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Abstract. Let H be a multigraph and G a graph containing a subgraph isomorphic to a sub-
division of H , with S ⊂ V (G) (the ground set) the image of V (H) under the isomorphism.
We consider connectivity and minimum degree or degree sum conditions sufficient to imply
there is a spanning subgraph of G isomorphic to a subdivision of H on the same ground set
S. These results generalize a number of theorems in the literature.

1. Introduction

Many results deal with finding connectivity and/or degree conditions which imply
the existence of certain types of spanning subgraphs of a given graph. Exactly how
large the connectivity and degree conditions must be to ensure that these subgraphs
span, depends on the structure of the subgraphs. Here, we prove a theorem which
generalizes many of these results.

We first note that this result can be viewed as showing the existence of a spanning
subdivision of a given multigraph H . We exhibit connectivity, minimum degree and
minimum degree sum conditions for G based upon the structure of H . We use these
conditions to show that if there is a subdivision of H in G then there is a spanning
subdivision of H in G.

For terms not defined here see [3]. Unless otherwise specified, in this paper,
G = (V , E) will denote a simple loopless graph with |G| = |V (G)| = n. A path
between x and y will be called an [x, y]-path. If x = y then P is said to be a cycle.
When a path P is not a cycle we will say that P is a proper path. Note that the word
“path” is used here in a more general sense than the usual since we include cycles in
it’s definition. For any given u, v ∈ V (P ), [u, v]P (respectively (u, v)P ) will denote
the subpath of P including (respectively, not including) the end-vertices u and v.
Let

σ2(G) = min{d(x) + d(y) : xy /∈ E(G)}.

If λ is a graph parameter, we say that a number m is the λ-threshold of a property
P if any graph satisfying λ ≥ m has property P and m is the smallest such num-
ber. Many results determine the δ- or σ2-threshold of a given property. For example,
Dirac’s [5] famous Theorem states that the δ-threshold for Hamiltonicity is n

2 and Ore
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[15] showed that the σ2-threshold for Hamiltonicity is n. Though σ2(G) ≥ 2δ(G),
it is not always true that the σ2-threshold of a property is exactly twice the
δ-threshold of this property (this is, for example, the case with the property of
being k-ordered (see [10])). For the class of properties we will be dealing with here,
the δ-threshold will be shown to be half of the σ2-threshold, hence our result for the
σ2-threshold will imply the corresponding result for the δ-threshold.

In order to illustrate our approach, consider the following:

Theorem 1 [16]. If n ≥ 3 and σ2(G) ≥ n + 1 then for any distinct vertices u and v of
G, there is a spanning [u,v] − path in G.

Justesen [13] proved that if σ2(G) ≥ 4k then there exists k vertex disjoint cycles in
G. Using this, Brandt et al. [2] generalized Ore’s Theorem on Hamiltonicity, show-
ing that the condition σ2(G) ≥ n implies, for every k (1 ≤ k ≤ n

4 ), the existence of k

vertex disjoint cycles whose union spans G.

Theorem 2 [2]. If n ≥ 4k, σ2(G) ≥ n and F is a collection of k disjoint cycles of
maximal order, then F spans G.

As one sees, often the proofs of these type of path or cycle results may be divided
in two phases. In the first, one proves that the given conditions are sufficient to imply
the existence of a particular subgraph. Second, one shows that the conditions are
sufficient to imply that this subgraph may be chosen to be spanning. In [11] we
generalize the existence phase. It is the extension phase that we wish to generalize
here.

2. H-Extendibility: A Unification of Many Results

Throughout this paper, let H be a multigraph, possibly with loops. We say that
e ∈ E(H) is a proper edge if it is not a loop. We denote by dH (w), the degree of w

in H , the number of proper edges plus two times the number of loops incident with
the vertex w.

Let e = uv be a proper edge of H , and w be a vertex not in V (H). We say that w

is insertible in uv if the edge e can be replaced by the path uwv. If we have completed
the process we say w has been inserted in H . A multigraph H ′ is called a subdivision
of H if one can obtain H ′ from H by recursively inserting vertices.

Let L(G) denote the set of paths in G. To an H -subdivision S in G we will
associate a pair of mappings fS : V (H) → V (G) and gS : E(H) → L(G) such
that:

(i) fS is injective;
(ii) for every edge xy ∈ E(H), gS(xy) is an [fS(x),fS(y)]-path in G and distinct

edges of E(H) map to internally disjoint paths in G.
Let V (H) = {w1, . . . , wh} and S = fS(V (H)) = (

fS(w1), . . . , fS(wh)
)
. The

fS(wi) are called the ground vertices of S and the paths of gS(E(H)) are called
branches of the subdivision. We say that S is an H -subdivision on S.
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Definition 1. Given a multigraph H and a graph G, we will say that G is H -extendible
if when there exists an H -subdivision on a |H |-tuple S of distinct vertices of G, then
there exists a spanning H -subdivision on S.

By an independent vertex set we mean a set I ⊆ V (H) such that the subgraph
induced by I has no edges. Note, this means any vertex with a loop will be excluded
from an independent set. By an independent edge set we mean a set E ⊆ E(H) such
that the end-vertices of each edge have degree one in the graph induced by E. Note,
since we consider a loop as adding two to the degree of a vertex, this definition
excludes all loops from independent edge sets.

Let F be a subgraph of G. Let I(F ) represent the family of all independent
vertex sets of F . Let α(F ) be the maximum order of an independent set of F , called
the independence number of F . Let Imax(F ) = {I ∈ I(F ) : |I | = α(F )} be the
family of all independent vertex sets of maximum order. The edge-independence
number β(G) of G is the maximum order of an independent edge set.

We will prove the following Theorem in section 4, which gives a lower bound
on σ2(G) sufficient to imply that a given H -subdivision on S can be extended to
an H -subdivision on S spanning the vertices of G. We let h0(H) be the number of
vertices of degree zero and h1(H) the number of vertices of degree one in H .

Theorem 3. Let H be a multigraph with at least two edges, G a simple (max{α(H),

β(H)} + 1)-connected graph and S an H -subdivision on S. Suppose that |S| ≥
6|E(H)| + 3(|H | − h1(H)), |S| is maximal, and

σ2(G) ≥ 2α(S) + |G − S|

then |S| = |G|.

We wish to have a lower bound on σ2(G) expressed only in terms of parameters
of H . To do so, we will need to relate α(S) to characteristics of H and S. If e ∈ E(H),
a branch B = gS(e) of S is called a loop branch, a leaf branch or an independent
branch if e is respectively a loop, an edge having exactly one vertex of degree one
or an independent edge. We say B is a normal branch otherwise. A branch is said
to be even (respectively odd) if it has an even (respectively odd) number of vertices.
Let ξ(S) denote the sum of the number of even loop branches, even leaf branches,
odd independent branches, and odd normal branches of S.

We prove the following Lemma in section 3:

Lemma 1. Let H be a multigraph, G be a simple graph, and S be an H -subdivision on
S. Then

α(S) ≥ |S| + ξ(S) − |H | + h1(H)

2
+ h0(H) (1)

α(S) ≤ |S| + |E(H)| − |H | + h1(H)

2
+ h0(H). (2)
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Using this Lemma along with Theorem 3, we then find the σ2-threshold for
H -extendibility.

Theorem 4. If H is a multigraph and G is a simple (max{α(H), β(H)}+1)-connected
graph of order n > 11|E(H)| + 7(|H | − h1(H)) such that

σ2(G) ≥ n + |E(H)| − |H | + h1(H) + 2h0(H),

then G is H -extendible.

Our counterexample will show that the δ-threshold for H -extendibility is in fact
simply half of the σ2-threshold, establishing that the lower bound in the following
Corollary is the best possible.

Corollary 1. If H is a multigraph and G is a simple (max{α(H), β(H)}+1)-connected
graph of order n > 11|E(H)| + 7(|H | − h1(H)) such that

δ(G) ≥ n + |E(H)| − |H | + h1(H) + 2h0(H)

2
,

then G is H -extendible.

Note that σ2(G) ≥ n + k − 2 implies that the graph is k-connected. Thus, if
max{α(H), β(H)} ≤ |E(H)| − |H | + h1(H) + 2h0(H) + 1, then the connectivity
condition in Theorem 4 is redundant, and can be omitted.

We show now that the lower bounds on σ2(G) and δ(G) in Theorem 4 and Cor-
ollary 1, respectively, are best possible. Let H be a multigraph with |E(H)| = ξ ,
|H | = h, h1(H) = h1, and h0(H) = h0. Consider the split graph G(a, b) = Kb +Ka

(where + indicates the standard join operation) such that a = n−(ξ−h+h1+2h0−1)
2

and b = n+ξ−h+h1+2h0−1
2 . Now G is a graph of order n with σ2(G) = 2δ(G) = 2b =

n + ξ − h + h1 + 2h0 − 1. If we choose S such that for all w ∈ V (H), fS(w) ∈ Kb

if and only if dH (w) ≤ 1, we will show that though there is an H -subdivision on S,
this subdivision cannot be spanning.

Indeed, it is easy to see that one can find an H -subdivision S on S. Since E(Ka) =
0, if we let A ⊂ Ka be the set of those vertices of S which are in Ka , we see that S −A

is a collection P of ξ + h0 vertex-disjoint proper paths of G − A whose end-vertices
are in Kb. Note that some of these proper paths may be singletons (i.e. composed
of a single vertex).

Since all the end-points of the paths of P are in B, for every P ∈ P , |P ∩ Ka| ≤
|P ∩ Kb| − 1, hence |P ∩ Ka| ≤ |P ∩ Kb| − |P|. Yet |P| = ξ + h0, so if P covered
all |Kb| = n+ξ−h+h1+2h0−1

2 vertices of Kb, we would have

|P ∩ Ka| ≤ n + ξ − h + h1 + 2h0 − 1
2

− (ξ + h0) < |Ka − A|.

This shows that P cannot cover all the vertices of the graph.
We next state several results which are corollaries of Theorem 4. Note that the

lower bounds on n given in the following Theorems may be larger than those found
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in the original papers. The lower bounds we include here are those implied by our
main Theorem, which have been made larger than necessary in order to simplify the
proofs.

We will make use of the following multigraphs. Let Mk be the multigraph on two
vertices having k proper edges. Let Tk,t = tK1 ∪ K1,k−t (where 0 ≤ t ≤ k − 1) and
Ek,t = tK1 ∪ (k − t)K2. Let Ck be a cycle of order k and Lk be the graph composed
of k vertices, each having one loop.

Corollary 2 [15]. Let G be a graph on n ≥ 18 vertices such that σ2(G) ≥ n. Then G

contains a Hamilton cycle.

Proof. Consider Theorem 4 with the multigraph L1. An L1-subdivision is a cycle,
and we have |E(L1)| = 1, |L1| = 1, and h1(L1) = h0(L1) = α(L1) = β(L1) = 0.
Hence we see that if n ≥ 18 and σ2(G) ≥ n + 1 − 1 + 0 + 0 = n, then any cycle is
extendible. Since it is easy to see that σ2(G) ≥ n implies the existence of a cycle, we
see that G has a cycle covering all the vertices of G. �

Corollary 3 [2]. Let G be a graph on n vertices such that σ2(G) ≥ n. Then for all
1 ≤ k ≤ n

18 , G contains k vertex disjoint cycles, together covering all the vertices of G.

Proof. Consider Theorem 4 with the multigraph Lk. An Lk-subdivision is a sys-
tem of k vertex-disjoint cycles. Also |E(Lk)| = k, |Lk| = k, and h1(Lk) = h0(Lk) =
α(Lk) = β(Lk) = 0. Hence we see that if n ≥ 18k and σ2(G) ≥ n+k−k+0+0 = n,
then any such system of k cycles is extendible. Justesen [13] showed that if σ2(G) ≥
4k, then there exists k vertex disjoint cycles, so we may extend these cycles to cover
all the vertices of G. �
Note that if we apply Theorem 4 to Ek,t for t ∈ [k], we get a Theorem found in
[12] which generalizes results of [1] and [7]. Let A and B be sets of vertices having
the same cardinality k. An (A, B)-system is the union of A ∩ B with a collection of
|A − B| disjoint paths having one vertex in A − B and the other in B − A.

M 3M TE == 1,1 1,01 =T4,34,3E C4E4,0

L
1

L3

Fig. 1. A few examples of multigraphs



170 R. Gould and T. Whalen

Corollary 4. Let A and B be two sets of vertices of order k and G be a graph of order
n ≥ 11k and σ2(G) ≥ n + k, then any (A, B)-system P can be extended to an (A, B)-
system P ′ spanning the vertices of G and such that the paths of P and P ′ have the
same end-vertices.

Proof. We apply Theorem 4 to Ek,t , where t = |A ∩ B|. Here |E(Ek,t )| = k − t ,
|Ek,t | = 2k − t , h1(Ek,t ) = 2(k − t), h0(Ek,t ) = t , α(Ek,t ) = k and β(Ek,t ) = k − t .
Thus, if n ≥ 11k ≥ 11(k − t) + 7(2k − t − 2k + 2t), and

σ2(G) ≥ n + (k − t) − (2k − t) + 2(k − t) + 2t

= n + k

then Theorem 4 yields the result. �

Corollary 5 [14], [8], [4]. Let G be a
⌈

k+1
2

⌉
-connected graph on n ≥ 18k vertices such

that σ2(G) ≥ n. Let C be a cycle encountering a vertex sequence S = (x1, . . . , xk)

in that order. Then G has a Hamilton cycle encountering the vertices of S in the given
order.

Proof. Consider the cycle Ck on k vertices. We have |E(Ck)| = k, |Ck| = k,

h1(Ck) = h0(Ck) = 0, and α(Ck) = β(Ck) =
⌊

k
2

⌋
. Applying Theorem 4 we get

the result. �
A collection L of t disjoint paths, s of them being singletons, with |V (L)| = k,

is called a (k, t, s)-linear forest. A graph G is said to be strongly (k, t, s)-ordered if
for every (k, t, s)-linear forest of G, there is a cycle encountering the paths of the
forest in their given order and according to their given orientation. If the cycle can
always be made spanning, we say that G is strongly (k, t, s)-ordered Hamiltonian.

Corollary 6 [9]. Let s, t, k be integers with 0 ≤ s < t < k or s = t = k ≥ 3. If G is
a strongly (k, t, s)-ordered graph on n ≥ k vertices with σ2(G) ≥ n + k − t then G is
strongly (k, t, s)-ordered Hamiltonian.

Proof. Taking H to be a (k, t, k − s − 2t)-linear forest and applying Theorem 4
yields the result. �
Note that our corollary yields a stronger result than that found in [9], where the
lower bound σ2(G) ≥ n + k − t + s − 1 is used when s > 0.

Theorem 1 has been extended in [1], [7], and [12] using diverse extensions and
characterizations of the concept of connectivity. The path-systems used in [17] and
[6] to characterize k-connectivity can both be used to extend the idea of Hamilton
connectivity to higher connectivities, resulting in the interest of knowing what the
σ2-thresholds for Mk-extendibility and Tk,t -extendibility are. Theorem 4 may readily
be used to find these.
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Corollary 7. Let G be a graph on n ≥ 11k + 14 vertices such that σ2(G) ≥ n + k − 2.
Let x and y be two distinct vertices of G and S be a system of k internally disjoint
[x, y]-paths. Then S can be extended to cover all the vertices of G.

Corollary 8. Let k and t be integers such that 0 ≤ t ≤ k and G be a graph on n >

11k − 4t − 7 vertices such that σ2(G) ≥ n + k − 1. If G has a Tk,t -subdivision S on S
then S can be extended to cover all the vertices of G.

3. The Independence Number of Subdivisions

In this section we consider how the independence number of an H -subdivision
relates to H and the order of the subdivision. Let us first extend the idea of inser-
tion of a vertex into a graph.

Let S be an H -subdivision on S. If, for u, v ∈ V (G) − fS(V (H)), P is a proper
[u, v]-path of G − S, we say that P is uniformly insertible in S if there exists an edge
xy ∈ E(S) such that ux, vy ∈ E(G). When P uniformly inserts in S we obtain a
larger H -subdivision S 
 P on S, namely

S 
 P = S − xy ∪ xu ∪ P ∪ vy.

If R ⊂ V (G−S) we say that R is insertible in S if there is a sequence S0, . . . , St

of H -subdivisions on S where S0 = S, V (St ) = V (S) ∪ V (R), and for all i ∈ [t ], Si

is obtained by uniformly inserting a subpath of G[R] − Si−1 into Si−1: We say that
St was obtained by inserting R into S. Figure 2 illustrates insertion and uniform
insertion.

The following fact is easy to verify:

Fact 1. If P is a path,

α(P ) =






⌊ |P |+1
2

⌋
if P is a proper path

⌊ |P |
2

⌋
if P is a cycle.

Proposition 1. Let S be an H -subdivision on S and P be a proper path of G−S. Then
⌊ |P |

2

⌋
≤ α(S 
 P) − α(S) ≤

⌈ |P |
2

⌉
.

Note that when |P | is even, this becomes α(S 
 P) − α(S) = |P |
2 .

Fig. 2. On the left: R is inserted in S. On the right: R is uniformly inserted in S
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Proof. First, we prove it when |P | = 2,

α(S 
 P) = α(S) + 1. (3)

The Proposition then follows by recursively inserting
⌊ |P |

2

⌋
edges of P , then insert-

ing a final vertex if |P | is odd.
Suppose now that P is the edge uv. On one hand we have α(S 
 P) ≥ α(S) + 1.

Indeed, take an I ∈ Imax(S); we must have |{x, y} ∩ I | ≤ 1, so if xy were replaced
with the path (x, u, v, y), we have an independent set I ′ = I ∪ {u} (if y ∈ I ), or
I ′ = I ∪ {v} (if x ∈ I ) in S 
 P .

On the other hand we have α(S 
P) ≤ α(S)+1. Indeed, take any I ′ ∈ Imax(S 

P); we must have |{x, u, v, y} ∩ I ′| ≤ 2, so if x and y were both in I ′, I = I ′ − {y}
would be an independent set of S of order |I ′| − 1, since neither u nor v could be
in I ′. However, if say v were in I ′, then neither y nor u could be, and we get an
independent set I = I ′ − {v} of order |I ′| − 1. �

Proof of Lemma 1. Let H be a multigraph and S be an H -subdivision on S. Note
that we may assume h0(H) = 0 since isolated vertices may be added to an indepen-
dent set, conserving it’s independence.

Consider the graph S − S2 where S2 is the set of ground vertices of degree at
least two. Now S − S2 is a family P of disjoint paths, ξ(S) of which have odd order.
By Fact 1 we have

α(S − S2) = �P∈P
⌈ |P |

2

⌉

= �|P | even
|P |
2

+ �|P | odd
|P | + 1

2

= �P∈P
|P |
2

+ �|P | odd
1
2

= |S| − (|H | − h1(H))

2
+ ξ(S)

2

= |S| + ξ(S) − |H | + h1(H)

2
.

Since α(S) ≥ α(S2), (1) is proven.
In order to prove (2) we make use of the following definitions. For a given vertex

u ∈ V (S), let c(u), called the corona of u, be the set of edges adjacent to u in S. A
constellation C of S is a family of edge-disjoint coronas of vertices of S and C is the
family of all possible constellations of S. It is easy to see that

α(S) = max
C∈C

|C|.

Further, if C is any constellation of S and Ci = {c(u) ∈ C : |c(u)| = i}, since all the
coronas are disjoint,

E(S) ≥ |C1| + 2�i≥2|Ci |,
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which shows that �i≥2|Ci | ≤ E(S)−|C1|
2 . Yet |C| = |C1| + �i≥2|Ci |, so

|C| ≤ |E(S)| + |C1|
2

.

Yet maxC∈C |C1| = h1(H), and further, one may verify that |E(S)| = |S|+|E(H)|−
|H |. Hence (2) is proven. �

Note that when ξ(S) = |E(H)|, the Lemma implies the equality

α(S) = |S| + |E(H)| − |H | + h1(H)

2
+ h0(H).

The following two Propositions will be useful.

Proposition 2. Let S be an H -subdivision, R be a subgraph of S, and ∂R be the set of
vertices of R that are adjacent to S − R. Then

α(S) − α(S − R) ≥ α(R − ∂R).

More particularly, if R = P is a subpath of a branch of S, then α(S) − α(S − P) ≥⌈ |P |−2
2

⌉
.

Proof. Since E(S − R, R − ∂R) = ∅, the union of any independent set of S − R

and one from R − ∂R, will be an independent set. �
In the following, given two subgraphs A and B of G, we denote by E(A, B) the
number of edges of E(G) having one end-vertex in A and the other in B. Moreover,
d(A, B) = |E(A, B)| and δ(A, B) = mina∈Ad(a, B).

Proposition 3. Let S be an H -subdivision on S, R be a set of vertices not in S, and
A = V (S) ∪ R. Then,

(a) If δ(R, A) > α(S) + |R| − 1 then R is insertible in S.
(b) If some path P of G[R] is uniformly insertible in S, and δ(R, A) > α(S) + |R| −⌊ |P |

2

⌋
− 1 then R is insertible in S.

Proof. Assume the premises of (a) and let z ∈ V (R). Since

d(z, S) ≥ δ(R, A) − d(z, R) > α(S) + |R| − 1 − (|R| − 1) = α(S)

we may insert z into S, creating an H -subdivision S ′ on S. Let R′ = R − {z}. By
Proposition 1, α(S ′) ≤ α(S) + 1, so every vertex w ∈ V (R′) satisfies

d(w, A) = d(w, V (S) ∪ R)

> α(S) + |R| − 1

≥ α(S ′) + |R′| − 1
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and we conclude the proof of (a) by induction.
Assume now the premises of (b) and let S ′ be the subdivision obtained by insert-

ing P uniformly in S. Now, using Proposition 1, we see that for every z ∈ R′
= R − V (P ) we have

d(z, A) ≥ δ(R, A)

> α(S ′) + (
α(S) − α(S ′)

) + |R| −
⌊ |P |

2

⌋
− 1

≥ α(S ′) −
⌈ |P |

2

⌉
+ |R| − 1 −

⌊ |P |
2

⌋

= α(S ′) + |R′| − 1,

so using (a), we may conclude the proof of (b) by induction. �

4. Proof of Theorems 3 and 4

Before proceeding with the proofs of Theorems 3 and 4, we will exhibit a few facts
that are common to both. First note that it suffices to prove both Theorems with
h0(H) = 0. Indeed, if J is the set of isolated vertices of H and J = fS(J ) is the cor-
responding set of vertices in G, we define H ′ = H −J , S ′ = S−J , and G′ = G−J .
It is easy to verify that the premises of the Theorem hold for H ′, S ′, and G′. For
instance, if σ2(G) ≥ 2α(S) + |G − S| then, observing that |G − S| = |G′ − S ′| and
h0 = h0(H) = |J | = |J |, we have

σ2(G
′) ≥ σ2(G) − 2h0

≥ 2(α(S ′) − h0) + |G − S| − 2h0

≥ 2α(S ′) + |G − S|.
Hence, we assume H to be a multigraph without isolated vertices. We also assume
|E(H)| ≥ 2 since this is needed for Theorem 3 to be true, and the case |E(H)| = 1
of Theorem 4 is implied by Theorem 1.

Let H be a multigraph on e edges and h vertices, h1 of these being of degree one,
and let γ = max{α(H), β(H)}. Let G be a (γ + 1)-connected graph of order n. We
are given S, an H -subdivision on S of maximal order and let Q = G − S. If Q = ∅
we have nothing to prove, so suppose Q �= ∅ and let q = |Q|.

By Lemma 1,

n + e − h + h1 = 2
( |S| + e − h + h1

2

)
+ |G − S|

≥ 2α(S) + q.

Hence, σ2(G) ≥ n + e − h + h1 of Theorem 4 implies

σ2(G) ≥ 2α(S) + q. (4)

as in Theorem 3, so we will assume this condition from here on.
Since S is maximal, by Proposition 3, for every w ∈ V (Q),

d(w, S) ≤ α(S). (5)
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Thus, for every non-adjacent vertices w, w′ ∈ V (Q),

d(w, Q) + d(w′, Q) ≥ 2α(S) + q − d(w, S) − d(w′, S) ≥ q,

and hence

Q is connected. (6)

If F1 and F2 are two subgraphs of G, let N(F1, F2) be the set of vertices of F2 that
are adjacent to at least one vertex of F1. The above claims show that ZQ = N(Q, S)

must be an independent set of S.

Claim. Suppose there exists some branch B = [x, y] of S such that |B ∩ ZQ| ≥ 2.
Choose B and z1, z2 ∈ B∩ZQ so that z2 ∈ (z1, y]B and R = V

(
(z1, z2)B

)
has minimal

order. Then

(a) |R| is even,
(b) Q is complete,
(c) for all w ∈ V (Q), N(w, S − R) = ZQ, a maximal independent set,
(d) |B ∩ ZQ| = 2 and |[x, z1]B |, |[z2, y]B | ≤ 2, and
(e) |S| ≤ 4e + h.

Proof. Assume there exists some branch B = [x, y] such that |B ∩ZQ| ≥ 2. Choose
B and z1, z2 ∈ B ∩ ZQ so that z2 ∈ (z1, y]B and R = V

(
(z1, z2)B

)
has minimal

order. Further, let ZR = N(R, S − R).
Connect z1 and z2 through Q and call P the connecting path in Q. Let S1 =

(S −R)∪P . Now S1 is an H -subdivision on S. Let r = |R| and R′ ⊂ V (S) be such
that R ⊆ R′. For all w ∈ V (Q), the maximality of S assures that

d(w, S − R′) ≤ α(S − R′) (7)

thus

d(w) = d(w, Q) + d(w, R′) + d(w, S − R′)
≤ d(w, Q) + d(w, R′) + α(S − R′). (8)

For all u ∈ R, the minimality of R implies that uw /∈ E(G), thus d(u) = d(u, S),
and

d(u, S) ≥ 2α(S) + q − d(w)

≥ α(S − R) + [α(S) − α(S − R)]

+[q − d(w, Q)]

+ max
R⊆R′

(
α(S) − α(S − R′) − d(w, R′)

)
.

Taking R′ = R and using Proposition 2 we see that

α(S) − α(S − R) ≥
⌈ r − 2

2

⌉
, (9)

q − d(w, Q) ≥ 1, and (10)

max
R⊆R′

(
α(S) − α(S − R′) − d(w, R′)

) ≥
⌈ r − 2

2

⌉
, (11)
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yielding

d(u, S) ≥ α(S − R) + r − 1. (12)

If any of the inequalities (9), (10), or (11) were strict, inequality (12) would be
strict, and using Proposition 3(a), we see that R could be inserted in S1, contradicting
the maximality of S. Hence these must all be equalities.

The equalities of (9) and (10) prove respectively (a) and (b). Further, if for R′ = R,
(7) were a strict inequality, (8) and therefore (12) would be strict. This shows that
for all w ∈ V (Q), d(w, S − R) = α(S − R), and since ZQ must be an independent
set, it is a maximal one, proving (c).

If (d) were not true, we could suppose without loss of generality, that |[z2, y]B | ≥
3 and let [z2, v]B be the subpath of [z2, y]B of order three starting at z2. The mini-
mality of R assures that (z2, v]B ∩ZQ = ∅, so letting R′ = R∪V ([z2, v]B) we see that

α(S) − α(S − R′) ≥
⌈ |R′|−2

2

⌉
=

⌈
r+1

2

⌉
and by the minimality of R d(w, R′) = 1.

Thus,

d(u, S) ≥ α(S − R) +
⌈ r − 2

2

⌉
− 1 +

⌈ r + 1
2

⌉
+ 1 = α(S − R) + r

and hence (12) is a strict inequality, proving (d).
Suppose now that

|S| > 4e + h. (13)

In order to derive a contradiction to (4), we will first prove the following:

(f) for all u ∈ R, N(u, S − R) = ZR, a maximal independent set,
(g) S is a balanced bipartite graph.

Observe that no sub-path of G[R] of order greater than one can be uniformly
insertible in S − R or the inequality (12) would be sufficient to apply Proposition
3(b) and show that R is insertible in S − R. Suppose that for all ui ∈ R there exists
two vertices vi, v

′
i ∈ N(ui, S − R) which are adjacent in S − R. The viv

′
i edges

must be independent for otherwise there would be a uniformly insertible sub-path
in G[R], and given that they are independent, R can be inserted into S − R, one
vertex at a time.

Hence there must be a u ∈ R such that ZR = N(u, S − R) is an independent
set of S − R; further (12) shows that it is maximal. This implies in turn that every
u′ ∈ R satisfies N(u′, S − R) = ZR since any v′ ∈ N(u′, S − R) − ZR would be
adjacent to a v ∈ ZR, and [u, u′]B would be uniformly insertible in S − R, which
we’ve ruled out.

Suppose |R| = 2. If there were a branch B ′ �= B of S of order more than six,
then the maximality of the independent set ZQ implies that there would be distinct
vertices v, v′ ∈ B ′ ∩ ZQ such that |(v, v′)B ′ | = 1, contradicting the minimality of
R. Thus all branches of S have order no more than six, implying that |S| ≤ h + 4e,
which contradicts (13).
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Hence (a) shows that |R| ≥ 4. By (c) and the minimality of R, all branches
B ′ �= B must satisfy |B ′ ∩ ZQ| ≤ 1, and

|B ′| ≤ 3 if B ′ is a loop, leaf, or independent branch, and (14)

|B ′| ≤ 4 otherwise. (15)

Out of all branches B ′ �= B such that B ′ ∩ZQ �= ∅, let λ1 be the number of these
that are either a loop, leaf, or independent branch and λ2 be the remaining number
of these. By (14) and (15) we have

|S − R| ≤ h + 2 + 2λ2 + λ1. (16)

Suppose there were a vertex u ∈ S − R − ZQ − ZR. Since u /∈ ZQ, condition (4)
yields (12), which we write as d(u) ≥ r − 1 + |ZQ|. Yet, on the other hand we have
d(u) ≤ |S − R| − 1, therefore

r ≤ |S − R| − |ZQ|. (17)

Let τ denote the number of components of H that are trees, ξ1 the total number
of loop, leaf, and independent edges of H , and ξ2 = e−1−ξ1. Observe that h ≤ e+τ

and λ1 + τ ≤ 3ξ1 since a tree has at least two leaf edges. Using this, (16), (17), and
the fact that |ZQ| ≥ 2 + λ2 + λ1, we find that

|S| ≤ 2|S − R| − |ZQ|
≤ 2h + 4 + 4λ2 + 2λ1 − |ZQ|
≤ h + e + τ + λ1 + 3λ2 + 2

≤ h + e + 3(ξ1 + ξ2) + 2

≤ h + e + 3(e − 1) + 2

< h + 4e,

which contradicts (13). Hence S − R = ZQ ∪ ZR.
If u was a vertex of ZQ ∩ ZR, it would have to be isolated because if v ∈ S − R

were adjacent to u in S − R, then v cannot be in ZQ ∪ ZR without contradicting
the fact that both sets are independent. This shows that ZQ ∩ ZR = {x, y} and that
B cannot be adjacent to any other branch of S. Since r is even, |B| = r + 2 is even,
so B is balanced bipartite. Further, this also shows that S − B = S − R − {x, y}
is balanced bipartite since ZQ − {x, y} and ZR − {x, y} are two disjoint maximal
independent sets of S − B whose union equals V (S − B). Hence (g) is proven.

Since S is balanced bipartite, α(S) = |S|
2 , so condition (4) becomes

σ2(G) ≥ |S| + q = n. (18)

Yet taking two non-adjacent vertices u ∈ R and w ∈ Q, we have d(u) ≤ r − 1 +
|S−R|

2 and d(w) ≤ q − 1 + |S−R|
2 , hence d(u) + d(w) ≤ n − 2, contradicting (18).

Thus (e) is proven, concluding the proof of Claim 4. �

Claim. If for every branch B∗, |B∗ ∩ZQ| ≤ 1, then there exists two adjacent branches
B = [x, y] and B ′ = [x′, y], with B ∩ ZQ = {z}, B ′ ∩ ZQ = {z′}, z, z′ �= y, and z �= x.
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Proof. Since γ = max{α(H), β(H)}, G is a priori (β(H) + 1)-connected, hence
|ZQ| ≥ β(H) + 1, and since no branch may contain more than one vertex of ZQ,
there must be two adjacent branches B and B ′ each containing a vertex of ZQ.

If it were not possible to find adjacent branches B and B ′ such that either z �= x

or z′ �= x′, then a simple induction on the number of edges of H would show
that ZQ could only contain ground vertices. Since, a priori, G is (α(H) + 1)-con-
nected, this would show that there has to be a branch whose end-vertices are both in
ZQ. �

With this background we are now ready to prove the theorems.

Proof of Theorem 3. We assume here that

|S| ≥ 6e + 3(h − h1). (19)

and let ζ = |ZQ|. Recall further that γ = max{α(H), β(H)}. Since 6e+3(h−h1) >

4e + h, Claim 4(e) shows that any branch B of S satisfies |B ∩ ZQ| ≤ 1. Since G is
(γ + 1)-connected, this implies that

γ + 1 ≤ ζ ≤ e. (20)

If h = h1, then H would be a set of independent edges, thus γ = e, contradicting
(20). Hence

h > h1. (21)

Further, Claim 4 applies, and we take B, B ′, x, x′, z, z′ and y as described in this
Claim.

Let R = (x, z)B , R′ = (y, z′)B ′ , and P ′ be a [z, z′]-path whose internal vertices
are in Q. If ab ∈ E(H) is the edge corresponding to branch B (that is, such that
gS(ab) = B) then S ′ = (S ∪ P ′) − R − R′ is an (H − ab)-subdivision on S. In the
following, we will show how to recover this missing branch with vertices of S −ZQ,
and then insert the remaining vertices in the H -subdivision on S thus constructed,
so that the maximality of S is contradicted.

For any w ∈ V (Q) we have d(w) ≤ ζ + q − 1, so (4) shows that for any
v ∈ V (S) − ZQ,

d(v) ≥ 2α(S) − ζ + 1. (22)

Case 1. Suppose there exists u ∈ R ∪ {x} and u′ ∈ R′ ∪ {y} such that uu′ ∈ E(G).
Then the path [x, u)B ∪ uu′ ∪ [u′, y)B ′ recovers the missing branch. Choose u and
u′ so that the sum of the cardinalities of R1 = V

(
(u, z)B

)
and R2 = V

(
(u′, z′)B ′

)
is

minimum. If R1 ∪ R2 = ∅, we would be done, so assume not, and without loss of
generality, suppose R2 �= ∅ and let u′′ ∈ R2. We have thus

d(u, R2) = d(u′′, R1) = 0, and by default, uu′′ /∈ E(G). (23)

Moreover, we let R3 = R4 = ∅ for later use.
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Case 2. Suppose E(R ∪ {x}, R′ ∪ {y}) = ∅ but R ∪ R′ �= ∅ and without loss of gen-
erality, let R �= ∅ and u be the vertex adjacent to x in [x, z)B . Let R1 = V

(
(u, z)B

)

and R2 = V
(
(y, z′)B ′

)
. By our assumption,

d(x, R2) = d(y, R1) = 0, and xy /∈ E(G). (24)

Let N = N(u, S) ∩ N(x, S) ∩ N(y, S). Since u, x, y ∈ V (S) − ZQ, by (22) we have
S−N(u, S), S−N(x, S), and S−N(y, S) all have order at most |S|−(

2α(S)−ζ+1
)
,

so

|N | ≥ |S| − 3
(
|S| − (

2α(S) − ζ + 1
))

= 2
(
3α(S) − |S|) − 3ζ + 3

> 2
(
3 |S|−(h−h1)

2 − |S|) − 3e by (20) and Lemma 1
= |S| − 3(h − h1) − 3e

≥ 3e.

This shows that for some sub-path B ′′ of a branch, |N ∩ B ′′| ≥ 4, so we may find
vertices v1, v2, v3, v4 ∈ V (B ′′), appearing in that order in B ′′, such that all but pos-
sibly v2 and v3 are distinct, and v1, v4 ∈ N(u), v2 ∈ N(x), and v3 ∈ N(y). Since
B ′′ has at most one vertex w of ZQ, we may choose v1, v2, v3, and v4 so that w is
neither in R3 = V

(
(v1, v2)B ′′

)
nor in R4 = V

(
(v3, v4)B ′′

)
. Moreover, we choose R3

and R4 to have minimal cardinality, so that

d(x, R3) = d(y, R4) = 0. (25)

Now P = xv2 ∪ [v2, v3]B ′′ ∪ v3y recovers branch B at the expense of B ′′, which in
turn may be recovered using P ′′ = [x′′, v1]B ′′ ∪ v1u ∪ uv4 ∪ [v4, y

′′]B ′′ , where x′′ and
y′′ are the end-vertices of B ′′. The H -subdivision on S we thus obtain, misses the
vertices of R1, R2, R3 and R4.

Case 3. Finally, R ∪ R′ = ∅. Let N = N(x, S) ∩ N(y, S), and note that by similar
arguments as seen in Case 2, we may find a sub-path of a branch B ′′ of S such that
|N ∩ B ′′| ≥ 5. Therefore, we may find five vertices, say x′, v1, v2, u

′, y′ ∈ V (B ′′),
appearing in that order in B ′′, such that all but possibly v1 and v2 are distinct,
v1 ∈ N(x), v2 ∈ N(y), x′, u′, y′ /∈ ZQ, and x′v1, v2u

′, u′y′ ∈ E(B ′′). If x′u′ ∈ E(G)

we would be done, so we assume that

x′u′ /∈ E(G). (26)

Since x′, u′, y′ /∈ ZQ, their degrees are large enough so that we may repeat the argu-
ments made on y, u, and x in Case 2, and find a sub-path of a branch B(3) having four
vertices v3, v4, v5, v6 such that P ′′ = y′v4 ∪ [v4, v5]B(3) ∪ v5x

′ and P (3) = v3u
′ ∪u′v6

are disjoint paths. Again, using P , P ′′ and P (3), we may recover our H -subdivi-
sion on S. In this case, we let R1 = V

(
(v5, v6)B(3)

)
, R2 = V

(
(v3, v4)B(3)

)
, and

R3 = R4 = ∅, where R1 and R2 are chosen to be minimal so that

d(x′, R2) = d(u′, R1) = 0, and x′u′ /∈ E(G). (27)
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Using the respective definitions of the Ri in the above three cases, we let R =
R1 ∪R2 ∪R3 ∪R4. We wish to insert R in the subdivisions constructed in the respec-
tive cases, so as to contradict the maximality of S. To do so, it is sufficient to prove
that R may be inserted in S − R.

Since R ∈ S − ZQ, by (22) and (2),

δ(R, S) ≥ 2α(S) − ζ + 1

= α(S − R) + 2[α(S) − α(S − R)] + α(S − R) − ζ + 1 (28)

= α(S − R) + |R| − 7 + α(S − R) − ζ. (29)

If (29) is greater than α(S − R) + |R| − 1, then Proposition 3 will yield that R is
insertible. Thus, we wish to prove that

α(S − R) − ζ > 6. (30)

Let w1 = u and w2 = u′ in Case 1, w1 = x and w2 = y in Case 2, and w1 = x′
and w2 = u′ in Case 3. Now w1, w2 /∈ ZQ, so by (23), (24), (25), (26), and (27), we
have w1w2 /∈ E(G) and d(w1, R2 ∪ R3) = d(w2, R1 ∪ R4) = 0, thus (4) yields

|S| − 2 − |R2| − |R3| ≥ d(w1) ≥ 2α(S) − ζ + 1, and

|S| − 2 − |R1| − |R4| ≥ d(w2) ≥ 2α(S) − ζ + 1.

This implies that 2|S| − |R| ≥ 4α(S) − 2ζ + 6, so using (19), (20), (21) and
Lemma 1, we get

|S − R| − ζ ≥ 4
( |S| − h + h1

2

)
− 2ζ + 6 − |S| − ζ

= |S| − 2h + 2h1 − 3ζ + 6

= 6e + 3(h − h1) − 2h + 2h1 − 3ζ + 6

= 3e + h − h1 + 6

≥ 7,

thus (30) is shown, concluding the proof of Theorem 3. �

Proof of Theorem 4. Assume that

σ2(G) ≥ n + e − h + h1 (31)

and

n ≥ 11e + 7(h − h1). (32)

Since (31) has been shown to imply the degree condition of Theorem 3, all we need
to show in order to apply Theorem 4, is that

|S| ≥ 6e + 3(h − h1). (33)

Suppose for some branch B of S, |B ∩ ZQ| ≥ 2, and let R be as in Claim 4. By
(b) and (c) of Claim 4 we see that |R| ≥ |Q| or P would be larger than [z1, z2]B , and
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the maximality of S would be contradicted. Yet, observing that |S − R| ≥ h, Claim
1(e) implies then that

n = |Q| + |S| ≤ |R| + |S|
= 2|S| − |S − R| ≤ 2|S| − h

< 2(4e + h) − h,

contradicting (32).
Hence every branch B of S satisfies |B ∩ ZQ| ≤ 1, and Claim 4 applies. Thus,

we take B, B ′, x, x′, z, z′ and y to be as in Claim 4. Let u be the vertex adjacent to z

in [x, z]B and u′ be the vertex adjacent to z′ in [y, z′]B ′ . If uu′ ∈ E(G) then S could
be extended using vertices of Q. Yet both u and u′ have all their adjacencies in S,
so uu′ /∈ E(G) implies that

|S| >
d(x′) + d(y′)

2

≥ n + e − h + h1

2
by(31)

≥ 11e + 7(h − h1) + e − h + h1

2
by(32)

≥ 6e + 3(h − h1).

�
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