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Abstract

Let G be a 2-connected graph of order n satisfying α(G) = a ≤
κ(G), where α(G) and κ(G) are the independence number and the
connectivity of G, respectively, and let r(m, n) denote the Ramsey
number. The well-known Chvátal-Erdős Theorem states that G has a
hamiltonian cycle. In this paper, we extend this theorem, and prove
that G has a 2-factor with a specified number of components if n is
sufficiently large. More precisely, we prove that (1) if n ≥ k · r(a +
4, a + 1), then G has a 2-factor with k components, and (2) if n ≥
r(2a + 3, a + 1) + 3(k − 1), then G has a 2-factor with k components
such that all components but one have order three.

Keywords: Chvátal-Erdős condition, 2-factor, hamiltonian cycle, Ram-
sey number.
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1. Introduction

For a graph G, we denote by α(G) and κ(G) the independence number and
the connectivity of G, respectively. If the inequality α(G) ≤ κ(G) holds, we
say that G satisfies the Chvátal-Erdős condition, in view of the following
well-known theorem.

Theorem A (Chvátal-Erdős Theorem [4]). Every 2-connected graph G sat-

isfying α(G) ≤ κ(G) has a hamiltonian cycle.

If every pair of nonadjacent vertices x and y in a graph G of order n satisfy
degG x + degG y ≥ n, then we say that G satisfies Ore’s condition. It is also
well-known that every graph of order at least three satisfying Ore’s condition
has a hamiltonian cycle.

Theorem B (Ore’s Theorem [8]). Let G be a graph of order n ≥ 3. If

degG x + degG y ≥ n for every pair of nonadjacent vertices x and y of G,

then G has a hamiltonian cycle.

Though the Chvátal-Erdős condition and Ore’s condition look quite differ-
ent, Bondy [1] proved that they are not independent.

Theorem C (Bondy [1]). Every graph of order at least three satisfying

Ore’s condition satisfies the Chvátal-Erdős condition.
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A hamiltonian cycle is a 2-factor with exactly one component. From this
point of view, since the Chvátal-Erdős condition and Ore’s condition guar-
antee the existence of a 2-factor with one component, we may suspect that
both conditions guarantee the existence of a 2-factor with a specified num-
ber of components. Here we remark that we have to take the order of a
graph into account. For example, a balanced complete bipartite graph of
order at least four satisfies both the Chvátal-Erdős condition and Ore’s con-
dition while it has a 2-factor with k components only if its order is at least
4k. Therefore, when we consider this kind of problem, we always have to
consider a graph of a sufficiently large order.

For Ore’s condition, Brandt et al. [2] proved the following extension of
Theorem B.

Theorem D (Brandt et al. [2]). Let k be a positive integer. Then every

graph of order at least 4k satisfying Ore’s condition has a 2-factor with k

components.

Since the balanced complete bipartite graph of order 4k− 2 does not have a
2-factor with k components, the bound 4k of the order in the above theorem
is almost best-possible. Later, Enomoto [6] improved the bound to 4k − 1,
which is best-possible.

While the extension of Ore’s Theorem to a 2-factor with a specified
number of components has been studied in detail, little is known about the
extension of the Chvátal-Erdős Theorem in the same direction. Thus, we
present the following conjecture.

Conjecture 1. For each positive integer k, there exists a positive integer
f(k) such that every 2-connected graph G of order at least f(k) satisfying
α(G) ≤ κ(G) has a 2-factor with exactly k components.

Actually, Kaneko and Yoshimoto [7] tackled this conjecture for k = 2, and
almost solved it.

Theorem E (Kaneko and Yoshimoto [7]). Every 4-connected graph of or-

der at least six satisfying α(G) ≤ κ(G) has a 2-factor with two components.

Recently, Egawa [5] has pointed out that the proof of Theorem E in [7]
misses one case to be considered. But even if this possible flaw is fixed,
their proof technique does not work for graphs of connectivity two or three.
Therefore, they posed the following conjecture.



404 G. Chen, R.J. Gould, K. Kawarabayashi, K. Ota, ...

Conjecture F. Every 2-connected graph G of sufficiently large order satis-
fying α(G) ≤ κ(G) has a 2-factor with two components.

The purpose of this paper is to give a partial solution to Conjecture 1. Let
r(m,n) denote the Ramsey number.

Theorem 2. Let k be a positive integer and let G be a 2-connected graph

with α(G) = a ≤ κ(G).

(1) If |G| ≥ k · r(a + 4, a + 1), then G has a 2-factor with k components.

(2) If |G| ≥ r(2a + 3, a + 1) + 3(k − 1), then G has a 2-factor with k

components such that k − 1 components have order exactly three.

We remark that the above theorem is not a complete solution of Conjecture
1 since in the conjecture the lower bound of the order in the assumption
only depends on k, while in both (1) and (2) of Theorem 2 the lower bound
depends not only on k but also on the independence number.

In this paper, we actually prove the following theorem.

Theorem 3. Let G be a graph of independence number a, and let C be a

cycle in G.

(1) If |C| ≥ k · r(a + 4, a + 1), then there exist k disjoint cycles C1, . . . , Ck

with V (C) =
⋃k

i=1
V (Ci).

(2) If |C| ≥ r(2a + 3, a + 1) + 3(k − 1), then there exist k disjoint cycles

C1, . . . , Ck such that V (C) =
⋃k

i=1
V (Ci) and |Ci| = 3 for 1 ≤ i ≤ k−1.

We obtain Theorem 2 by applying Theorem 3 to a hamiltonian cycle, whose
existence is guaranteed by the Chvátal-Erdős Theorem.

In the next section, we give notation and several definitions which we
use in the proofs. In Section 3, we prove Theorem 3.

2. Terminology and Definitions

For graph-theoretic terminology not explained in this paper, we refer the
reader to [3]. We define a walk to be a sequence of vertices for which
consecutive vertices are adjacent. We express a walk as a sequence of ver-
tices. Let C = x0x1 . . . xl−1x0 be a cycle with an implied orientation. We
define x+

i = xi+1, x−
i = xi−1 and x+n

i = xi+n (subscripts counted modulo l).
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The subpath xixi+1 . . . xj−1xj in C is denoted by xi

−→
C xj. The same path

traversed in the reverse order is denoted by xj

←−
C xi. We also adopt the same

notation for a path.
When there is no possibility of confusion, we sometimes consider a path

and a cycle as graphs. Thus, for example, if x is a vertex in a path P , we
write x ∈ V (P ).

Let H be a subgraph of a graph G, and let T be a cycle or a path in

G. Then for u, v ∈ V (T ), a subpath u
−→
T v is said to be an H-cluster of T

if V (u
−→
T v) ⊂ V (H) and the vertices v− and v+, if they exist, are not in H.

In other words, an H-cluster is a maximal subpath of T contained in H.

3. Proof

In this section, we prove Theorem 3.

Proof of Theorem 3. For (1), we proceed by induction on k. If k = 1,
the conclusion is trivial. Suppose k ≥ 2. Let D be a cycle in G with
V (D) = V (C), and let P be a subpath of D of order r(a + 4, a + 1).

Let u and v be the first and the last vertices of P , respectively. Also, let
H be the subgraph of G induced by V (P ). Then either there exists a clique
of order a + 4 in H, or there exists an independent set of order a + 1 in H.
However, since α(H) ≤ α(G) = a < a + 1, the latter case does not occur,
and hence there exists a clique K of order a + 4 in H. Let I = {I1, . . . , Il}
be the set of K-clusters of P , and let xi and yi be the first and the last
vertices of Ii, respectively (1 ≤ i ≤ l). Now we choose (D,P,K) so that l,
the number of K-clusters, is as small as possible.

Suppose I has two K-clusters of order at least two. We may assume

|I1| ≥ 2 and |I2| ≥ 2, and I1 precedes I2 along P . Let C1 = y1

−→
P x2y1

and C ′ = x+

2

−→
Dy−

1
x+

2
. Then |C1| ≤ |P | = r(a + 4, a + 1) and |C ′| ≥ (k −

1) · r(a + 4, a + 1). By the induction hypothesis, C ′ can be decomposed
into k − 1 disjoint cycles C2, . . . , Ck. Then C1, C2, . . . , Ck give a required
decomposition. Therefore, we may assume that P has at most one K-cluster
of order two or more. We may assume that I1 is a largest K-cluster. Then
I2, . . . , Il all consist of single vertices.

Suppose |I1| ≥ 5. Let C1 = x+

1
x++

1
x+3

1
x+

1
and C ′ = x1x

+4

1

−→
Dx1. Then

|C1| = 3 and |C ′| ≥ k · r(a + 4, a + 1) − 3 ≥ (k − 1) · r(a + 4, a + 1).
By the induction hypothesis, C ′ can be decomposed into k − 1 disjoint
cycles C2, . . . , Ck. Then C1, C2, . . . , Ck give a required decomposition of C.



406 G. Chen, R.J. Gould, K. Kawarabayashi, K. Ota, ...

Therefore, we may assume |I1| ≤ 4. It follows that |K| =
∑k

i=1
|Ii| ≤

l + 3. Since |K| = a + 4, we have l ≥ a + 1. Let A = {y+
1

, . . . , y+

l }.
Then |A| ≥ a + 1 > α(G) and hence A is not an independent set. Let
y+

i y+

j ∈ E(G), 1 ≤ i < j ≤ l. We may assume that Ii precedes Ij along

P . Let C ′ = y+

j

−→
Dyiyj

←−
Dy+

i y+

j and P ′ = u
−→
P yiyj

←−
P y+

i y+

j

−→
P v. Then V (C ′) =

V (D) = V (C), P ′ is a subpath of C ′ of order r(a + 4, a + 1) and the set

of K-clusters of P ′ is I − {Ii, Ij} ∪ {xi

−→
P yiyj

←−
P xi}. This contradicts the

minimality of the number of K-clusters, and the conclusion for (1) follows.
For (2), we also proceed by induction on k. The conclusion trivially

holds if k = 1. Suppose k ≥ 2. Let H be the subgraph induced by V (C).
Since |H| = |C| ≥ r(2a + 3, a + 1) + 3(k− 1) > r(2a + 3, a + 1), either there
exists a clique of order 2a + 3 in H, or there exists an independent set of
order a+ 1 in H. However, since α(H) ≤ α(G) < a + 1, the latter case does
not occur. Therefore, H has a clique K of order 2a + 3. Note that H has a
hamiltonian cycle C.

Take a hamiltonian cycle D of H so that

(a) the number of K-clusters of D is as small as possible, and

(b) the order of a largest K-cluster of D is as large as possible, subject
to (a).

Let I = {I1, I2, . . . , Il} be the set of K-clusters of D, and let xi and yi be
the first and the last vertices of Ii, respectively (1 ≤ i ≤ l).

Suppose some K-cluster Ii has five or more vertices. Let C1 =

x+

i x++

i x+3

i x+

i and C ′ = xix
+4

i

−→
Dxi. Then |C1| = 3 and |C ′| ≥ r(2a + 3,

a + 1) + 3(k − 2). By the induction hypothesis, C ′ can be decomposed into
k − 1 cycles C2, . . . , Ck such that |C2| = |C3| = · · · = |Ck−1| = 3. Then
C1, C2, . . . , Ck form a required cycle decomposition. Therefore, we may as-
sume that |Ii| ≤ 4 for each i, 1 ≤ i ≤ k. We may assume that I1 is a largest
K-cluster.

Assume |Ii|≥ 3 for some i, 2 ≤ i ≤ l. Let D′= y1

−→
Dxix

++

i

−→
Dx1x

+

i x+

1

−→
Dy1.

Then D′ is a hamiltonian cycle of H. Furthermore, D′ has the same number

of K-clusters as D and x1x
+

i x+
1

−→
Dy1 is a K-cluster, which is larger than I1.

This contradicts the choice (b) of D. Therefore, |Ii| ≤ 2 for each i, 2 ≤ i ≤ l.
It follows that 2a + 3 = |K| =

∑l
i=1
|Ii| ≤ 2l + 2, which implies l ≥ a + 1.

Then by the same argument as in the last part of the proof of (1), we have a
hamiltonian cycle C ′ of H such that the number of K-clusters of C ′ is l− 1.
This contradicts the choice (a) of D. Therefore, the conclusion follows.
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