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Abstract. In this paper we consider the question of determining the maximum
number of edges in a hamiltonian graph of order n that contains no 2-factor
with more than one cycle, that is, 2-factor hamiltonian graphs. We obtain
exact results for both bipartite graphs, and general graphs, and construct
extremal graphs in each case.
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1. Introduction

In this paper, we determine the maximum number of edges in a hamiltonian graph
of order n containing no 2-factor with more than one component. The question
of the structure of hamiltonian graphs with no 2-factors with more than one com-
ponent has been receiving attention lately, for example see [2], [3], [4] and [5].

A hamiltonian cycle is interpreted as a 2-factor with one component. In [4],
the question of the minimum degree in a hamiltonian graph sufficient to ensure
the existence of a 2-factor with two cycles is considered. A 4-regular hamiltonian
graph with no other 2-factor with less than n/5 cycles is shown. However, the
exact minimum degree condition remains an open question. Hendry [6] provided
sharp results for the maximum number of edges in a graph with a unique 2-factor.

We say a graph is 2-factor isomorphic if it contains a 2-factor X, but contains
no 2-factor that is not isomorphic to X. If X is a hamiltonian cycle, then of course,
there are no 2-factors with more than one cycle. In this instance we will refer to
such graphs as 2-factor hamiltonian graphs.

The following is a special case of a result in [1].

Theorem 1.1. If G is a hamiltonian graph with δ(G) ≥ 8, then G is not 2-factor
hamiltonian.
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While in [3] the following was shown.

Theorem 1.2. Let G be a 2-factor hamiltonian k-regular graph. Then k ≤ 3.

We consider the nonregular case for 2-factor hamiltonian graphs and deter-
mine the maximum number of edges in such graphs. In addition, we present
examples of the extremal graphs and show that when n ≡ 2 mod 4 and bipartite,
the extremal graph is unique. The extremal graphs are shown not to be unique in
all other cases studied here.

Let G be a graph. We denote the minimum degree of G by δ(G). For a vertex
x of G, we denote by N(x) and deg x the neighborhood of x and the degree of x

in G, respectively. Given a vertex x on a cycle C with an orientation,
−→
C , then the

successor of x on C will be denoted by x+ and the predecessor by x−.

For convenience we establish the following notation. Let C be a cycle with
a given orientation and v ∈ V (C). A t-chord associated with v will be an edge
e = v+(t−1)/2v−(t−1)/2 such that e forms a t-cycle containing v and the cycle
uses only the edge e and edges of the cycle C. Note, this is only defined for
odd t. Similarly, a t-chord associated with an edge f = xy ∈ E(C) is an edge
e = x−(t−2)/2y+(t−2)/2 such that e forms a t-cycle containing f and the cycle uses
only the edge e and edges of the cycle C.

2. Extremal Graph Constructions

In this section we present several different constructions of graphs which will be
shown to be 2-factor hamiltonian and attain the maximum size in Sections 3 (the
bipartite case) and 4 (the nonbipartite case).

Let Bn be bipartite of even order n with partite sets {u1, u2, . . . , u2m} and
{v1, v2, . . . , v2m } if n ≡ 0 mod 4 and {u1, u2, . . . , u2m+1} and {v1, v2, . . . , v2m+1

} if n ≡ 2 mod 4. Define the adjacencies in Bn as follows:

N(u1) = {v1, v2},
N(u2) = {v1, v2, v3}, N(u3) = {v1, v2, v4},
N(u4) = {v1, v2, v3, v4, v5}, N(u5) = {v1, v2, v3, v4, v6} , ...
N(u2j) = {v1, v2, . . . , v2j , v2j+1}, N(u2j+1) = {v1, v2, . . . , v2j , v2j+2}, ... ,
N(u2m−2) = {v1, v2, . . . , v2m−2, v2m−1}, N(u2m−1) = {v1, v2, . . . , v2m−2, v2m}
and
N(u2m) = {v1, v2, . . . , v2m} (if n ≡ 0 mod 4)
while
N(u2m) = N(u2m+1) = {v1, v2, . . . , v2m+1} (if n ≡ 2 mod 4).

Extremal graphs for the nonbipartite case when n ≡ 0 mod 4 can be obtained
by inserting all possible edges into either one of the partite sets of a copy of Bn of
the appropriate order. We designate these two graphs as Sn,u (Sn,v) when the set
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{u1, . . . , u2m} ({v1, . . . , v2m}) is complete. When n ≡ 2 mod 4 the graphs Sn,u

and Sn,v are isomorphic.
Next we consider the case for odd n. When n ≡ 1 mod 4 we form the

graph On as follows: take a copy of Sn−1,v along with a new vertex x and we join
x to each vertex of the complete set {v1, . . . , v2m} and we join x to u2m. When
n ≡ 3 mod 4 we form On by taking a copy of Sn−1,v along with a new vertex x
where x is joined to each of v1, . . . , v2m and u2m+1.

3. Bipartite 2-Factor Hamiltonian Graphs

We now turn to the question of establishing the upper bounds on the size of a
bipartite 2-factor hamiltonian graph.

Theorem 3.1. If G is a bipartite 2-factor hamiltonian graph of order n ≡ 0 mod 4,
then

|E(G)| ≤ n2/8 + n/2

and the bound is sharp.

Proof. Assume G is a bipartite 2-factor hamiltonian graph of order n = 2k (we use
a more general condition to establish a setting useful in the subsequent theorem
as well) with partite sets {u1, u2, . . . , uk} and {v1, v2, . . . , vk}. Let C∗ : v1, uk,
v2, uk−1, . . . , vk, u1, v1 be a hamiltonian cycle in G.

Define parallel classes of pairs of vertices as follows:

P1 = {u1v1, u2v2, . . . , ukvk}

and let Pi be the parallel class containing the pair u1vi, obtained from the rotation
of P1. Note that every edge of the complete graph on these vertices is in exactly
one parallel class.

As G is 2-factor hamiltonian, it follows that at most ⌈ (n/2−2)
2 + 2⌉ = ⌈n

4 + 1⌉
of the pairs in any parallel class can then be edges of G, for otherwise a 2-factor
with two cycles formed using consecutive parallel edges would clearly result. It
now follows that |E(G)| ≤ (n/4 + 1)n/2 = n2/8 + n/2, when n ≡ 0 mod 4.

To see that this is optimal consider Bn, n ≡ 0 mod 4, as defined in the pre-
vious section. The cycle C : u1, v2, u3, v4, . . . , u2m−1, v2m, u2m, v2m−1, u2m−2, . . . ,
v3, u2, v1, u1 shows that this graph is hamiltonian. To see that there is no noniso-
morphic 2-factor observe that the edges u1v1 and u1v2 must be in any 2-factor. If
the edges u2v3 and u3v4 are not in the 2-factor, then one of u2 or u3, say u2, would
be adjacent to v1 and v2 in the 2-factor. However, this would imply that u3 would
have degree one in the remaining graph and a 2-factor could not be formed. Now a
similar argument applies to u4 and u5 forcing the edges u4v5 and u5v6 to be used.
Subsequently, u2tv2t+1 and u2t+1v2t+2 would also be used. Therefore, any 2-factor
must contain the path v2m−1, u2m−2, v2m−3, . . . , u2, v1, u1, v2, u3, . . . , v2m. Hence,
it follows that the only possible 2-factor is a hamiltonian cycle. Furthermore, this
graph has n2/8 + n/2 edges, demonstrating the extremal number. �
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Theorem 3.2. If G is a bipartite 2-factor hamiltonian graph of order n ≡ 2 mod 4,
then

|E(G)| ≤ n2/8 + n/2 + 1/2.

Further, the graph Bn is the unique extremal graph in this case.

Proof. Consider Bn, n ≡ 2 mod 4, as defined in the previous section. The cycle
C∗ : u1, v2, u3, v4, . . . , u2m−1, v2m, u2m+1, v2m+1, u2m, v2m−1, u2m−2, . . . , v3, u2,
v1, u1 shows that this graph is hamiltonian.

To see that there is no nonisomorphic 2-factor, observe that the edges u1v1

and u1v2 must be in any 2-factor. If the edges u2v3 and u3v4 are not in the 2-
factor, then one of u2 or u3, say u2, would be adjacent to v1 and v2 in the 2-factor.
However, this would imply that u3 would have degree one in the remaining graph
and a 2-factor could not be formed. Now a similar argument applies to u4 and u5

forcing the edges u4v5 and u5v6 to be used. Subsequently, u2tv2t+1 and u2t+1v2t+2

would also be used. Therefore, any 2-factor must contain the path

u2m, v2m−1, u2m−2, v2m−3, . . . , u2, v1, u1, v2, u3, . . . , v2m.

Hence, it follows that the only possible 2-factor is a hamiltonian cycle. Further-
more, this graph has n2/8 + n/2 + 1/2 edges, demonstrating the extremal number
of edges is at least this number.

Now let G be a bipartite 2-factor hamiltonian graph of order n = 4m + 2
containing the extremal number of edges. Let C be a hamiltonian cycle in G with
the given ordering v1, uk, v2, . . . , vk, u1, v1, and note, to avoid a 2-factor with two
cycles, each parallel class as defined in the previous theorem admits at most m+2
edges into the graph G.

For each edge e of the hamiltonian cycle, let Fe be the family of edges of
the parallel class containing e which are included in the graph G. In this case,
we call the edge e strong if |Fe| = m + 2, and weak otherwise. When e is weak,
|Fe| ≤ m + 1. Also note that when e is strong, Fe contains the 4-chord associated
with e and alternate edges of the parallel class must also be in Fe, in particular,
the 8-chord associated with e must also be in Fe. Observe that if e′ is the antipodal
edge of e on C, e is strong if and only if e′ is strong. Note by the edge count, at
least 2m + 2 of the edges must be strong.

There cannot be three consecutive strong edges or a 2-factor with two cycles
results (see Figure 1).

If consecutive edges e1 and e2 are strong, then the families

Fe3
, Fe5

, Fe7
, . . . , Fe2m+1

, Fe2m+4
, Fe2m+6

, . . . , Fe4m+2

cannot contain the associated 4-chords. See Figure 2 for the e5 and e7 cases. All
other cases work similarly, using one chord from the strong parallel class of e1, one
chord from the strong parallel class of e2 and the 4-chord in question from e2j+1

for an appropriate j, to produce a 2-factor with two cycles. Thus, each of these
edges must be weak. This implies there are at most 2m + 2 strong edges but as
we discussed above, we can conclude that there are precisely 2m + 2 strong edges.
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Figure 1. For n ≥ 10, 3 consecutive strong edges produce a contradiction.

Each of the families associated with the remaining weak edges must have precisely
m + 1 edges and no 4-chords. Thus, G has size at most n2/8 + n/4 + 1/2.

The extremal case arises when strong and weak edges alternate, with the
exception of two consecutive strong edges (and their corresponding two consecutive
strong antipodal edges). Furthermore, the weak classes are completely determined
as alternating edges in the family. Thus, this graph is unique and hence must be
isomorphic to Bn. �

See Figure 3 for the n = 14 case. This figure shows the graph for this case,
displays a hamiltonian cycle C, as well as the strong and weak edges. Consequently,
the graph of Figure 3 and that displayed in Figure ?? restricted to the case when
n = 14, are seen to be isomorphic.

We conclude this section with a summary of the results.

Theorem 3.3. If G is a bipartite 2-factor hamiltonian graph of order n, then

|E(G)| ≤

{

n2/8 + n/2 if n ≡ 0 mod 4,
n2/8 + n/2 + 1/2 if n ≡ 2 mod 4,

and the bounds are sharp in each case.

4. The General Case

We now consider the question of establishing the upper bound on the size of a
2-factor hamiltonian graph of order n.

Theorem 4.1. If G is a 2-factor hamiltonian graph of order n, then

|E(G)| ≤ ⌈n2/4 + n/4⌉

and the bound is sharp for all n ≥ 6.
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Figure 2. A 4-chord in Fe5
and Fe7

cases.

Proof. First suppose that n is even. Let V (G) = {v1, v2, . . . , vn} and let C :
v1, v2, . . . , vn, v1 be a hamiltonian cycle in G. We next partition V (G) into two
sets, V1 = {2, 4, . . . , n − 2, n} and V2 = {1, 3, 5, . . . , n − 1}.

Besides the parallel classes for edges as in the bipartite case, we now must
also consider parallel classes of edges within the sets V1 and V2. That is, parallel
classes defined relative to a vertex rather than an edge.

Hence, we recognize two types of parallel classes. Define the classes relative
to edges of C (hence relative to the bipartite structure of V1 and V2) just as we
did in the bipartite case. From Theorem 3.3 we have a bound on the maximum
number of these edges that may be included in G.

Next, define the classes relative to a vertex of C as: Pn = {(1, n − 1), (2, n −
2), (3, n− 3), . . .} and let Pi be obtained by a translation of Pn to contain the pair
(i − 1, i + 1). These edges partition the edges whose ends both are within the set
V1 or both within the set V2. Let Qi be the edges in G that are in Pi. Note that
in this case a parallel class Qi has at most ⌊n/4⌋ edges.
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Figure 3. The graph when n = 14.

First suppose that n ≡ 2 mod 4. Now the bipartite parallel classes may
contribute a total of at most n2/8 + n/2 + 1/2 edges. The n/2 distinct classes Qi

may contribute at most (n − 2)/4 edges each. Hence, we may have at most:

|E(G)| ≤ n2/8 + n/2 + 1/2 + ((n − 2)/4)(n/2) (4.1)

= n2/8 + n/2 + 1/2 + n2/8 − n/4 (4.2)

= n2/4 + n/4 + 1/2. (4.3)

Note that the split graphs Sn (and similarly On) are 2-factor hamiltonian
because the corresponding Bn are 2-factor hamiltonian. Since the split graph Sn,
n ≡ 2 mod 4 achieves this size, this bound is sharp.

If n = 4m, then the n/2 classes Qi cannot all contain n/4 edges, as a 2-factor
with two cycles is then easily produced. We say a parallel class Qi is full (F) if
it contains m edges. Clearly, in this case, Qi cannot contain more than m edges,
for otherwise a 2-factor with two cycles results. Note that if Qi is full, then the
antipodal class Qi+n/2 is also full. A class Qi is called near-full (N) if it contains
exactly m − 1 edges and is called partially full (P) if it contains at most m − 2
edges. Observe that for any i, families Qi, Qi+1 and Qi+2 cannot all be full (see
Figure 4). In fact, if Qi+1 is full, then we know that at least one of Qi and Qi+2

must not contain the associated 3-chord.
Suppose we have two consecutive full classes, without loss of generality say

Qn and Q1. Now consider the class Q2. Since Q2 does not contain the 3-chord
associated with vertex 2, we know Q2 is not full. We now show that Q2 is a
partially full class. Assume to the contrary that it contains more than m−2 edges.
By the remarks above, Qn/2+2 cannot contain its associated 3-chord. Hence,
for Q2 to be near-full, it must contain precisely the 5, 9, 13, . . .-chords associated
with vertex 2. Thus, we see that C1 : 1, 2, 3, , n − 3, n − 2, 4, n, n − 1, 1 and C2 :
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Figure 4. Three consecutive full families

5, 6, 7, n−7, n−6, 10, 11, n−11, n−10, . . . , n/2−2, n/2−1, n−(n/2−1), n−(n/2−
2), n/2, n−(n/2−4), n−(n/2−3), n/2−3, n/2−4, . . . , n−8, n−9, 9, 8, n−4, n−5, 5
forms a 2-factor with two cycles, a contradiction. (see Figure 5 for the n = 24 case.)
Hence, Q2 must be a partially full class.

n−2

n−1

ff
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Q
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Figure 5. Q2 cannot be near full.

Therefore, the vertices can be partitioned into intervals around C containing
one, two or three consecutive vertices of C into patterns of the form FN, FFP, P
or N. Each of the intervals must average m − 1/2 edges in order to achieve the
size of Sn.
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Thus, we see that the edge average for each of these patterns is: m− 2/3 for
FFP , m − 1/2 for FN, m − 1 for N, and finally at most m − 2 for P.

Hence, the upper bound on the size can only be obtained by having the
pattern FN repeated around the cycle. Thus, we must have n/4 full classes and
n/4 near-full classes with (n/4 − 1) edges each, implying

|E(G)| ≤ n2/8 + n/2 + (n/4)(n/4) + (n/4)(n/4 − 1) (4.4)

= n2/8 + n/2 + n2/16 + n2/16 − n/4 (4.5)

= n2/4 + n/4. (4.6)

Again the split graph on n = 4m vertices with the bipartite structure from
the previous section achieves this bound.

Now suppose that n ≡ 3 mod 4. Let C be a hamiltonian cycle. In this case
the parallel classes defined relative to a vertex may contain at most (n+1)/4 edges.
Since there are n such classes, we see that |E(G)| ≤ n(n + 1)/4 = n2/4 + n/4 as
desired. The graph On shows that the bound is sharp in this case.

Finally, suppose that n ≡ 1 mod 4, say n = 4m + 1. First, we call a
vertex strong provided its parallel class contains exactly (n + 3)/4 edges. It is
weak otherwise. Note that this includes the antipodal edge on C.

As before, there cannot be three consecutive strong vertices, or a 2-factor with
two cycles is immediate. Next we show that there are at most 2m + 1 = (n + 1)/2
strong vertices. Otherwise, if there were more than (n + 1)/2 strong vertices, then
either there are three consecutive strong vertices, or there are at least two places
around the cycle where there are two consecutive strong vertices. Therefore, there
exists a strong vertex, separated from two consecutive strong vertices by an even
number of vertices. For convenience let the two consecutive vertices be labeled vn

and v1 and suppose there is another strong at vertex v2t. Observe that the chord
c = v2t+(n−3)/2v2t−(n−3)/2 is an edge of G since v2t is strong. Note that there is a
chord c1 from the parallel class of vertex v1 between the vertices v(n−5)/2−2t+1 and
v2t+(n+5)/2. Further, there is a chord c2 from the parallel class of vn between the
vertices v2t+(n−1)/2 and v(n−5)/2−2t+2. We now form a 2-factor with two cycles as
follows. For one cycle we take the chord c1 and the path on the hamiltonian cycle
between the ends of c1 and containing v1. The second cycle is formed by taking
the chord c2, following the hamiltonian cycle back to v2t+(n+3)/2, then taking the
chord c, and now following the hamiltonian cycle back to v(n−5)/2−2t+2.

Therefore, if there are two consecutive vertices, say vn and v1, then by our
previous observation, vertices v2, v4, . . . , vn−1 must all be weak. Hence, there can
be at most (n + 1)/2 strong vertices. (If there are not two consecutive strong
vertices, then we can have at most (n − 1)/2 strong vertices.) Consequently,

|E(G) ≤ (
n + 1

2
)(

n + 3

4
) + (

n − 1

2
)(

n − 1

4
).

Hence, |E(G)| ≤ ⌈n2/4 + n/4⌉ as desired. The graph On for this case shows that
this bound is sharp. �



10 Birkhäuser, Birkhäuser and Birkhäuser

5. Remarks

We conclude with a few remarks. First, it is clear from our proofs that any
hamiltonian graph with more than the extremal number of edges, must contain a
2-factor with exactly two cycles.

Further, note that Bn for n ≡ 2 mod 4 was the only unique extremal graph.
This is easily seen since in all other cases there were parallel classes which allowed
some flexibility in exactly where the edges were placed. This flexibility allows the
existence of nonisomorphic extremal graphs in these cases. For example, in the
graph B4m, the edge u2m−2v2m−2 can be removed and then the edge u2m−1v2m−1

can be inserted, forming B′. The graph B′ can be further altered by removing
u2m−4v2m−4 and inserting u2m−3v2m−3. Each of these graphs can easily be seen
to be 2-factor hamiltonian. Further, we can continue this edge exchange process
until the edge u2v2 is removed and u3v3 inserted. At this point a graph isomorphic
to B4m has been constructed, with the role of the partite sets interchanged.

Finally, consider Sn. Here we note that the edge vn/2−1vn/2 can be removed
and the edge un/2−1un/2 can be inserted. These two graphs are clearly nonisomor-
phic and it is again easy to see the new graph is 2-factor hamiltonian.
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