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Abstract

A graph G is said to be F-saturated if G does not contain a copy of F as a subgraph and G + e contains a copy of F as a subgraph
for any edge e contained in the complement of G. Erdős et al. in [A problem in graph theory, Amer. Math. Monthly 71 (1964)
1107–1110.] determined the minimum number of edges, sat(n, F ), such that a graph G on n vertices must have when F is a t-clique.
Later, Ollmann [K2,2-saturated graphs with a minimal number of edges, in: Proceedings of the Third SouthEast Conference on
Combinatorics, Graph Theory and Computing, 1972, pp. 367–392.] determined sat(n, F ) for F = K2,2. Here we give an upper
bound for sat(n, F ) when F =K2

t the complete t-partite graph with partite sets of size 2, and prove equality when G is of prescribed
minimum degree.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We let G = (V , E) be a graph on |V | = n vertices and |E| = m edges. We denote the complete graph on t vertices
by Kt , and the complete multipartite graph with t partite sets each of size s by Kt

s . Let F = (V ′, E′) be a graph on
|V ′|�n vertices. The graph G is said to be F-saturated if G contains no copy of F as a subgraph, but for any edge e
in the complement of G, the graph G + (e) contains a copy of F, where G + (e) denotes the graph (V , E ∪ e). The
celebrated theorem of Turán determines the maximum number of edges in a graph that is Kt -saturated. This number,
denoted ex(n, Kt ), arises from the consideration of the so-called Turán graph. In 1964 Erdős et al. [4] determined the
minimum number of edges in a graph that is Kt -saturated. This number, denoted sat(n, Kt ), is (t − 2)(n − 1) − (

t−2
2 )

and arises from the split graph Kt−2 + Kn−t+2. Some years later Ollmann [6] determined the value sat(n, K2,2). Tuza
gave a shortened proof of this same result in [9]. Determining the exact value of this function for a given graph F has
been quite difficult, and is known for relatively few graphs. Kászonyi and Tuza in [5] proved the best known general
upper bound for sat(n, F ).

We will say u ∼ v (respectively, u /∼ v) if (uv) ∈ E(G) (respectively, (uv) /∈ E(G)). For any undefined terms we
refer the reader to [1].

Theorem 1 (L. Kászonyi, Z. Tuza [5]). Let F be a family of non-empty graphs. Set

u = min{|U | : F ∈ F, U ⊂ V (F), F − U is a star (or a star with isolated vertices)}
∗ Corresponding author.
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and

s = min{|E(F − U)| : F ∈ F, U ⊂ V (F), F − U is a star and |U | = u}.

Furthermore, let p be the minimal number of vertices in a graph F ∈ F for which the minimum s is attained.
If n�p then

sat(n,F)�
(

u + s − 1

2

)
n − u(s + u)

2
.

This result shows that sat(n,F) = O(n) where F is a family of graphs. Pikhurko [7] generalized this result to a
family, F′, of k-uniform hypergraphs by showing that sat(n,F′) = O(nk−1). For a further summary of related results
we refer the reader to [2].

Here we further refine the idea of sat(n, F ). To state the main result of this paper we define sat(n, F, �) to be the
minimum number of edges in a graph on n vertices and minimum degree � that is F-saturated. We show the following
two results.

Theorem 2. For integers t �3, n�4t − 4,

sat(n, Kt
2, 2t − 3) =

⌈
(4t − 5)n − 4t2 + 6t − 1

2

⌉
.

This immediately implies the following.

Theorem 3. For integers t �3, n�4t − 4,

sat(n, Kt
2)�

⌈
(4t − 5)n − 4t2 + 6t − 1

2

⌉
.

It is worth noting that the bound provided by Theorem 3 is a slight improvement over that provided by Theorem 1.
We also make the following conjecture.

Conjecture 1. For integers t �3, n sufficiently large, equality holds in Theorem 3.

2. General results

To prove Theorem 2 we will find the following results which are due to Tuza [9] to be useful.

Proposition 1 (Tuza [9]). (a) If F is a k-vertex connected graph, other than the complete graph on k vertices, then
every F-saturated graph G is (k − 1)-vertex connected. (b) If F is a k-edge connected graph, then every F-saturated
graph G is (k − 1)-edge connected.

Proposition 2 (Tuza [9]). (a) Let F be a k-vertex connected graph, and let G be an F-saturated graph with a set X of
k − 1 vertices such that G\X is disconnected. Denote by G1, . . . , Gl the connected components of G\X. If X induces
a clique, then

(1) G\Gi is F-saturated for 1� i� l;
(2) Gi ∪ X induces an F-saturated graph 1� i� l;

(b) Let F be a k-edge connected graph, and suppose that a graph G has a partition V1 ∪ V2 = V (G) such that
there are just k − 1 edges between V1 and V2. If G is F-saturated, then the subgraph induced by Vi(i = 1, 2) is also
F-saturated.
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Proposition 3. If G is a Kt
2-saturated graph (t �2) with cut-set X of order 2t − 3 and G1, G2, . . . , Gl , are the

components of G\X, then all vertices belonging to X must belong to the Kt
2 formed upon the addition of an edge (vivj )

where vi ∈ Gi, vj ∈ Gj(i �= j). In other words, there exist three vertices outside the cutset belonging to any such Kt
2

formed. Additionally, two of these three vertices are in the same component of G\X.

Proof. Let G be a Kt
2-saturated graph. Let vi, vj be in separate components of G\X. Consider G + (vivj ). Clearly,

there exists a vertex z �= vi, vj in some Gk belonging to the Kt
2 formed upon the addition of edge (vivj ) to G. Vertex

z cannot be in a component of G\X different from both vi and vj as then z would be non-adjacent to two vertices in
the Kt

2-subgraph. Thus, without loss of generality z must be in say, Gi . Now suppose there exists another vertex w

contained in theKt
2 in some Gk, 1�k� l. Similarly, w must be in either Gi or Gj . If w ∈ Gi then as vj is not adjacent

to both z and w, a Kt
2 cannot be formed, which is a contradiction. If w ∈ Gj then as w is not adjacent to either vi or z,

again a Kt
2 cannot be formed, a contradiction. Hence, there are at most three vertices outside X (and thus exactly three

vertices) in any such Kt
2 and of these three vertices, two of them are in the same component of G\X. �

Proposition 4. If G is a Kt
2-saturated graph (t �2) with a cut-set X of order 2t − 3 then X = {x1, x2, . . . , x2t−3}

induces a clique in G.

Proof. Let G be a Kt
2-saturated graph as above and denote the components of G\X by G1, . . . , Gl . Consider G+(vivj )

where vi ∈ Gi, vj ∈ Gj(i �= j). By Proposition 3, the vertices of X are contained in the Kt
2 formed upon inserting

(vivj ). Thus, on the vertices of X, a Kt−2
2 + xk must be present in G. Now suppose there exists a pair of vertices xi, xj

in X that are not adjacent in G. For any pair vi, vj as considered above, G+ (vivj ) contains a Kt
2 where xi and xj must

be in the same partite set. This implies that xi, xj are adjacent to all other vertices in the graph G. Thus G\{xi, xj } is
Kt−1

2 -saturated. Now consider G+ (xixj ). Upon the addition of edge (xixj ) to G, a Kt
2 is formed as a subgraph where

xi and xj lie in different partite sets (as otherwise a Kt
2 would have existed in G.) Thus, on G\{xi, xj } there exists a

Kt−1
2 , a contradiction. �

Proposition 5. If G is a Kt
s -saturated graph with t �3 (t = 2), then G has diameter at most 2 (respectively 3).

Furthermore, if t �3 then G contains s(t −2) edge disjoint paths of length two between any two non-adjacent vertices.

Proof. Consider any pair of non-adjacent vertices x, y. Since every edge of Kt
s , t �3 (t = 2) is contained in s(t − 2)

3-cycles (resp. a 4-cycle) and G + (xy) contains the subgraph Kt
s , the distance from x to y in G can be no more than 2

(respectively 3.). �

Proposition 6. If G is a Kt
2 saturated graph with cut set X of order 2t − 3, then all vertices not adjacent to all of X

belong to the same component of G\X. Additionally, this component contains at least three vertices.

Proof. Consider vertices vi ∈ Gi, vj ∈ Gj, i �= j such that vixk /∈ E(G) and vjxl /∈ E(G) for some xk, xl ∈ X (note
xk may equal xl). Now consider G + (vivj ). By Proposition 3 there exists a vertex z in say Gi such that z is in the Kt

2
formed upon the addition of edge (vivj ) to G. But then vj is not adjacent to both xl and z, a contradiction. The same
argument holds if z is in Gj . Thus vi and vj must be in the same component.

To see that this component has at least three vertices suppose that it did not. Then consider G + (vixk) and the
Kt

2-subgraph formed. This copy of Kt
2 must, by Proposition 2(2), lie entirely in X and this special component. But now

we reach a contradiction, since X together with this component do not contain enough vertices. �

For convenience, from this point on we refer to the component described in Proposition 6 as G1.

Proposition 7. If G is a Kt
2-saturated graph with cut set X of order 2t − 3, then the components of G\X can be

categorized as follows: (i) there is at most one component as described in Proposition 6, (ii) there is at most one
component of order 1, and (iii) the remaining components are single edges.

Proof. (i) Follows immediately from Proposition 6. To show (ii), consider two components of order 1, say Gi = {a},
Gj = {b}. The graph G + (ab) must contain, by Proposition 3, a Kt

2 on X ∪ {a, b}. But this is impossible since
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|X ∪ {a, b}| = 2t − 1. To show (iii) consider a component Gk where each vertex in Gk is adjacent to all of X and Gk

contains at least three vertices. Note that in such a component there exists three vertices that induce at least two edges.
This would imply the existence of a copy of Kt

2 in G, which is a contradiction. Thus, these components have at most
two vertices (and more than one) and therefore must be single edges. This proves (iii). �

Proposition 8. If G is a Kt
2-saturated graph with cutset X of order 2t − 3, then any vertex v in G1 is adjacent to at

least 2t − 4 vertices of X.

Proof. Let v ∈ G1 such that vxi /∈ E(G) for some xi ∈ X. Let w be in a different component, say Gj of G\X. By
Proposition 3, G + (vw) contains a Kt

2 which uses all of X. Hence, v must be adjacent to all other vertices of X. �

2.1. Proof of main result

We are now ready to prove the main result.

Proof of Theorem 2. Let G be a Kt
2-saturated graph on n�4t − 4 vertices with �(G) = 2t − 3.

We first note that in such a graph, G + (v1v2) contains a copy of Kt
2 where v1 and v2 are in different partite sets

of Kt
2, as otherwise a copy of Kt

2 would have already existed in G. If v1 is in a partite set of Kt
2 we will refer to the

other vertex in that partite set as v1’s mate. For convenience we will refer to v1 as being in the first partite set, v2 the
second partite set. Also, as Kt

2 is a (2t − 2)-connected graph, Proposition 1 implies that G is (2t − 3)-connected, thus
the minimum degree of any Kt

2-saturated graph is at least 2t − 3.
With reference to Proposition 7, we refer to a component of order 1 as a Type I component, a component of order 2

as a Type II component and a component of order 3 or more as a Type III component. Let y be a vertex of degree 2t − 3
and set N(y)=X. Note that X is a cut-set of size 2t −3 and thus, by Proposition 4, the graph induced by X is complete.
By Proposition 7 there is at most one component of Type III. Thus, there are two possibilities for the structure of G.

Case 1: Suppose G contains a component, G1, of Type III.
We begin by setting the number of vertices in G1 equal to g1 �3, and describe the structure of G1 and the minimum

number of edges it must contain. First note that the number of Type II components is k = (n − 2t + 3 − 1 − g1)/2
(and thus n and g1 have the same parity). Furthermore, by Proposition 2, G1 ∪ X is a Kt

2-saturated graph. Denote by A
the vertices of G1 that are adjacent to all of X. Denote by X1 the vertices of G1 that are adjacent to x2, x3, . . . , x2t−3,
but not x1. Similarly, define Xi for 2� i�2t − 3. Note by Proposition 8, there are no other vertices of G1. First
note that if A is non-empty then A induces a 1-regular graph in G, since for any vertex a ∈ A, the graph G + (ya)

contains a Kt
2, and thus a must be adjacent to a vertex in A which is y′s mate. Further, there cannot exist two incident

edges, say (a1a2) and (a2a3), in A as otherwise G would contain Kt
2 as a subgraph. Namely a Kt

2 would exist on
X ∪ {a1, a2, a3}.

Furthermore, every vertex v ∈ G1\A is adjacent to exactly one vertex a ∈ A. To see this is true, first note that if
v ∈ G1\A were adjacent to two vertices a1, a2 in A, then a Kt

2 would be present in G, namely a Kt
2 would exist on

X ∪ {v, a1, a2}. To see that v is adjacent to at least one vertex in A, note that G + (vy) creates a Kt
2 as a subgraph

involving the 2t − 1 vertices v, y, x1, x2, . . . , x2t−3. The remaining vertex in the Kt
2 subgraph which is not adjacent to

y (as y has no other adjacencies in G + (vy)) must be y′s mate. Thus, this vertex must be adjacent to all others, which
includes all of X, and thus this mate must be in A. This also shows that A cannot be empty. Together with the fact that
A is 1-regular, this implies |A|�2.

We now consider the maximum number of vertices x ∈ V (G1\A) such that dG1(x) = 1. Let v, w ∈ G1\A with
dG1(v)=dG1(w)=1. Then we consider the following two possibilities. Note that these conditions imply that vw /∈ E(G),
as v’s one edge in G1 must be to A.

Subcase (i): Suppose v, w ∈ Xi for some i, then the neighbors of v and w which are in A are adjacent.
Consider G + (vw) and the Kt

2 subgraph formed. The vertex xi cannot be in the Kt
2 formed as xi is not adjacent to

either v or w. This implies that v and w cannot share a single neighbor in A as then the joint neighborhood of v and w

would contain only 2t − 3 vertices and any two non-adjacent vertices in G must have a joint neighborhood of at least
2t − 2 vertices. Thus suppose v ∼ a1, w ∼ a2 for some a1, a2 ∈ A. Additionally, a1 ∼ a2 since the joint neighborhood
is exactly 2t − 2 vertices and these two vertices lie in the symmetric difference of the joint neighborhood of v and w.
In other words, a1 is the mate of w and a2 is the mate of v and thus the edge (a1a2) must exist.
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Subcase (ii): Suppose v ∈ Xi , w ∈ Xj , i �= j , then v and w share a common neighbor in A.
Without loss of generality suppose v ∈ X1, w ∈ X2. Further, suppose v ∼ a1 and w ∼ a2 for some a1, a2 ∈ A,

a1 �= a2. Now consider G + (vw). Considering v, we see that the Kt
2 formed must contain v, w, a1, x2, x3, . . . , x2t−3.

However, x2 and a1 are not adjacent to w, a contradiction. Therefore v, w must share the same neighbor in A.
For t �3, (i) and (ii) together imply that the maximum number of vertices x ∈ G1 such that dG1(x) = 1 is 2t − 3.

Furthermore, this occurs when the 2t − 3 vertices are each in different Xi .
Once again we count the edges of G, and noting that g1 := |A| + |⋃2t−3

i=1 Xi |. We explain the equation below.
Beginning with line (1), recall that X is complete. Next, note that in this case each vertex in G2, G3, . . . , Gl is adjacent
to each vertex in X and that each of these Type II components contains one edge. Next line (2), each vertex in A is
adjacent to all of X, and A induces a 1-factor. Next, each vertex in

⋃2t−3
i=1 Xi is adjacent to 2t − 4 vertices in X, and one

vertex in A. Finally line (3), since there are at most 2t − 3 vertices, {u1, u2, . . . , u2t−3} ∈ ⋃2t−3
i=1 Xi with dG1(ui) = 1

the remainder must have degree at least two. Thus,

|E(G)|�
(

2t − 3
2

)
+ (n − 2t + 3 − g1)(2t − 3) + n − 2t + 3 − 1 − g1

2
(1)

+ |A|(2t − 3) + |A|
2

+
(∣∣∣∣∣

2t−3⋃
i=1

Xi

∣∣∣∣∣
)

(2t − 4) +
(∣∣∣∣∣

2t−3⋃
i=1

Xi

∣∣∣∣∣
)

(2)

+
⌈

(|⋃2t−3
i=1 Xi |) − min{(2t − 3), |⋃2t−3

i=1 Xi |}
2

⌉
(3)

=
⌈

(4t − 5)n − 4t2 + 8t − 4 − min{(2t − 3), |⋃2t−3
i=1 Xi |}

2

⌉
(4)

and when n�4t − 3, the minimum is achieved when there exists at least 2t − 3 vertices in
⋃2t−3

i=1 Xi . Thus,

|E(G)|�
⌈

(4t − 5)n − 4t2 + 6t − 1

2

⌉
. (5)

Case 2: Suppose G contains no component of Type III.
If n − 2t + 3 is even (thus n is odd) then we reach a contradiction as (n − 2t + 2)/2 (the number, k, of Type II

components) must be an integer. Thus n − 2t + 3 is odd and k = (n − 2t + 2)/2. We now count the number of edges G
must contain. First, recall that X is complete. Next, note that in this case each vertex in G\X is adjacent to each vertex
in X. Finally, note that each of the Type II components contains one edge. Thus,

|E(G)| =
(

2t − 3
2

)
+ (n − 2t + 3)(2t − 3) + n − 2t + 2

2
(6)

= (4t − 5)n − 4t2 + 8t − 4

2
. (7)

The number of edges obtained in the Case 1 is obviously less than in Case 2. We will now show that there exists a
graph G that contains the number of edges as given by the lower bound in Case 1 and which is Kt

2-saturated.
It suffices to now describe the structure of G1. The set A contains two adjacent vertices a1, a2, with a1 adjacent to

all of
⋃2t−3

i=1 Xi . In the case that n is odd, each Xi contains a vertex ui such that dG1(ui) = 1. In the case that n is even,
all but one of the Xi contain such a vertex. The remainder of the vertices in a given Xi induce a 1-factor. (That is we
forbid edges zizj where zi ∈ Xi , zj ∈ Xj , i �= j .) We have now completely described the structure of the graph G.
Fig. 1 helps to illustrate this.

We will now show that the minimal graph obtained in this case is indeed Kt
2-saturated, and thus the result will be

established.

Claim 1. The graph G contains no copy of Kt
2.

First note that as the degree of y is 2t−3, it cannot be contained in a copy of Kt
2. The same is true for any ui ∈ ⋃2t−3

i=1 Xi

such that dG1(ui)=1. If the copy of Kt
2 contained all the vertices of X it would need to contain three vertices at distance
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Type II Components

Type I Components

Type III Components

Not present when
n is even.

a2
a1

G1

X1, X2, . . .

X = k2t-3

X2t-3x1, x2, . . .

X2t-3

y

Fig. 1. Kt
2-saturated graph.

two from y. These three vertices would need to be in the same component (as they must induce at least two edges),
thus must be in G1. If two vertices from A were used then there must exist some v ∈ ⋃2t−3

i=1 Xi that is adjacent to both
of them as v is nonadjacent to some xi ∈ X. However, v has only one edge to A. If one vertex of A were used, then the
two remaining vertices, v, w cannot come from the same Xi as v, w /∼ xi , and thus v ∈ Xi , w ∈ Xj , i �= j . However,
v /∼ xi, w by construction. Thus all three vertices must come from

⋃2t−3
i=1 Xi . Each would need to be in a different Xi ,

and thus must induce a triangle. However, this is forbidden from happening by our construction.
Thus, any copy of Kt

2 would contain at most 2t − 4 vertices of X. Then at least three vertices of Kt
2 must come from

G\X, and must be in the same component and thus lie in G1. Furthermore, any four vertices of Kt
2 contain a K2,2 and

a careful consideration of G1 shows that no such K2,2 exists. This proves the claim. �

Claim 2. For any edge e in the complement of G, G + e contains a copy of Kt
2.

For convenience, let a1, a2 ∈ A, zi,1, zi,2 ∈ Xi, zj,1 ∈ Xj , vj , wj ∈ Gj, vk ∈ Gk (j, k �= 1). We may assume that
dG1(zi,1) = 2 and will denote its neighbor in Xi by zi,3. Also recall that for all x ∈ ⋃2t−3

i=1 Xi we have x adjacent to a1.
To prove the claim we will show that for any edge e, the graph G + e contains a copy of Kt

2 and explicitly give each
of the partite sets and their elements.

First we consider edges between components.
Case: Let e = vjvk , then Kt

2 is contained in the subgraph induced by the following partite sets {{wj , vk}, {vj , x1},
{x2, x3}, . . . , {x2t−4, x2t−3}}.

Case: Let e = vka1, then Kt
2 is contained in the subgraph induced by the following partite sets {{a2, vk}, {a1, x1},

{x2, x3}, . . . , {x2t−4, x2t−3}}.
Case: Let e = vka2, then Kt

2 is contained in the subgraph induced by the following partite sets {{a1, vk}, {a2, x1},
{x2, x3}, . . . , {x2t−4, x2t−3}}.

Case: Let e = vkzi,1, then Kt
2 is contained in the subgraph induced by the following partite sets {{a1, vk}, {zi,1, xi},

{x1, x2}, . . . , {x2t−4, x2t−3}}.
Next we consider edges from the cut-set to G1.
Case: Let e = xizi,2, then Kt

2 is contained in the subgraph induced by the following partite sets {{zi,2, a2}, {xi, a1},
omits xi︷ ︸︸ ︷

{x1, x2}, . . . , {x2t−4x2t−3}}.
This leaves us to consider edges within G1.
Case: Let e = a2zi,2, then Kt

2 is contained in the subgraph induced by the following partite sets {{zi,2, xi}, {a1, a2},
omits xi︷ ︸︸ ︷

{x1, x2}, . . . , {x2t−4, x2t−3}}.
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Case: Let e=zi,1zi,2, then Kt
2 is contained in the subgraph induced by the following partite sets {{zi,1, a1}, {zi,2, zi,3},

omits xi︷ ︸︸ ︷
{x1, x2}, . . . , {x2t−4, x2t−3}}.

Case: Let e=zi,1, zj,1, then Kt
2 is contained in the subgraph induced by the following partite sets {{zi,1, xi}, {zj,1, xj },

{a1, x1},
omits xi ,xj ,x1︷ ︸︸ ︷

{x2, x3}, . . . , {x2t−4, x2t−3}}.
This completes the proof of Claim 2, and the proof of Theorem 2. �
We now give further evidence to support Conjecture 1. To do this we begin by generalizing a theorem used by Duffus

and Hanson in [3].

Theorem 4. For integers t �3, s�1, ��s(t − 1) − 1, n�st ,

sat(n, Kt
s , �)� � + s(t − 2)

2
(n − � − 1) + � + s2

(
t − 2

2

)
+ s(s − 1)(t − 2). (8)

Proof. Let y be a vertex of minimum degree � and X the set of � vertices adjacent to y. Let Z denote the remaining
n − � − 1 vertices, which are at distance two (by Proposition 5) from y. First, X contains a copy of Kt−2

s + Ks−1 since
G + (yv) contains a Kt

s , v ∈ Z, for any v /∼ y. Next, each v ∈ Z must be adjacent to all of the vertices of a Kt−2
s in X

since G + (yv) creates a copy of Kt
s . Therefore, by summing the degrees of the vertices in each set we obtain,

�x∈Gd(x)�� + {� + s(t − 2)(n − � − 1) + s(t − 2)[s(t − 3) + (s − 1)] + (s − 1)[s(t − 2)]}
+ {(n − � − 1)�}.

The lower bound thus follows. �

We now use Theorem 4 in support of Conjecture 1. Evaluating Eq. (8) for s =2 and ��2t we find that the coefficient
in n is at least (4t − 4)/2 which is greater than the coefficient in n given by Theorem 2, which is (4t − 5)/2. Thus for
n sufficiently large the number of edges in an Kt

2-saturated graph with minimum degree ��2t is strictly greater than
the number of edges in an Kt

2-saturated graph with minimum degree 2t − 3.
This leads to another conjecture (which generalizes one given by Bollobás in [2]), the proof of which would settle

Conjecture 1.

Conjecture 2. Given a fixed graph F, for n sufficiently large the function sat(n, F, �) is monotonically increasing
in �.

We note that the word “monotonically” cannot be replaced by “strictly.” One can see this by examining the extremal
graphs for K2,2 provided by Ollmann [6].
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