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Abstract

A 2-factor of a graph G consists of a spanning collection of vertex disjoint cycles.
In particular, a hamiltonian cycle is an example of a 2-factor consisting of precisely one
cycle. Harary and Nash-Williams characterized graphs with hamiltonian line graphs.
Gould and Hynds generalized this result, characterizing those graphs whose line graphs
contain a 2-factor with exactly k (k > 1) cycles. With this tool we show that certain
properties of a graph G, that were formerly shown to imply the hamiltonicity of the
line graph, L(G), are actually strong enough to imply that L(G) has a 2-factor with k
cycles for 1 <k < f(n), where n is the order of the graph G.

1 Introduction

All graphs considered in this paper are simple graphs. For terms or notation not defined
here, see [4]. For a graph G, let N(v) denote the neighborhood of vertex v. A set S C V(G)
is said to be independent if uv ¢ E(G) for every u,v € S. The independence number of a
graph G, denoted a(G), is the size of a largest independent set of vertices of (. For a set
S C V(G) we use (S) to denote the subgraph induced by S.

A circuit of G is an alternating sequence C : vy, ey, vs, €3, ceey Upn, €m, V1 Of vertices and
edges of G, such that e; = vu;11, 1 =1,2,...m—1, e, = Um1, and e; # e; if § £ 5. A
circuit whose m vertices v; are distinct is called a cycle.

We define a dominating circuit of a graph G to be a circuit of G with the property that
every edge of G either belongs to the circuit or is adjacent to an edge of the circuit.

A star is the complete bipartite graph K 1,n- The vertex of degree n is termed the center
of the star and the vertices of degree 1 are the leaves. If a star has center w we often
denote it as S,,. Further, if we wish to specify a star centered at w with some specific leaves,
say a, b, c, we will denote it by S,(a,b,c). Note that there may be other leaves in S, not
specified.

The subgraph H of G is said to be a 2-factor of G if H spans G and for every v € V(H),
degy : v = 2. A trivial consequence of the definition is that every 2-factor of a graph G
consists of a spanning collection of vertex disjoint cycles. In particular, a hamiltonian cycle
is an example of a 2-factor consisting of precisely one cycle.

Farly studies of 2-factors centered on the question of existence, often of simply a hamil-

tonian cycle. More recently the focus in the area of 2-factors has shifted from the problem of
showing the existence of a 2-factor to that of showing the existence of 2-factors with specific
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structural features. In 1978 Sauer and Spencer [8] made the following conjecture along those
lines.

Conjecture 1 Let H be any graph on n vertices with mazimum degree A < 2. If G is a

graph on n vertices with minimum degree 6(G) > 2n/3 then G contains an isomorphic copy
of H.

In 1993 Aigner and Brandt [1] settled Conjecture 1 with a slight improvement.

Theorem 1 Let G be a graph of order n with 6(G) > (2n—1)/3, then G contains any graph
H of order at most n with A(H) < 2.

In the above result the minimum degree must be very high to guarantee that a graph
contains all possible 2-factors or 2-factors with a particular structure. Thus, a more relaxed
question would be: is there a lesser degree condition that will imply the existence of 2-factors
with k cycles for a range of k.

The following was shown in [2].

Theorem 2 Letk be a positive integer and let G be a graph of ordern. Ifdeg(z)+deg(y) > n
Jor all z,y € V(G) such that zy ¢ E(G), then G contains a 2-factor with k cycles for all k,
1<k<|n/4].

Note that Theorem 2 is a generalization of the classic hamiltonian result of Ore [7] for
the case when n > 4k. The complete bipartite graph K, /2,n/2 shows that this result is best
possible.

This type result naturally leads to the question of whether or not other hamiltonian
results can be extended in a similar manner.

The following is the well-known result of Harary and Nash-Williams [6] characterizing
graphs with hamiltonian line graphs.

Theorem 3 Let G be a graph without isolated vertices. Then L(G) is hamiltonian if, and
only if, G = Ky, for somen >3, or G contains a dominating circuit.

Given a graph G, we say that G contains a k-system that dominates if G contains a
collection of k edge disjoint circuits and stars, (K1n;,n; > 3), such that each edge of G is
either contained in one of the circuits or stars, or is adjacent to one of the circuits.

We will use a generalization of Theorem 3 that allows us to characterize those graphs
whose line graphs contain a 2-factor with exactly k(k > 1) cycles.

Theorem 4 (Gould, Hynds[5]) Let G be a graph with no isolated vertices. The graph L(G)
contains a 2-factor with k (k > 1) cycles if, and only if, G contains a k-system that domi-
nates.

The following result gives specific conditions on a graph G that imply that the line graph
L(G) is hamiltonian. Our goal is to generalize this result.

Theorem 5 (Brualdi, Shanny[3]) Let G be a graph with n > 4 vertices and at least one edge.
Suppose that for each edge zy € E(G), deg(x) + deg(y) > n, then L(G) is hamiltonian.



2 Extension

We now show that this same condition actually implies much more.

Theorem 6 Let G be a graph with n > 4 vertices and at least one edge. Suppose that for
each edge zy € E(G), deg(z) + deg(y) > n. Then L(G) has a 2-factor with k cycles for
k=1,.., 22

Proof: Let G be as in the theorem. We know from Theorem 5 that L(G) is hamiltonian,
thus the result holds when & = 1. We will proceed by induction on k. Suppose that L(G)
has a 2-factor with & — 1 cycles for k < |2:%]. We want to show that L((Y) then also has a
2-factor with k cycles. Suppose, by way of contradiction, that L(G) does not have a 2-factor
with k cycles. We know by Theorem 4 that G does have a dominating (k — 1)-system, but
does not have a dominating k-system. Let 2y € E(G), and consider a dominating (k — 1)-
system of G. We will let ¢ be the number of stars in this system and thus k — i — 1 is the
number of circuits.

Claim 1 All stars in this system have at most 5 edges.

Proof: Suppose there is a star with six or more edges. Then we can separate the star
into two smaller stars with at least 3 edges each. This gives us a dominating k-system in G
and a contradiction. O

Claim 2 The circuits in this system must be cycles.

Proof: Suppose there is a circuit in the system that is not a cycle. Then we can separate
the circuit into 2 edge disjoint circuits which again gives us a dominating k-system and a
contradiction. O

Now consider a vertex v € V(G). If v is the center of a star in our system then that star
contributes at least 3 to the degree of v. If the star actually consists of 4 (or 5) edges then
we will choose 1 (or 2) of those edges and say they are moveable. We say they are moveable
because if v appears elsewhere in our system, as the center of another star or as a vertex on
a cycle, we can move the edge(s) to that location of v without changing the basic structure
of our system. By this we mean that after moving the edge we still have a (k — 1)-system
with ¢ stars and k& — 1 — ¢ cycles. If v is incident to an edge that is dominated by a cycle in
our system, we will call that edge moveable as well.

Claim 3 A vertez v in our (k — 1)-system can be adjacent to at most 2 moveable edges.

Proof: Suppose we have a vertex v that is adjacent to 3 or more moveable edges. We can
use those edges to form a new star, centered at v, which when added to the (k — 1)-system
that remains gives us a dominating k-system and a contradiction. O

Now we will use the results of these 3 claims to establish upper bounds for deg(z) and
deg(y). Let [ be the number of stars in our system that have z as the center and m the
number of stars in our system that have y as the center. Thus we have i — [ — m stars in our
system that have neither x nor y as the center. For both z and y we will remove the moveable
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edges and count them separately. We now consider the maximum degree 2 can have. Each
star with - at the center contributes a total of 3 to deg(z). The entire collection of stars with
y at the center contributes at most 1 to deg(z). And the remaining stars, with neither z nor
y at the center, each contribute at most 1 to deg(x). Each cycle contributes at most 2 to
deg(r) and finally there are at most 2 moveable edges incident with z. Therefore, deg(z) <
l+1+1(i—m—1)+2(k—i—1)+2. Similarly, deg(y) < Im+1+1(i—m—1)+2(k—i—1)+2.

Now, the edge xy appears only once in the system so it cannot be the case that y is found
on a star with center z and x is found on a star with center y. Hence, we may subtract one
from our degree sum. It follows then that

deg(z) +deg(y) <3l +3m+1+2(i—m—1)+4(k—i—1)+4

=l4+m-—2i+4k+1
<i1—21+4k+1
<4k + 1.

But n < deg(z) + deg(y) which implies that n < 4k + 1 and thus k > ”—21. But this

contradicts our original assumption that k& < L”T_ZJ which means that L(G) does have a
2-factor with k cycles. O
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