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CYCLE EXTENDABILITY OF HAMILTONIAN
INTERVAL GRAPHS∗

GUANTAO CHEN† , RALPH J. FAUDREE‡ , RONALD J. GOULD§ , AND

MICHAEL S. JACOBSON¶

Abstract. A graph G of order n is pancyclic if it contains cycles of all lengths from 3 to n.
A graph is called cycle extendable if for every cycle C of less than n vertices there is another cycle
C∗ containing all vertices of C plus a single new vertex. Clearly, every cycle extendable graph is
pancyclic if it contains a triangle. Cycle extendability has been intensively studied for dense graphs
while little is known for sparse graphs, even very special graphs. We show that all Hamiltonian
interval graphs are cycle extendable. This supports a conjecture of Hendry that all Hamiltonian
chordal graphs are cycle extendable.
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1. Introduction. All graphs considered in this paper are finite and simple. We
will generally follow the notation and definitions of West [14]. Let G be a graph. We
use V (G) and E(G) to denote its vertex set and edge set, respectively. For any vertex
v of G, N(v) (or NG(v)) denotes the neighborhood of v (neighborhood of v in G)
and d(v) (or dG(v)) denotes the degree of v (degree of v in G). For any X ⊆ V (G),
let G[X] denote the subgraph induced by X. If H is a subgraph of G, we define
G[H] := G[V (H)].

A graph is chordal if every cycle of length at least 4 contains a chord. An interval
graph is a graph whose vertices correspond to a family of intervals so that vertices are
adjacent if and only if the corresponding intervals intersect. It is well known that all
interval graphs are chordal graphs.

In a graph G, a Hamiltonian cycle is a cycle containing all vertices of G. A
graph is Hamiltonian if it has a Hamiltonian cycle. Determining when graphs are
Hamiltonian is one of the fundamental problems in graph theory. Although it is NP-
hard to decide whether a graph is Hamiltonian, finding conditions sufficient to imply
a graph is Hamiltonian has been intensively studied in the last thirty years. While
studying Hamiltonicity, many related properties have also been heavily explored. For
example, a graph G of order n is pancyclic if it contains cycles of all lengths from 3 to
n. Clearly, every pancyclic graph is Hamiltonian, but the converse is not true. Being
pancyclic provides a lot more cycle structure to graphs. Although there are many
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Hamiltonian graphs which are not pancyclic, the known sufficient degree conditions
implying each of the properties are often similar. For example, the classic result of
Ore [10] says that a graph G of order n ≥ 3 is Hamiltonian if d(u) + d(v) ≥ n for
every nonadjacent pair u, v ∈ V (G). Bondy [2] showed the same condition implies
that G is either pancyclic or a complete bipartite graph Kn/2,n/2. A common method
of showing that a graph G is pancyclic is described below:

• Show that G has a triangle.
• Suppose that G has a cycle of length k < n, and find a special cycle of length k

(< n) and a special vertex v /∈ V (C) such that G[V (C)∪{v}] is Hamiltonian.

Motivated by the above observations, Hendry [7] gave the following definitions. In
a graph G, a non-Hamiltonian cycle C is extendable if there exists a vertex v /∈ V (C)
such that G[V (C) ∪ {v}] is Hamiltonian. A graph G is cycle extendable if all non-
Hamiltonian cycles are extendable. In the same paper, Hendry showed that a graph G
of order n ≥ 3 is cycle extendable if d(u) + d(v) ≥ n+ 1 for every pair of nonadjacent
vertices u and v. Graphs satisfying the above degree conditions must be very dense
(in edges). To study the cycle structure of graphs less dense, usually some other
structural properties are imposed, for example, planarity.

In 1931, Whitney [15] proved that every 4-connected plane triangulation contains
a Hamiltonian cycle. In 1956, Tutte [13] extended that result to 4-connected planar
graphs. Malkevitch [9] conjectured that every 4-connected graph containing a C4 is
pancyclic. Combining results from [12, 11, 3], we know that every 4-connected planar
graph of order n ≥ 9 contains cycles of length n − i for i = 1, . . . , 6. These results
use the approach of finding shorter cycles from long cycles. However, this approach
cannot demonstrate why C4s should play an important role in 4-connected planar
graphs being pancyclic. Thus, constructing larger cycles from smaller cycles might be
a better approach. Hence, cycle extendable graphs take on added importance.

For any graph H, let c(H) denote the number of connected components of H.
Let t > 0 be a positive number. We say a graph is t-tough if |A| ≥ t · c(G − A) for
all cuts A ⊆ V (G). Clearly, every Hamiltonian graph is 1-tough. On the other hand,
a longstanding conjecture of Chvátal [5] states that there exists a constant t such
that every t-tough graph is Hamiltonian. Although this conjecture remains open,
Chen et al. [4] showed that all 18-tough chordal graphs are Hamiltonian. Note that
a chordal graph containing a cycle Ck also contains a cycle Ck−1 if k ≥ 4. Repeating
this argument, we see that all chordal Hamiltonian graphs are pancyclic. Hendry [7]
gave the following conjecture.

Conjecture 1.1. All Hamiltonian chordal graphs are cycle extendable.

The purpose of this paper is to prove that Conjecture 1.1 is true for a special
class of chordal graphs, namely interval graphs.

Theorem 1.2. All Hamiltonian interval graphs are cycle extendable.

The proof of Theorem 1.2 will be given in section 3. In section 2 we will develop
necessary properties of interval graphs.

Keil [8] designed a linear algorithm to find a Hamiltonian cycle in an interval
graph. One consequence of his algorithm is that an interval graph is Hamiltonian
if and only if it is 1-tough. We will heavily use this fact in our proof. For 1-tough
Hamiltonian graphs, a cut A of G is called critical if c(G − A) = |A|. Let C be
a Hamiltonian cycle of G and A be a critical cut of G; then the vertex sets of the
components of G − A are exactly those of the components of C − A. The following
lemma regarding critical cuts on Hamiltonian graphs will be needed in our proof, and
its proof is straightforward.
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Lemma 1.3. Let G be a Hamiltonian graph with a Hamiltonian cycle C. If A is
a cut of G such that all segments of C − A induce components of G− A and A does
not contain two consecutive vertices of C, then A is a critical cut of G.

For any two disjoint intervals A and B on the real number line, we let d(A,B)
denote the distance between A and B. Let G be an interval graph. For each vertex
v ∈ V (G), let I(v) denote the corresponding interval called the representation of v.
For each W ⊆ V (G), let I(W ) =

⋃
v∈W I(v). For each subgraph H of G, we define

I(H) = I(V (H)). Clearly, I(H) is also an interval of the real line if H is connected.
Since only finite simple graphs will be considered in this paper, we assume that I(v) is
a closed interval for each v ∈ V (G). For each interval I = [a, b], we call a the left-end
of I and b the right-end of I. We say a vertex v is on the left side of w (or equivalently
w is on the right side of v) if a ≤ b for all a ∈ I(v) and b ∈ I(w). For any two vertex
subsets U and W , we say that U is on the left side of W if u is on the left side of w
for any u ∈ U and w ∈ W .

2. Paths and cycles in interval graphs. In this section we will review some
properties of interval graphs. Most of these properties are given in [8]. A clique D is a
subgraph of G such that all vertices in D are mutually adjacent. This is equivalent to
the property that the intersection of the corresponding intervals is not empty. Thus,
a clique D can be represented by a point p which is contained in each of the intervals
corresponding to the vertices of D. Note, however, that different cliques may have the
same representative. A clique is maximal if there is no other clique containing this
clique as a proper subgraph. It is not difficult to see that different maximal cliques
must have different representatives. By selecting a representative p for each maximal
clique D and ordering all maximal cliques from left to right on the real number line by
their representative points, Gilmore and Hoffman [6] obtained the following property.

Lemma 2.1. The maximal cliques of an interval graph G can be linearly ordered,
such that, for every vertex x of G, the maximal cliques containing x occur consecu-
tively.

We name such an ordering D1, D2, . . . , Dm the linear order of cliques, where a
maximal clique is named Di if its representative point pi is the ith smallest represen-
tative of the maximal cliques of G.

A vertex v that appears in a maximal clique Di is called a conductor for Di if
v also appears in the maximal clique Di+1. Clearly, the interval corresponding to v
contains the interval [pi, pi+1]. Let

L(Di) := {D1, D2, . . . , Di} and L̃(Di) := {Di+1, . . . , Dm}.

A path P in G is spanning for L(Di) if P contains all vertices of G not appearing in
L̃(Di) and P has two conductors of Di as endvertices. Let Ri be the set of representa-
tives of the maximal cliques containing vertex vi. A point embedding Q of a path P :
v1v2 . . . vn is an assignment of a real number q(vi) ∈ Ri to vi such that q(vi) ∈ Ri+1

for 1 ≤ i ≤ n− 1. A path is straight if it has a point embedding Q with the property
that q(vr) ≤ q(vr+1) for 1 ≤ r ≤ n− 1. The following lemma is due to Keil [8].

Lemma 2.2. Given a path P with point embedding Q, in an interval graph G,
with an endpoint v1 that appears only in D1, there exists a straight path P ′, with v1

as an endpoint, that has the same vertex set as P and has a point embedding Q′ that
has the same point set as Q.

A path P , with endvertices u and v, that spans L(Di) is said to be U -shaped if
there exists a vertex x in P that appears only in D1 such that the two subpaths of
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Fig. 1. A standard cycle.

P from x to u and from x to v are straight. Such a vertex x is called the base of the
U -shaped path P . The point embedding of w in the U -shaped path P is the point
embedding of v in the path from x to u if w lies on this path; otherwise it is the
point embedding of v in the path from x to v. We denote the embedding by qP . The
following result is also due to Keil [8].

Lemma 2.3. If G is an interval graph with m maximal cliques, then G has a
Hamiltonian cycle if and only if there exists a U -shaped spanning path for L(Di),
1 ≤ i ≤ m− 1.

Based on Lemma 2.3, for every Hamiltonian interval graph there is a Hamiltonian
cycle C and two vertices x ∈ D1 and y ∈ Dm such that both x-y paths induced by
C are straight, x appears only in D1, and y appears only in Dm. We name such
a Hamiltonian cycle a standard Hamiltonian cycle (see Figure 1) and denote it by
(C : x, y) with distinguished vertices x and y. We also denote the embedding by qC .
Keil [8] also showed the following lemma.

Lemma 2.4. An interval graph with at least 3 vertices is Hamiltonian if and only
if it is 1-tough.

Lemma 2.5. Let G be a 2-connected chordal graph and e an edge of G. Then e
is on a triangle of G.

Proof. Let T be a smallest cycle containing e. Since every cycle of length at least
4 must contain a chord, T is a triangle.

3. Proof of Theorem 1.2. Suppose, to the contrary, there is a Hamiltonian
interval graph G and a non-Hamiltonian cycle C of G such that C is not extendable.
Furthermore, we assume that |G|, the order of G, is minimum with respect to this
assumption.

The strategy of the proof is to find a critical cut A of H = G[V (C) ∪ {v}] such
that H − A has |A| components, there is a component of G − V (H) adjacent only
to vertices in A, and every other component of G− V (H) is adjacent only to A and
vertices in at most one component of H−A. Thus, G−A has more components than
|A|, a contradiction to the fact that G is 1-tough (violating Lemma 2.4).

Since C is a Hamiltonian cycle in G[V (C)], we can assume that there exist two
vertices x and y such that (C : x, y) is a standard Hamiltonian cycle of G[V (C)].
Further, x appears only in D1 and y appears only in Dm, where the ordering of
D1, D2, . . . , Dm is the linear ordering of maximal cliques of G[V (C)]. Let P1 and P2

be the two x-y paths induced by C. Let qi be an embedding of Pi for each i = 1,
2, respectively. Since x appears only in D1, all neighbors of x are adjacent. So,
without loss of generality, we assume that q1(x) = q2(x). Similarly, we assume that
q1(y) = q2(y). For convenience, we define qC(v) = qi(v) if v ∈ Pi.

Let B be a Hamiltonian cycle of G and assume that B has a given orientation.
Since B is a cycle, B−V (C) is a union of disjoint segments. Let B(ai, bi), i = 1, 2, . . . ,
denote those nonempty segments, where ai and bi are in V (C). A segment B(ai, bi) is
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a type-1 segment if ai and bi are adjacent in G. Otherwise, we call B(ai, bi) a type-2
segment.

Claim 3.1. If B(ai, bi) is a type-1 segment, then there is a vertex ci ∈ B(ai, bi)
such that ci is adjacent to both ai and bi.

Proof. Since aiB(ai, bi]ai is a cycle and G is a chordal graph, by Lemma 2.5, aibi
is on a triangle in the subgraph induced by this cycle. Let ci be the other vertex of
this triangle. Clearly, ci is adjacent to both ai and bi.

Claim 3.2. All B(ai, bi) are type-2 segments.

Proof. Suppose, to the contrary, that B(a1, b1) is a type-1 segment. Let G∗ =
G− V (B(a1, b1)) and B∗ = B ∪ {a1b1} − V (B(a1, b1)). Clearly, B∗ is a Hamiltonian
cycle of G∗ and V (G∗) ⊃ V (C). If |G∗| > |C|, G∗ is cycle extendable by the induction
hypothesis. Thus, C is extendable in G∗, so it is extendable in G, a contradiction. If
|G∗| = |C|, then by Claim 3.1, there exists c1 ∈ B(a1, b1) such that a1c1, b1c1 ∈ E.
Then, C∗ = B[b1, a1]c1b1 is an extension of C, a contradiction.

Let H := G[V (C)] and for any v ∈ V (G) − V (C) let Hv := G[V (C) ∪ {v}]. The
following claim is a direct consequence of the fact that cycles are 1-tough.

Claim 3.3. If A is a critical cut of H, then A does not contain two consecutive
vertices of C and all segments of C − A induce components of H − A. Thus, all
segments of C −A induce disjoint intervals on the real line.

Claim 3.4. If v �∈ V (H) has at least two neighbors in H, there exists a nontrivial
critical cut A of H such that N(v) ⊆ A.

Proof. Since Hv is a non-Hamiltonian interval graph, it is not 1-tough. Hence,
there is a cut A of Hv such that c(Hv − A) ≥ |A| + 1. Since H is a Hamiltonian
interval graph, it is 1-tough. Thus, v itself is a component of Hv − A, A is a critical
cut of H, and N(v) ⊆ A.

Claim 3.5. For each segment B(ai, bi) there exists ci ∈ B(ai, bi) such that ci has
two neighbors on C. Thus, H has a nontrivial critical cut.

Proof. Since I(ai) ∩ I(bi) = ∅, let I denote the interval between I(ai) and I(bi).
Then, I ⊆ I(B(ai, bi)). Let ci ∈ B(ai, bi) such that I(ci)∩I(ai) �= ∅ and I(ci)∩I �= ∅.
Since C is connected, I ⊆ I(C), so that there exists di ∈ V (C) − {ai, bi} such that
cidi ∈ E. Thus, |NC(ci)| ≥ 2, and we are done by Claim 3.4.

Claim 3.6. Let A be a nontrivial critical cut of H. Then, I(S) are disjoint
intervals for all components S ⊆ H − A. If there exists a path P in G − V (C)
connecting two components S and T of H − A, then I(S) and I(T ) must be two
consecutive intervals in I(H −A).

Proof. The first part of Claim 3.6 is trivial. To prove the second part of the
claim, suppose, to the contrary, there is a component R of H − A such that I(R) is
between I(S) and I(T ). So I(R) ⊂ I(P ). Let r ∈ R. Then, qC(r) ∈ I(r) ⊂ I(P ),
so that there is a vertex w ∈ P such that qC(r) ∈ I(w). Since qC(r) is contained in
two consecutive vertices of C, w can be inserted into cycle C to make a larger cycle,
which is a contradiction.

Recall that (C : x, y) is a standard Hamiltonian cycle in H. If A is a critical cut
of H, A does not contain two consecutive vertices of C and each component of C −A
induces a component of H −A.

Claim 3.7. For any nontrivial critical cut A of H, x �∈ A and y �∈ A.

Proof. Since x ∈ D1, all neighbors of x in H are adjacent. Thus, x �∈ A. Similarly,
y �∈ A.

Claim 3.8. For every component D of G−V (C), there exists a nontrivial critical
cut A of H such that N(D) ⊆ A; i.e., all neighbors of D are in A.
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Proof. Let D be a component of G− V (C) and v ∈ D. We assume, without loss
of generality, v ∈ B(a1, b1). By Claim 3.4, let A := Av be a critical cut of H such
that NC(v) ⊆ A.

Note that I(H − A) is a union of disjoint intervals and each such interval corre-
sponds to a component of H −A. Let L be the component of H −A such that I(L)
is the closest interval of I(H − A) on the left side of v and let R be the component
of H − A such that I(R) is the closest interval of I(H − A) on the right side of v.
Since A is critical and NC(v) ⊆ A, such components L and R exist. We assume that
|V (L)| + |V (R)| is at its minimum over all nontrivial critical cuts A := Av.

We claim that NH(D) ⊆ A. Suppose, to the contrary, that NH(D) �⊆ A; then we
have NH(D) ∩ V (L ∪R) �= ∅. Assume, without loss of generality, that for w ∈ D, we
have NC(w) ∩ V (R) �= ∅ and distD(v, w) is minimum with this property. Let P [v, w]
be a shortest path in D connecting v and w. Then, N(P [v, w)) ∩R = ∅.

Since N(w) ∩ R �= ∅ and N(P [v, w)) ∩ R = ∅, I(w) must contain the left-
end of I(R). Since there are two paths from x to R along C, then |NC(w)| ≥ 2.
By Claim 3.4, let A∗ := Aw, be a nontrivial critical cut of H such that NC(w) ⊆ A∗.
Let

AL = {a ∈ A : a is on the left side of w},

A∗
R = {a∗ ∈ A∗ : a∗ is not on the left side of a},

X = AL ∪A∗
R.

We will show that X is a critical cut of H. Note that
• each component S of H − X such that I(S) is on the left side of I(w) is a

component of H −A,
• each component S of H −X such that I(S) is on the right side of I(w) is a

component of C −A∗, and
• there is no component S of H −X such that I(S) is between I(v) and I(w).

Thus, X is a cut of H, and, by Claim 3.3, in order to show that X is a critical cut,
we need only show that X does not contain two consecutive vertices of C. Suppose, to
the contrary, there are two consecutive vertices a and b on C and a, b ∈ X. Without
loss of generality, we assume that a ∈ A \ A∗ and b ∈ A∗ \ A. By the definition of
X, a is on the left side of w and b is not on the left side of w. Thus, b ∈ R. Since
qC(a) is on the left side of w and qC(a) ∈ I(b) (because a and b are consecutive on
C), I(P [v, w)] ∩ I(b) �= ∅, which contradicts the minimality of P [v, w].

Let R∗ be the component of H − X such that I(R∗) is the closest interval of
I(H −X) on the right side of w and let I := I(P [v, w]). Note that if x ∈ V (C) such
that I(x)∩I �= ∅, then either x ∈ A∗ or x ∈ A. In any case, we have that x ∈ X. Note
that R is induced by a segment of C. Let y0 be the first vertex along the segment
of R from left to right such that y0w ∈ E(G). Without loss of generality, we assume
that y0 ∈ P1. Let x0 be the predecessor of the segment R along P1 from x to y and
let x−

0 be the predecessor of x0. Since X does not contain two consecutive vertices
of C and x0 ∈ X, qC(x−

0 ) must lie on the left side of I(R). Since C is a standard
cycle of H, qC(x−

0 ) /∈ I. Thus, qC(x−
0 ) is on the left side of the interval of c1. Thus,

x0 ∈ A∩A∗. Let S be the segment of R from the first vertex of R to the predecessor
of y0. We first note that S �= ∅ (since X does not contain two consecutive vertices).
Thus, S is a component of H −X.

We claim that |V (R∗)| < |V (R)|, which leads to a contradiction of the minimality
of |V (L)| + |V (R)|. This is certainly true if R∗ = S ⊂ R. Suppose R∗ �= S. Then,
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I(R∗) is between I(w) and I(S). From the definition of R and S, we have R∗ ⊆ A.
Since A does not contain two consecutive vertices of C, |V (R∗)| = 1. Since |V (R)| ≥
|V (S)| + 1 ≥ 2, we have |V (R∗)| < |V (R)|, as desired.

Let D1, D2, . . . , Dm be the components of G − V (C). Assume, without loss of
generality, that I(Di) is on the left side of I(Dj) whenever i < j. By Claim 3.8, for
each Di, I(Di) ⊆ I(C) and there exists a nontrivial critical cut Ai of H such that
N(Di) ⊆ Ai. Let LAi = {a ∈ Ai | a is on the left side of Ai} and RAi = A − LAi.
We now inductively define Bi for each i = 1, 2, . . . ,m as follows: B1 = A1 and, for
each i > 1, if Di is adjacent to at most one component of H − Bi−1, let Bi = Bi−1.
Otherwise, let

Bi = {b ∈ Bi−1 | b is on the left side of Di} ∪RAi.

Claim 3.9. Bi is a nontrivial critical cut for each i = 1, 2, . . . ,m.
Proof. Claim 3.9 is true for i = 1. Suppose it is true for i− 1 ≥ 1. If Bi = Bi−1,

then it is also true for i. So, we assume that Bi �= Bi−1. In this case, let L and R
be two components of H − Bi−1 such that N(Di) ∩ L �= ∅ and N(Di) ∩ R �= ∅. By
Claim 3.6, I(L) and I(R) are two consecutive intervals of I(H −Bi−1). Furthermore,
I(Di) contains the interval between L and R as a subinterval. Note that components
of H −Bi on the left side of Di are those of H −Bi−1 and components of H −Bi on
the right side of Di are those of H − Ai. In order to show that Bi is a critical cut,
we only need show that Bi does not contain two consecutive vertices of C. Suppose,
to the contrary, a and b are two consecutive vertices on C such that a ∈ Bi−1 \ Ai

and b ∈ Ai \ Bi−1. Since b �∈ Bi−1, qC(a) ∈ I(a) ∩ I(b) must be on the right side
of L. Similarly, qC(a) must be on the left side of R. Thus, qC(a) ∈ I(Di), so that
there exists w ∈ I(Di) adjacent to both a and b. Then, C is extendable, which is a
contradiction.

By the definition, we have N(D1) ⊆ Bm and, for each i > 1, either N(Di) ⊆ Bm

or Di is adjacent to at most one component of H − Bm. Since H − Bm has exactly
|Bm| components, G − Bm has at least |Bm| + 1 components, which contradicts the
fact that G is 1-tough. This contradiction completes the proof.

Note: Just at the time of submission we were informed of another proof of this
result in [1].

Acknowledgment. We thank the referees for their useful suggestions which led
to a simpler proof.
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