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Abstract: For a fixed multigraph H, possibly containing loops, with V(H) =
{h1, . . . , hk}, we say a graph G is H-linked if for every choice of k vertices
v1, . . . , vk in G, there exists a subdivision of H in it G such that vi represents
hi (for all i ). An H-immersion in G is similar except that the paths in G, playing
the role of the edges of H, are only required to be edge disjoint. In this
article, we extend the notion of an H-linked graph by determining minimum
degree conditions for a graph G to contain an H-immersion with a bounded
number of vertex repetitions on any choice of k vertices. In particular, we
extend results found in [2,3,5]. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 245–254, 2008
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1. INTRODUCTION AND TERMINOLOGY

A graph is k-linked if for every sequence of 2k vertices, v1, . . . , vk, w1, . . . , wk,
there are internally disjoint paths P1, . . . , Pk such that Pi joins vi and wi. The
class of k-linked graphs is interesting and important, hence the topic has drawn
considerable attention (e.g., see [7]). In this article we wish to generalize this class.
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Let H be a multigraph, possibly containing loops, with the order of H being
|H | = k. For any graph G, let P(G) denote the set of paths in G.

Definition 1.1. An H-subdivision in G is a pair of mappings f : V (H) → V (G)
and g : E(H) → P(G) such that:

(i) f is injective;
(ii) for every edge xy ∈ E(H), g(xy) is an f (x) − f (y) path in G and distinct

edges of H map to internally disjoint paths in G.

A graph G is H-linked if every injective map f : V (H) → V (G) can be extended
to an H-subdivision. The notion of an H-linked graph is a generalization of the idea
of a k-linked graph, since if H is a matching with k edges, G is k-linked if and only
if G is H-linked.

Our result will depend on a parameter η(H), defined as follows. If H is connected,
we define η(H) to be the maximum size of an edge cut in H. If H has several
components, say H1, . . . , Hc, where at least one Hi contains an even cycle, we
define η(H) = u(H) + ∑c

i=1 η(Hi), where u(H) denotes the number of components
of H that contain no even cycles. For the remainder of this article, we will refer to
components of this type as uneven components. If each component of H is uneven,
we will let η(H) · |V (H)| 1.

The following was shown [3].

Theorem 1.2. Let H be a multigraph and G be a simple graph such that n =
|G| ≥ 10(|V (H)| + |E(H)|). If δ(G) ≥ n+η(H)−2

2 , then G is H-linked.

This result (and earlier versions, found in [2,5] which were concerned solely with
connected multigraphs) along with extension theorems (see [4,5]) established a new
framework for viewing path and cycle problems as particular strong connectivity
problems. This framework also supplied a way to generalize a number of results in
this area at one time (see [4]).

We now extend the notion of an H-linked graph through the idea of an H-
immersion, and thus broaden this new framework even more.

Definition 1.3. An H-immersion in G is a pair of mappings f : V (H) → V (G)
and g : E(H) → P(G) such that:

(i) f is injective;
(ii) for every edge xy ∈ E(H), g(xy) is an f (x) − f (y) path in G and distinct

edges of H map to edge-disjoint paths in G.

For an immersion I of H in a graph G, we let S = f (V (H)). For a vertex v ∈
G − S, define the vertex repetition number, r(v, I), to be one less than the number
of paths in g(E(H)) containing v, if v lies on a path of I, and zero otherwise. We
then define the vertex repetition number of an immersion I, denoted r(I), to be
the sum of the vertex repetition numbers taken over the vertices of G − S. An H-
immersion with vertex repetition number 0 is in fact an H-subdivision, establishing
the connection between these two structures.
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In this article we determine a sharp minimum degree condition for a graph G to
contain an H-immersion I on any |V (H)| vertices such that r(I) is bounded from
above.

For a graph G, let δ(G) denote the minimum degree of a vertex in G. For two
subsets A and B of the vertex set of G, let δ(A, B) = minv∈A |N(v) ∩ B|, where N(v)
denotes the set of neighbors of v in G. The subgraph induced by a set A of vertices
is denoted by 〈A〉. For terminology not defined here, the reader should consult [1].

2. IMMERSIONS AND MINIMUM DEGREE

As mentioned above, an H-subdivision in a graph G is simply an H-immersion
I with r(I) = 0. Our goal is to prove the following extension of Theorem 1.2 to
include immersions I with r(I) ≥ 1. In what follows, we say a graph is nontrivial
if it contains at least one edge.

Theorem 2.1. Let H be a loopless nontrivial multigraph of order k and G a
simple graph such that |G| = n ≥ max{8|E(H)|2 + 8|E(H)|k + 2k2 − |E(H)| +
2, 34|E(H)| + 4k + 5}. If λ is an integer such that 0 ≤ λ ≤ η(H) − k + 1, and
δ(G) ≥ n+η(H)−λ−2

2 , then any injective map f : V (H) → V (G) can be extended to
an immersion I with r(I) ≤ λ.

To see that this minimum degree is required, suppose first that H has maximum
edge cut size η(H), and that this cut determines a partition of V (H) into sets X and
Y. Let G be a graph formed from two complete graphs G1 and G2 of order m that
intersect on η(H) − λ − 1 vertices. If S, the image of V (H) under f, is chosen such
that the vertices of f (X) lie in G1 − G2, and the vertices of f (Y ) lie in G2 − G1,
then clearly G1 ∩ G2 is not large enough to allow an immersion of H with repetition,
number at most λ.

In the case where η(H) is not the size of a maximum edge-cut in H, specifically
when H is disconnected and has at least one uneven component, we proceed in a
slightly different manner. Let H1, . . . , Ht denote the components of H. Furthermore,
let G be defined in a manner identical to the previous case. If no component of H
contains an even cycle, choose any two adjacent vertices v1 and v2 in H and represent
v1 by some vertex in G1 − G2 and v2 by some vertex in G2 − G1. Then assign any
η(H) − λ − 1 = |V (H)| − λ − 2 other vertices in H to the vertices in G1 ∩ G2 and
assign the remaining vertices arbitrarily. This will preclude the possibility of an
H-immersion on this choice of vertices.

Assume that there is some component of H, say H1, that contains an even cy-
cle. We will then embed as many of the vertices of the components that do not
contain an even cycle in G1 ∩ G2 and embed the rest of the vertices of these com-
ponents arbitrarily, if necessary. For each other component Hi, let Xi and Yi par-
tition V (Hi) such that e(Xi, Yi) = η(Hi), and embed each Xi in G1 and each Yi in
G2. As above, this precludes the possibility of an H-immersion on this choice of
vertices.
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In each case, δ(G) = m − 1 and n = |V (G)| = 2m − η(H) + λ + 1. We can
then see that δ(G) = n+η(H)−λ−3

2 , proving the necessity of the stated degree condi-
tion.

In the proof of Theorem 2.1, let G be a graph on n vertices satisfying the stated
conditions and let f : V (H) → V (G) be an injection. As above, we will let S denote
f (V (H)). The following well-known lemma is useful.

Lemma 2.2. If G is a graph such that δ(G) ≥ n+κ−2
2 , then G is κ-connected.

If C is a cutset of G of minimum order, Lemma 2.2 implies that |C| ≥ η − λ ≥
k − 1. Using the following theorem, we can assume that |C| < 2|E(H)| + |H |.
Theorem 2.3 (Pfender [6]). If |G| = n ≥ 2k, G is 2k-connected, and δ(G) ≥
n
3 + 10k, then G is k-linked.

Suppose κ(G) = |C| ≥ 2|E(H)| + |H |. Then the graph G − S is 2|E(H)|-
connected and

δ(G − S) ≥ n + η − λ − 2

2
− k

≥ (n − k) + η − λ − 2 − k

2

≥ n − k

3
+ 10|E(H)|

as n ≥ 60|E(H)| + 5k + 5. By Theorem 2.3, G − S is |E(H)|-linked, implying
that G is H-linked.

Thus, η − λ ≤ |C| < 2|E(H)| + |H |. The minimum degree conditions imply
that G − C consists of exactly two components, which we call A and B. We now
bound the number of adjacencies that each vertex of A and B must have to C.

Lemma 2.4. δ(A, C), δ(B, C) ≥ η − λ.

Proof. The minimum degree conditions require that |B| + |C| ≥ n+η−λ−2
2 + 1,

which implies that |A| ≤ n−η+λ

2 . Since the minimum degree of a vertex in A is
n+η−λ−2

2 , this means that each vertex in A must be adjacent to at least η − λ vertices
in |C|. A similar argument proves the bound on δ(B, C). �

Suppose |C| = η − λ + t for some t ≥ 0. Let SA = S ∩ A, SB = S ∩ B, and
SC = S ∩ C. We call a vertex in C bad to A (respectively, bad to B) if it has fewer
than 2|E(H)| + k neighbors in A (resp. B). We call a vertex of C good if it is neither
bad to A nor bad to B. Let RA and RB denote those vertices in C that are bad
to A and B, respectively and let J denote the set of good vertices in SC. Then, if
MA = SC ∩ RA and MB = SC ∩ RB, we can write SC = J ∪ MA ∪ MB.

Note that if x ∈ RA ∩ RB, then dA(x) ≤ 2|E(H)| + k and the same bound
holds for dB(x). Furthermore, x has less than 2|E(H)| + k neighbors in C. Thus,
6|E(H)| + 3k > d(x) ≥ δ(G). But then from the bound on n we see that RA and
RB must be disjoint.
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Lemma 2.5. |RA| + |RB| ≤ t.

Proof. Suppose |RA| + |RB| > t. Then, as n ≥ 8|E(H)|2 + 8|E(H)|k + 2k2 −
|E(H)| + 2 and each A and B have order at least n+η−λ

2 , there exist vertices vA ∈ A

and vB ∈ B such that vA has no neighbors in RA and vB has no neighbors in RB.
Then

d(vA) + d(vB) ≤ |A| + |B| − 2 + 2|C| − (|RA| + |RB|)
= n + |C| − 2 − (|RA| + |RB|)
= n + (η − λ + t − (|RA| + |RB|) − 2

< n + η − λ − 2

= 2δ,

contradicting the minimum degree condition. �
Before describing how we find the H-immersion in G, we prove a lemma about

the parameter η(H) that will be useful.

Lemma 2.6. Let M be a graph and let W, Z be a vertex partition of V (M). Then
for any F ⊆ V (M),

e(W − F, Z − F ) ≤ η(M) − |F |.

Proof. It suffices to show that the result holds for F = {v}. We assume, without
loss of generality, that v ∈ W and let W ′ denote W \ {v}.

Assume that the theorem is false, that is, that e(W ′, Z) ≥ η(M). Note as well,
that η(M) is always at least the size of a maximum edge cut in M, so it must be that
e(W ′, Z) = η(M). If v is an isolated vertex, then by definition η(M) exceeds the
size of a maximum edge-cut in M, contradicting the above assumption. Therefore,
assume that v has at least one neighbor x in M. If x lies in Z, then e(W ′ ∪ {v}, Z) >

η(M), a contradiction. Similarly, if x lies in W ′, then e(W ′, Z ∪ {v}) > η(M), again,
a contradiction. �

One should note that 〈A〉 and 〈B〉 are extremely dense and hence satisfy the
conditions of Theorem 1.2. We will exploit this fact.

Let e = xy be an edge of H. The construction of the path in G that we use to
represent this edge depends heavily on the location of the images of x and y under
f. In many cases, we will select neighbors of f (x) and f (y) in A or B to serve as
“proxies” for these vertices, as we will be able to use Theorem 1.2 to construct
a path between the proxies, and thus between f (x) and f (y). Several cases are
required.

Case 1. If f (x) ∈ (SC \ RA) (f (y) ∈ (SC \ RB), respectively) and f (y) ∈ (SA),
f (x) ∈ (SB) then we choose some vertex a1

e,x in A \ SA adjacent to f (x) (b1
e,y in

B \ SB adjacent to f (y)).
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In this case, we wish to link a vertex in SA (or SB) to a vertex in SC that is good to
that particular set. This is not difficult as the vertex in SC will have a large number
of neighbors to choose from in A or B, respectively.

Case 2. If f (x), f (y) ∈ (SC \ RA), (SC \ RB), respectively then we choose ver-
tices a′

e and a′′
e (b′

e and b′′
e ) in A \ SA (B \ SB) adjacent to f (x) and f (y), respectively.

Here, we would like to find a path between two vertices in SC that have a large
number of neighbors in the same set (A or B). We cannot assure that x and y are
adjacent or have a common neighbor, but the density of A and B will make it
relatively simple to link their proxies.

To this point, we have not been forced to make any repetitions among the vertices
we have chosen. This is because we have been able to select vertices from A and
B. In the remaining cases, in order to represent the remaining edges with paths in
an immersion, we must construct paths that cross from A to B through C. In the
procedure below, some of the vertices labeled ve, which lie in C, may be repeated.
We will choose these vertices such that the number of repetitions is minimized.

Case 3. If f (x) ∈ (MB) and f (y) ∈ (MA) then we choose some vertex ve in C \
(RA ∪ RB ∪ SC) having neighbors a1

e,x in A \ SA and b1
e,y in B \ SB, and vertices

a2
e,x in A \ SA and b2

e,y in B \ SB, adjacent to f (x) and f (y), respectively (Fig. 1).

Here, we would like to construct a path between two vertices in SC. However,
we may not be able to choose proxies for these vertices in the same sets. Therefore,
we will choose proxies for x and y in the sets where they have many neighbors.
Our goal is to then construct paths from a1

e,x to a2
e,x and b1

e,y to b2
e,y, which would

complete a path from x to y.

Case 4. If f (x) ∈ (SA) and f (y) ∈ (SB), then we choose some vertex ve in C \
(RA ∪ RB ∪ SC) having neighbors a1

e,x in A \ SA and b1
e,y in B \ SB.

In this case, we simply wish to link a vertex in SA to a vertex in SB using a path
through the vertex ve.

Case 5. If f (x) ∈ (MB) and f (y) ∈ (SB) (f (x) ∈ (SA) and f (y) ∈ (MA), respec-
tively) then we choose some vertex ve in C \ (RA ∪ RB ∪ SC) having neighbors a1

e,x

in A \ SA and b1
e,y in B \ SB , and a vertex a2

e,x in A \ SA adjacent to f (x) (b2
e,y in

B \ SB adjacent to f (y)) (Fig. 2).

Here, we would like to link a vertex in SA or SB to a vertex in SC that is bad to
A or B, respectively. We must then choose a proxy for the vertex in SC in the other
set, and construct a path through the vertex ve.

As mentioned above, we have chosen the vertices ve in such a way to minimize the
number of times they are repeated. We will also choose the vertices a1

e,x, a
2
e,x, a

′, and
a′′ (resp. b1

e,y, b
2
e,x, b

′, and b′′) to be distinct, which is not difficult as n is sufficiently
large. It remains to show that we have no more than λ total repetitions, as desired.
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FIGURE 1. Case 3: Dashed lines indicate paths to build.

Lemma 2.7. In the procedure above, there are at most λ repetitions of the
vertices ve.

Proof. Let Q be the set of good vertices of C that are not in SC. We must show
that Q is large enough. Note that

|C| = |SC| + |Q| + |RA \ MA| + |RB \ MB|
= η(H) − λ + t.

By Lemma 2.5, we have that

|C \ (RA ∪ RB)| ≥ η(H) − λ

|J | + |Q| ≥ η(H) − λ,

which implies that |Q| ≥ η(H) − λ − |J |.
Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 2. Case 5: Dashed lines indicate paths to build.

In constructing this immersion of H, none of the good vertices in SC are ever
involved in paths containing a ve. Consequently, if we apply Lemma 2.6 to the
partition of H − f−1(SC) defined by f−1(SA) and f−1(SB), we can see that there
are only η − |J | vertices ve that must be chosen. Thus, the selection of the ve can
be carried out with at most λ repetitions. �

Let HA be a graph with vertex set V (HA) = ∪e∈H (a1
e,x ∪ a2

e,x ∪ a′
e ∪ a′′

e ) ∪ SA.
The edges of HA are determined as follows:

(1) If w, z ∈ HA ∩ SA, then wz ∈ E(HA) if and only if f−1(w)f−1(z) ∈ E(H).
(2) If w ∈ HA ∩ SA, and f−1(w) is an endvertex of an edge e = f−1(w)x ∈

E(H), then w is adjacent to a1
e,x in HA.

(3) The vertex a1
e,x is adjacent to a2

e,x.
(4) The vertex a′

e is adjacent to a′′
e .

Journal of Graph Theory DOI 10.1002/jgt



ON H-IMMERSIONS 253

Similarly, let HB be a graph with vertex set V (HB) = ∪e∈H (b1
e,y ∪ b2

e,y ∪ b′
e ∪

b′′
e ) ∪ SB. The edges of HB are determined as follows:

(1) If w, z ∈ HB ∩ SB, then wz ∈ E(HB) if and only if f−1(w)f−1(z) ∈ E(H).
(2) If w ∈ HB ∩ SB, and f−1(w) is an endvertex of an edge e = f−1(w)y ∈

E(H), then w is adjacent to b1
e,y in HB.

(3) The vertex b1
e,y is adjacent to b2

e,y.
(4) The vertex b′

e is adjacent to b′′
e .

Claim 2.8. If 〈A〉 is HA-linked and 〈B〉 is HB-linked, then f can be extended to
an immersion I with r(I) ≤ λ.

Proof. For every edge e = xy in H, we must show that there is a path from
f (x) to f (y), and that there are at most λ repetitions of internal vertices. Let FA be
a subdivision of HA in 〈A〉 and let FB be a subdivision of HB in 〈B〉. We consider
several cases.

Case 1. Suppose f (x), f (y) ∈ SA (SB, respectively). Then FA (FB) contains an
f (x) − f (y) path.

Case 2. Suppose f (x) ∈ SA, f1(y) ∈ SB. Then FA contains an f (x) − a1
e,x path,

FB contains an f (y) − b1
e,y path, and these paths are joined by the edges a1

e,xve and
veb

1
e,y.

Case 3. Suppose f (x) ∈ SC \ RA, f (y) ∈ SA (f (x) ∈ SB, f (y) ∈ SC \ RB, re-
spectively). Then FA (FB) contains an f (y) − a1

e,x path (a f (x) − b1
e,y path), which

combines with the edge a1
e,xf (x) (b1

e,yf (y)) to form the desired path.

Case 4. Suppose f (x) ∈ SA, f (y) ∈ MA (f (x) ∈ MB, f (y) ∈ SB, respectively).
Then FA (FB) contains an f (x) − a1

e,x path (b1
e,y − f (y) path ), FB (FA) contains a

b1
e,y − b2

e,y path (a a2
e,x − a1

e,x path), and these combine with the edges a1
e,xve, veb

1
e,y,

and b2
e,yf (y) (f (x)a2

e,x, a1
e,xve, and veb

1
e,y) to form the required path.

Case 5. Suppose f (x) ∈ MB, f (y) ∈ MA. Then FA contains an a2
e,x − a1

e,x path,
FB contains a b1

e,y − b2
e,y path, and these combine with the edges f (x)a2

e,x, a1
e,xve,

veb
1
e,y, and b2

e,yf (y) to form the required path.

Case 6. Supposef (x), f (y) ∈ SC \ RA (f (x), f (y) ∈ MA, respectively). ThenFA

(FB) contains an a′
e − a′′

e path (a b′
e − b′′

e path), which combines with the edges
f (x)a′

e and a′′
ef (y) (f (x)b′

e and b′′
ef (y)) to form the required path.

Note that these paths form an H-immersion on the required vertices in G. The
only vertices that are possibly repeated are the ve’s, but by Lemma 2.7, these vertices
could be chosen such that at most λ repetitions are used. �

To complete the proof, we must now show that 〈A〉 is HA-linked and 〈B〉 is HB-
linked. To do this, we wish to apply Theorem 2.3 and Lemma 2.2 to 〈A〉 and 〈B〉.
Journal of Graph Theory DOI 10.1002/jgt
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Note that a vertex in A can be adjacent to every vertex in C, so we want:

δ(〈A〉) − k ≥ |A|
3

+ 10|E(H)|.

But, since |C| ≤ 2|E(H)| + k, this implies that

n + η(H) + λ − 2

2
− (2|E(H)| + k) − k ≥ n

3

− n + η(H) + λ − 2

6
− 1

3
+ 10|E(H)|

and hence that

n ≥ 34|E(H)| + 4k + 5.

Note that a similar argument applies to 〈B〉. Thus, 〈A〉 is HA-linked and 〈B〉 is
HB-linked, which completes the proof. �
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