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Abstract. For a fixed multigraph H , possibly containing loops, with V (H) = {h1, . . . , hk},
we say a graph G is H -linked if for every choice of k vertices v1, . . . , vk in G, there exists a
subdivision of H in G such that vi represents hi (for all i). This notion clearly generalizes
the concept of k-linked graphs (as well as other properties). In this paper we determine, for
a connected multigraph H and for any sufficiently large graph G, a sharp lower bound on
δ(G) (depending upon H ) such that G is H -linked.

1. Introduction

For terms not defined here, see [1]. Let H be a multigraph, possibly containing loops.
For any graph G, let P(G) denote the set of paths in G. An H -subdivision in G is a
pair of mappings f1 : V (H) → V (G) and f2 : E(H) → P(G) such that:

(i) f1 is injective;
(ii) for every edge xy ∈ E(H), f2(xy) is an f1(x) − f1(y) path in G and distinct

edges of H map to internally disjoint paths in G.

A graph G is H -linked if every injective map f1 : V (H) → V (G) can be extended
to an H -subdivision. The vertices in f1(V (H)) are called the ground vertices. Thus,
we can say that G has a subdivision of H whose ground vertices are prescribed. This
idea originated with Jung [2], but had not been considered for arbitrary H until
recently, when the concept was considered in [7] and [3].

A graph is k-linked if for every sequence of 2k vertices, v1, . . . , vk, w1, . . . , wk,
there are internally disjoint paths P1, . . . , Pk such that Pi joins vi and wi . Clearly,
the concept of graphs being H -linked generalizes that of being k-linked. In fact, if
H = kK2, then G is k-linked if, and only if, G is H -linked. Further, a graph G is said
to be k-ordered if for every sequence of k vertices v1, . . . , vk there is a cycle in G that
encounters the vertices v1, . . . , vk in the specified order. If H is a k-cycle, then G is
H -linked if and only if G is k-ordered. Thus, the property of being H -linked also
generalizes the property of being k-ordered. Other such connections are explored
in [3].

A common question dealing with k-linked graphs is to find the minimum con-
nectivity f (k) such that every f (k)-connected graph is k-linked. At this time the
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best know result is that every 10k-connected graph is k-linked [6]. The literature also
contains numerous results pertaining to the minimum number of edges needed to
assure a graph G contains a subdivision of some graph H. For a survey of results
of this type, see [5].

The purpose of this paper is to provide a sharp minimum degree condition such
that any such sufficiently large graph G will be H -linked. This bound will depend
on the multigraph H . In order to present our result, we first need some notation.

All multigraphs in this paper will be assumed to have labeled vertices. An edge
is proper if it is not a loop. We denote by dH (w), the degree of w in H , which is
the number of proper edges incident to w, plus twice the number of loops at w.
Additionally, for a given subgraph H ′ of G, let NH ′(x) denote the set of vertices in
H ′ that are adjacent to x in G. This set is the neighborhood of x in H ′. If F1 and F2
are two subgraphs of H , then EH (F1, F2) will represent the set of edges having one
end-vertex in F1 and the other end vertex in F2 and eH (F1, F2) = |EH (F1, F2)|.

Now consider a connected multigraph H , possibly with loops. Let

η(H) = maxX⊂V (G)e(X, V (G) − X)

denote the maximum size of a bipartite subgraph in H , or in other words, the size
of a maximum edge cut in H .

Our main result will be: Given a connected multigraph H , possibly with loops,
if G is sufficiently large and δ(G) ≥ n+η(H)−2

2 , then G is H -linked. To see that this
minimum degree is needed, suppose that the multigraph H has η(H) as the maxi-
mum size of a bipartite subgraph. Also suppose that this cut determines a partition
of V (H) into sets X and Y . Now suppose that G is formed from two complete graphs
G1 and G2, each of order m, that intersect on η(H) − 1 vertices. If the set S chosen
as the image of V (H) under f1 is such that the vertices of X lie in G1 − G2 and the
vertices of Y lie in G2 − G1, then clearly G1 ∩ G2 is not large enough to allow an
embedding of H . Further, δ(G) = m − 1. Since |V (G)| = 2m − η(H) + 1, we see
that δ(G) = n+η(H)−3

2 . Thus, the minimum degree condition is necessary.

2. Main Result

For convenience we let η = η(H). We now state our main result.

Theorem 2.1. Let H be a connected multigraph on k vertices. If G is a graph of suffi-
ciently large order n and δ(G) ≥ n+η−2

2 , then G is H -linked. Furthermore, on any path
between ground vertices in G, there will be at most two intermediate vertices.

Proof. Let G be as above and let S ⊂ V (G) be the image of f1, that is, the ground
vertices in G. For convenience, until the end of the proof, we will remove any loops
from H . Our goal is to show that we can construct the necessary subdivision of H

in G, using paths with at most two intermediate vertices between ground vertices.
After this, we will build the paths corresponding to loops. These will also contain
at most three intermediate vertices.
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Clearly, by the minimum degree condition, any two nonadjacent vertices x, y ∈
G satisfy |NG(x) ∩ NG(y)| ≥ η. We first note that for any two vertices x, y ∈ S such
that f −1

1 (x)f −1
1 (y) ∈ E(H) and x and y are adjacent in G, then x and y already

have the desired path between them.
We now define the auxiliary graph L as follows: Let V (L) = S and let E(L)

consist of all edges xy where x, y ∈ S are such that f −1
1 (x)f −1

1 (y) ∈ E(H), x and y

are not adjacent in G and

|NG−S(x) ∩ NG−S(y)| ≤ 3|E(H)| − 1. (1)

Our goal will be to link in G these pairs from L with at most two intermediate
vertices. We will then show we can link the remaining nonadjacent pairs with single
vertices. �

Claim 2.1.1. The graph L is bipartite.

Proof. Suppose not and let C be the shortest odd cycle in L, and assume that for
some integer t > 1 the vertices of C are, in order,

x1, y1, . . . , xt−1, yt−1, xt .

By our construction of L, the common neighborhood in G of y1 with either x1 or
x2 is at most 3|E(H)| < 3k2. This, combined with the fact that δ(G) > n

2 implies
that

|NG(x1) ∩ NG(x2)| = (1 − o(1))
n

2
. (2)

Since there are at most k(= o(n)) vertices in C, the reader can verify that the
neighborhood intersections of x1, . . . , xt and y1, . . . , yt−1 both have order n

2 . How-
ever, this contradicts the fact that x1xt is an edge in L, implying that no such odd
cycle C exists. �

Let X and Y be the partite sets of L. We will impose this partition on S and H

when necessary. Let ZX = {x ∈ X : dL(x) = 0} and ZY = {y ∈ Y : dL(y) = 0}.
Further, let

UX = {u ∈
⋂

x∈X−ZX

NG−S(x) : u /∈ (
⋃

y∈Y−ZY

NG−S(y))},

that is, UX is the set of common neighbors in G − S of all vertices in X − ZX, that
are also not neighbors of any vertex in Y − ZY . Similarly, let

VY = {v ∈
⋂

y∈Y−ZY

NG−S(y) : v /∈ (
⋃

x∈X−ZX

NG−S(x))}.

Lemma 2.1. |UX| = (1 − o(1)) n

2(k/2)+1 and |UY | = (1 − o(1)) n

2(k/2)+1 .
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Proof. Let C1 = X1 ∪ Y1 and (if it exists) C2 = X2 ∪ Y2 be nontrivial components
of L. Let NX

i := ⋂
x∈Xi

NG−S(x), and let NY
i := ⋂

y∈Yi
NG−S(y). As in the proof

of Claim 2.1.1, |NX
1 | ≥ (1 − o(1)) n

2 , and |NY
1 | ≥ (1 − o(1)) n

2 . Also, note that NX
1

and NY
1 are almost disjoint. Now choose vertices x ∈ X2 and y ∈ Y2 such that

xy ∈ E(L). The vertices of X2 within G have a large common neighborhood in
G − S, and the same is true for the vertices of Y2 within G. Thus, either

(|N(x) ∩ NX
1 | ≥ (1 − o(1))

|NX
1 |

2
and |N(y) ∩ NY

1 | ≥ (1 − o(1))
|NY

1 |
2

);
or,

(|N(x) ∩ NY
1 | ≥ (1 − o(1))

|NY
1 |

2
and |N(y) ∩ NX

1 | ≥ (1 − o(1))
|NX

1 |
2

).

If the latter case is true, reverse the labels of X2 and Y2. These observations,
combined with (2), imply that all of the vertices in X1 ∪ X2 have a common neigh-
borhood within G − S of order (1 − o(1)) n

4 , and all of the vertices in Y1 ∪ Y2 have
a common neighborhood within G − S of order (1 − o(1)) n

4 . Inductively, it is easy
to see that if C1, . . . , Cr are the nontrivial components of L, then

|
r⋂

i=1

UG−S(Xi)| ≥ (1 − o(1))
n

2r+1
≥ (1 − o(1))

n

2(k/2)+1

and

|
r⋂

i=1

UG−S(Yi)| ≥ (1 − o(1))
n

2r+1
≥ (1 − o(1))

n

2(k/2)+1
,

where UG−S(Xi) represents the common neighborhood in G − S of the vertices in
Xi , and UG−S(Yi) represents the common neighborhood in G − S of the vertices in
Yi .

Let NX and NY denote the common neighborhoods of the vertices in X − ZX

and Y − ZY respectively. Note that NX − S = ∩i=1UG−s(X − i). We wish to show
almost none of the vertices in NX are adjacent to any vertex in Y −ZY and, similarly,
almost none of the vertices in NY are adjacent to any vertex in X − ZX.

We can accomplish this by showing that for any x in X −ZX and all but at most
O(k4) vertices v in NG−S(x), v is not adjacent to any vertex in Y − ZY that lies in
the same component of L as x. Consider any edge xy in some component C of L.
By the definition of L, we know that in G, x and y have at most 3|E(H)| < 3k2

vertices in their common neighborhood. As above, the vertices of C∩X have at least
(1 − o(1)) n

2 other vertices in their common intersection. As each vertex in C ∩ X

is adjacent in L to at least one vertex from Y , and possibly all of them, there are at
least

(1 − o(1))
n

2
− 3k2|X||Y | ≥ (1 − o(1))

n

2
− 3k4 = (1 − o(1))

n

2
(3)

vertices in the common neighborhood of C ∩ X that are not adjacent to any of the
vertices in C ∩ Y .
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Thus, for any non-trivial component Ci of L, nearly all of the vertices in NX
i are

not adjacent to Ci ∩ Y . Therefore, at least

(1 − o(1))|NX| ≥ (1 − o(1))
n

2(k/2)+1
(4)

vertices in NX are not adjacent to any vertex in Y − ZY and hence are in UX. The
proof is similar for VY . �

Lemma 2.2. Let u ∈ UX, v ∈ VY , x ∈ X and y ∈ Y and let z be the number of vertices
of degree 0 in L. Then d(u, NG−S(y)) + d(v, NG−S(x)) ≥ η − z.

Proof. Let u be a vertex of UX. Let zX and zY be the number of vertices of degree
0 in L lying in the sets X and Y , respectively. Then

d(u, NG−S(y)) = d(u) − d(u, S) − d(u, G − S − NG−S(y))

≥ n + η − 2
2

− d(u, X) − d(u, Y ) − (n − k − 1 − dG−S(y)).

However by our definitions of UX and VY , u is not adjacent to any vertices of Y

with nonzero degree in L. Thus,

d(u, NG−S(y)) ≥ n + η − 2
2

− |X| − zY − n + k + 1 + dG−S(y)

≥ n + η − 2
2

− |X| − zY − n + k + 1 + d(y) − d(y, X) − d(y, Y )

≥ n + η − 2 − |X| − zY − n + k + 1 − d(y, X) − |Y | + 1

≥ η + k − |X| − |Y | − zY − d(y, X)

= η − d(y, X) − zY .

Similarly, d(v, NG−S(y)) ≥ η − d(x, Y ) − zX. Therefore,

d(u, NG−S(x)) + d(v, NG−S(y)) ≥ 2η − d(x, Y ) − d(y, X) − zX − zY

≥ η − z. �

Lemma 2.3. Let M be a connected graph and let W, Z be a vertex partition of V (M).
Then for any F ⊆ V (M),

e(W − F, Z − F) ≤ η(M) − |F |.

We proceed by induction. First, assume that F = {v}. Without loss of generality,
we may assume that v is in W . Let W ′ denote W − {v}.

If the result fails, then e(W ′, Z) = η(M). As M is connected, either W ′ or Z must
contain some x that is adjacent to v in M, say W ′. Then, W ′, Z ∪ {v} is a partition
of the vertices of M, but

e(W ′, Z ∪ {v}) > e(W ′, Z) = η(M),

a contradiction.
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Now, assume that |F | = p and assume that there is some partition of V (M) into
sets W and Z such that e(W −F, Z−F) ≥ η(G)−p+1. Since M is connected, there
is some vertex v in F such that v is adjacent to, without loss of generality, some w in
W . If we denote F −{v} by F ′, the induction hypothesis implies that there is no par-
tition of V (M−F ′) into sets W ′ and Z′ such that e(W ′−F ′, Z′−F ′) ≥ η(M)−p+2.
However, this is clearly contradicted by choosing W ′ = W and Z′ = Z ∪{v}. Hence
the lemma holds. �

This implies that if there are exactly j isolated vertices in L, then L has at most
η(H) − j edges. Now we can proceed to patch the edges of H represented in L.

Assume that we have constructed as many paths in G representing edges from L

as possible using two intermediate vertices, and then constructed as many remaining
paths as we could using one intermediate vertex. Let xy be an edge in L that has
not yet been mapped, and let u be in UX and v be in VY . Applying Lemma 2.3 to
the degree sum in Lemma 2.2 we have that

|NG−S(u) ∩ N(y)| + |NG−S(v) ∩ N(x)| ≥ |E(L)|. (5)

Let x′y′ be some edge in L with x′ in X and y′ in Y that has already been mapped.
We consider two cases.

Case 1. The path representing x′y′ has been constructed with one intermediate ver-
tex.

Let w be the intermediate vertex used and assume that both u and v are adjacent
to w in G. Recall that by our choice of u and the definition of UX, ux′ is an edge
in G. Then, x′uwy′ would patch the edge x′y′ and increase the number of patched
edges using 2 intermediate vertices, a contradiction. Thus, there is at most one edge
from u or v to w.

Case 2. The path representing x′y′ has been constructed with two intermediate ver-
tices.

Let these intermediate vertices be u′ and v′. One may assume that they lie in UX

and VY respectively. We wish to show here, as in Case 1, that there can be at most
one edge from u or v to u′ and v′ that is accounted for in (5).

Note that (5) counts only edges from u to the neighborhood of y and from v to
the neighborhood of x. Since u′ is not adjacent to any y in Y and v′ is not adjacent
to any x in X, the only possible way to account for two edge from (5) is if u′v and
v′u were both edges in G. However, then we could use the paths xu′vy and x′uv′y
to construct an additional path, contradicting our maximality assumption.

Thus, we have used at most one edge from the degree count in (5) for each
path already constructed. As there are at least η(H) − j such edges, and at most
η(H) − j − 1 paths already constructed, either u has an unused common neighbor
with y or v has an unused common neighbor with x, allowing us to construct the
path representing xy. Hence, by our maximality assumption, we can construct all
of the paths for edges represented in L.

Now that we have joined all of the pairs of vertices that correspond to edges in
L, it remains to show that we can join those pairs of vertices that correspond to the
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remaining edges. Let T ⊂ E(H) represent those edges already linked in G such that
E(L) ⊂ T . As above, assume that we have used at most 2 intermediate vertices to
link each pair.

Let x and y be vertices in S corresponding to an edge in E(H) − T . As xy is
not in L, (1) implies that there are at least 3|E(H)| vertices in G adjacent to both x

and y. At this point, we have linked at most |E(H)| − 1 pairs of vertices in T with
at most 2 intermediate vertices each. Together with the k − 2 other vertices in S,
there are at most

2(|E(H)| − 1) + k − 2 < 3|E(H)| (6)

vertices accounted for thus far. Hence, there is some vertex w adjacent to both x

and y that is not in S and is not being used to link any pair of vertices in S that
correspond to an edge in H . We may therefore link x and y in G with the path xwy.

At the start of the proof, we removed all loops from H . Thus far, we have man-
aged to embed this subgraph of H . Now, assume that H had loops l1, . . . , lm where
m may be arbitrarily large with respect to k. We will patch these loops using at most
three intermediate vertices. Consider some loop li+1 adjacent to some vertex x in
H , and assume that we have already dealt with l1, . . . , li . There are at most

3k2 + k + 3i = o(n)

vertices from the neighborhood of x already in use in our embedding. Call this set
of vertices V (x). If there is a pair of adjacent vertices in N(x) \ V (x), we can easily
embed li+1. If there is not, however, N(x) \V (x) is an independent set in G of order
at least (1 − o(1)) n

2 . In this case, our minimum degree condition implies that for
any pair of vertices a, b in N(x) \V (x) there is some vertex p in V (G) \N(x) that is
not being utilized in our embedding and is adjacent to both a and b. If so, we will
construct the path representing li+1 with the path apb. �

3. Remarks

As stated, this result holds for n sufficiently large. If H does not have exceedingly
many loops relative to k, then we require the order of n to exceed 2(k/2)+1 as in
Lemma 2.1. It is possible, however, that H may have arbitrarily many loops, in
which case, our bound for n would be based on |E(H)|. A. Kostochka and G. Yu
[4] have provided a linear bound on n for the case that H is a connected loopless
multigraph with minimum degree at least 2.

Once a graph G is known to be H -linked, it then becomes interesting to know
under what conditions an H -subdivision can be extended to a spanning H -subdi-
vision. This question is addressed in [3] and provides a generalization of a number
of well-known results.
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discrete mathematics (Štiřin Castle, 1997), 199–211, DIMACS Ser. Discrete Math. Theo-
ret. Comput. Sci., 49, Amer. Math. Soc., Providence, RI, 1999

6. Thomas, R., Wollen, P.: An improved bound for graph linkage. European J. Combinatorics
26, 309–324 (2005)

7. Whalen, T.: Degree conditions and relations to distance, extendability, and levels of con-
nectivity in graphs. Ph.D. Thesis, Emory University, August, 2003

Received: June 24, 2004
Final version received: December 5, 2005






