ≤ (p + 2b)2. (4.6)

Since, for each w ∈ T2, either dV1
(w) > b − 1 or d(w) > p + b − 2,

t2 ≤
∑

w∈T2

((dV1
(w) − b + 1) + (d(w) − p − b + 2)) ≤ (p + 2b)2. (4.7)

Using (4.6), (4.7), and that dV1
(w) ≥ b − 1 for each w ∈ T2 ⊆ V2, we obtain

∑

w∈T2

d(w) ≤ (p + 2b)2 + (p + b − 2)t2 ≤ (p + 2b)3. (4.8)

The remainder of the proof consists of a few sub-claims.

(A). For any s1 and s2 ∈ S and xi ∈ N(si) ∩ V1 for each i = 1, 2. If x1 6= x2 and
s1s2 /∈ E(G) then N(s1) ∩ N(s2) ∩ T2 6= ∅.

Let Bb,p be obtained from G+ s1s2 and B be the base. Since d(s1) = d(s2) = p+ b− 2
and N(s1) 6= N(s2), {s1, s2} 6⊆ B. Thus, B − (V1 ∪ {s1, s2}) 6= ∅ thanks to dV1

(s1) =
dV1

(s2) = b − 1. So there exists a w ∈ T2 ∩ B. Since w ∈ B, w ∈ N(s1) ∩ N(s2), which
completes the proof of (A).

Let X ⊆ V1 such that |X| = b−1 and |(∩x∈XN(x))∩S| is maximum among all subsets
X∗ ⊆ V1 with |X∗| = b− 1. Let Y = (∩x∈XN(x)) ∩ S and Z = S − Y . Using inequalities
n1 ≤ p + 2b− 4, t2 ≤ (p + 2b)2, and n ≥ 4(p + 2b)b, we obtain S 6= ∅, which in turn shows
that such an X exists. Considering the Bb,p obtained by adding the edge vw for a w ∈ Y ,
we conclude X is a clique.

(B). |S| ≥ n/2+p+b−2 > 2
∑

w∈T2
d(w) and |Y | ≥ |S|/

(

n1

b−1

)

≥ |S|/(p+2b−4)b−1 ≥ p+2b.

Since n ≥ 4(p + 2b)b and b ≥ 3, |S| = n − 1 − n1 − t2 − t1 ≥ n − 1 − (p + 2b −
4) − (p + 2b)2 − (p + b − 3) ≥ n/2 + p + b − 2. Using (4.8) and n ≥ 4(p + 2b)b, we
obtain that n/2 + p + b − 2 > 2

∑

w∈T2
d(w). Since dV1

(w) = b − 1 for each w ∈ S,

{∩x∈XNS(x) : X ⊆ V1 and |X| = b − 1} gives a partition of S. Hence, |Y | ≥ |S|/
(

n1

b−1

)

.

The last two inequalities follow from |S| ≥ n/2 + p + b − 2 ≥ (p + 2b)b and the choice of
v satisfying n1 ≤ p + 2b − 4. �
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(C). |Z| < p + b − 2. Consequently, |Y | ≥ n/2.

Otherwise, assume |Z| ≥ p + b − 2. For every y ∈ Y there exists a z ∈ Z such that
yz /∈ E(G). On the other hand, since |Y | ≥ p + 2b, for every z ∈ Z there exists a y ∈ Y
such that yz /∈ E(G). Using (A), we obtain S ⊆ N(T2), so that

∑

w∈T2
d(w) ≥ |S|, which

contradicts (B). �

(D). For each clique W with |W | = b − 1 and W 6= X, we have | ∩w∈W N(w)| < n/2.

Suppose the contrary: There is a clique W 6= X such that |W | = b − 1 and | ∩w∈W

N(w)| ≥ n/2. Then a contradiction is reached by the following listed facts:
(1). W∩({v}∪S∪T1) = ∅ since vertices in {v}∪S∪T1 have degree less than p+2b−3 < n/2;
(2). W 6⊆ V1 since N(Y ) ∩ V1 = X 6= W and |Y | = |S| − |Z| ≥ n/2; and
(3). W ∩ T2 = ∅ since

∑

w∈T2
d(w) ≤ (p + 2b)3 < n/2, a contradiction. �

From D, we obtain that X is the unique clique of G such that |X| = b − 1 and
| ∩x∈X N(x)| ≥ n/2. Since v is an arbitrary vertex such that d(v) ≤ p + 2b − 4, we
conclude that ∩x∈XN(x) contains all vertices of degree at most p + 2b − 4. So we have
completed the proof of Claim 4.2. �

Let L := {v ∈ V (G) : d(v) < p + b − 2}, M := {v ∈ V (G) : p + b − 2 ≤ d(v) ≤
p + 2b − 4}, and Q := {v ∈ V (G) − X : d(v) ≥ p + 2b − 3}. Let ` = |L|, m = |M |, and
q = |Q|. By Lemma 2.2, we have L is a clique and each vertex in L has degree at least
` + b− 2. We then have the following inequalities on the total degree by counting degrees
in X, L, M , and Q.

2||G|| ≥ (b − 1)(` + m + b − 2) + `(` + b − 2) + m(p + b − 2) + q(p + 2b − 3)

= (p + 2b − 3)(` + m + q) − `(p − `) + (b − 1)(b − 2)

≥ (p + 2b − 3)(n − b + 1) −
⌈p

2

⌉ ⌊p

2

⌋

+ (b − 1)(b − 2).

So Theorem 4.1 holds with one exception, that p ≡ n− p/2− b ≡ 0 mod 2. Furthermore,
Theorem 4.1 holds if one of the inequalities is strict. Thus we may assume that p is even
and n − p/2 − b + 1 is odd, and all equalities hold in the set of inequalities above, which
gives us the following statements:

• ` = p/2;

• each vertex in L is only adjacent to vertices in L ∪ X;

• (∪x∈XN(x)) ∩ Q = ∅.

If Q 6= ∅, we have dist(v, w) ≥ 3 for any v ∈ L and w ∈ Q, which contradicts diam(G) = 2.
Therefore, Q = ∅. In this case m = n − p/2 − b + 1 ≡ 1 mod 2 and the subgraph 〈M〉
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induced by M is a p − 1 regular graph, which is impossible since both m and p − 1 are
odd. �
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