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Abstract
Given a simple graph G on n vertices, let σ2(G) be the minimum

sum of the degrees of any two non adjacent vertices. The graph G
is said to be connected if any two distinct vertices may be joined by
a path. It is easy to see that if σ2(G) ≥ n − 1 then G is not only
connected, but we can choose the connecting path to be of size at
most two. Ore [4] proved that if σ2(G) ≥ n + 1 we may always choose
this path to cover all the vertices of G. In this paper we extend these
results to systems of vertex disjoint paths connecting two vertex k-sets
of G.

1 Preliminaries

In this paper, G = (V, E) will denote a simple loopless graph with |G| =
|V (G)| = n. The order and the size of a graph are respectfully the number
of vertices and the number of edges in this graph. Definitions and notation
that are not found here may be found in [2].

Let u, v ∈ V (G). If u 6= v, a [u, v]-path is a subgraph P of G constituted
of a sequence of distinct vertices

u = z1, z2, . . . , zp−1, zp = v

along with edges between zi and zi+1 (for all 1 ≤ i ≤ p−1). We will consider
a vertex u to be a [u, u]-path of order one; in this case we say the path is
singular. The size of a path is the number of it’s edges.
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A graph G is said to be connected if for any two distinct vertices u, v ∈
V (G), there is a [u, v]-path in G. In extremal graph theory, one is interested
in determining how large (or small) a given graph parameter has to be to
imply a given graph property. Consider the following parameter: Given a
non-complete graph G, let

σ2(G) = min{d(x) + d(y) : xy /∈ E(G)}.

We have the following simple Fact:

Fact 1 If G is a graph of order n with σ2(G) ≥ n− 1, then G is connected.

Indeed, take any two non-adjacent vertices u and v of G; since d(u)+ d(v) ≥
n − 1 > |G − u − v|, there must be a vertex w ∈ N(u) ∩ N(v), hence the
connectivity of G.

The distance dist(u, v) between two vertices u and v of a graph G is
defined to be the minimum size of a [u, v]-path. The diameter diam(G) of
G is the maximum possible distance between two vertices of G. If G is
disconnected (not connected) we let diam(G) = ∞. The argument of the
previous paragraph shows us the following:

Fact 2 If σ2(G) ≥ n− 1, then diam(G) ≤ 2.

Note that the condition σ2(G) ≥ n− 2 does not even ensure connectivity, as
exemplified by a graph having two complete components. This shows that
the lower bound σ2(G) ≥ n− 1 is best possible.

The graph G is said to be Hamilton-connected if for any pair (u, v) of
vertices of G, there exists a Hamilton path between u and v (that is, a [u, v]-
path covering all the vertices of G). Ore [4] proved:

Theorem 1 If σ2(G) ≥ n + 1 then G is Hamilton-connected.

The lower bound on σ2(G) is the best possible, as exemplified by a balanced
complete bipartite graph (a graph composed of two sets X and Y of n

2
vertices

each, no edges inside X or Y , but all edges between X and Y ).
In this paper we wish to generalize these concepts of extremal size paths

between two vertices found in Fact 2 and Theorem 1 to the idea of extremal
size path systems between two k-sets of vertices.

A graph G is said to be k-connected if one must remove at least k vertices
to either disconnect the graph, or leave only one vertex. In other words, G
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is k-connected if for any set S ∈ V (G), if G−S has only one vertex, or more
than one component, then |S| ≥ k. The connectivity κ(G) of a graph G is
the maximum k such that G is k-connected.

Definition 1 A path-system P of G is a family of vertex-disjoint paths
P1, . . . , Pk of G. Let Sk(G) be the family of all path-systems of G of or-
der k.

As a consequence of Menger’s famous theorem of 1927 [3], we have the
following

Theorem 2 A graph G is k-connected if and only if for any pair (A, B) of
disjoint k-sets of V (G), there exists a path-system P = {P1, . . . , Pk} such
that for all i ∈ [k], Pi is a [ai, bi]-path, {a1, . . . , ak} = A, and {b1, . . . , bk} =
B.

In light of the equivalence pointed out by Theorem 2, graph theorists
were brought to the following strong connectivity condition:

Definition 2 A graph G is said to be k-linked if for every 2k distinct vertices
a1, . . . , ak, b1, . . . , bk, G has a path-system P = P1, . . . , Pk such that, for all
i, Pi is an [ai, bi]-path.

We will generalize the idea of distance by using the concepts of connec-
tivity described in Theorem 2 and Definition 2 since these both extend the
idea of a path between two vertices to the idea of a system of vertex-disjoint
paths between two disjoint k-sets of vertices. Let us mention right away the
discrepancies and problems we will encounter in this generalization.

First, note that each path of the path-systems of Definition 2 has specified
end-vertices whereas those of Theorem 2 have only the global requirement
of connecting each vertex of A to a vertex of B injectively. Both are natural
generalizations since they overlap when |A| = |B| = 1 on the concept of a
single path joining two specified vertices. We will thus generalize the idea of
distance using both these concepts.

Second, where there is only one way of naturally measuring a path to
bring forth the idea of distance between the two vertices it joins, namely
by the size of this path (the number of edges of this path), it is not clear
how we should measure the distance between two k-sets of vertices using a
path-system between them. We could think of simply taking the total size
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of this path-system, but taking the size of the smallest path, or the size of
the largest one, provide alternate metrics for distance. Again, these three
different choices are identical in the case of one single path.

Finally, note that the path-systems found in Theorem 2 and Definition 2
join k-sets which are disjoint. Yet, we wish to define the distance between
any two k-sets, so some attention will have to be brought to the case where
the k-sets overlap.

Using Theorem 2, one may easily see that k-connectivity may be defined
in terms of path-systems between any pair of vertex k-sets of G:

Corollary 3 A graph G is k-connected if and only if for any two k-sets A
and B of vertices of G, there are k − |A ∩ B| disjoint paths in G− (A ∩ B)
injectively joining every vertex of A−B to a vertex of B − A

We make the following definition in order to adapt Definition 2 to the
situation where we want to link two k-sets that overlap.

Definition 3 A graph G is said to be (k, t)-linked (0 ≤ t ≤ k− 1) if for any
set T of t vertices of G, G− T is (k − t)-linked.

Note that this definition unifies the notions of k-connected and k-linked in
the sense that (k, k− 1)-linked is equivalent to k-connected and (k, 0)-linked
is equivalent to k-linked.

A graph G is said to be k-Hamilton-connected if removing any k − 1
vertices of G leaves a Hamilton-connected graph. Bondy and Chvátal [1]
extended Theorem 1 as follows:

Theorem 4 If σ(G) ≥ n + k then G is k-Hamilton-connected.

Saying that a graph is k-Hamiltonian-connected is equivalent to saying that
for any vertex k-sets A and B of G such that |A∩B| = k−1, there is a system
of paths as described in Corollary 3, covering all the vertices of G− (A∩B).
We will extend this Theorem further, allowing arbitrary orders for |A ∩B|.

2 Distance between k-sets and Extendibility

of Path Systems

Let Vk(G) be the family of all k-sets of vertices of a graph G. Let A =
{a1, . . . , ak} and B = {b1, . . . , bk} be two elements of Vk(G), T = A ∩ B,
and |T | = t.
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An (A, B)-system P is the union of T and a set of k − t vertex-disjoint
paths P1, . . . , Pk−t joining the vertices of A−T to the vertices of B−T (that
is, having one of it’s end-vertices in V (A − T ) and the other in V (B − T )).
Let S(A, B) denote the family of all (A, B)-systems of G. Note that by
Corollary 3, G is k-connected if, and only if, for all (A, B) ∈ Vk(G)2, G has
an (A, B)-system.

Let Π(A, B) be the family of bijective maps

π : A −→ B

such that for all a ∈ A and b ∈ B,

if a = b , then π(a) = b. (1)

Let π ∈ Π(A, B). An (A, B, π)-linkage is an (A, B)-system P = {P1, . . . , Pk}
where for all i ∈ [k], Pi is an [ai, π(ai)]-path. Note that the condition (1)
shows that P is the union of |A ∩ B| and an (A − T, B − T )-system whose
end-vertices are imposed by π.

Let L(A, B, π) denote the family of all (A, B, π)-linkages of G. We see
that

S(A, B) = ∪π∈Π(A,B)L(A, B, π).

Note that G is (k, t)-linked if, and only if, for all (A, B) ∈ Vk(G)2 such that
|T | = |A ∩B| = t, and all π ∈ Π(A, B), L(A, B, π) 6= ∅.

For a given π ∈ Π(A, B) we make the following definitions:

distπ(A, B) = min
P∈L(A,B,π)

|E(P)|,

distπ(A, B) = min
P∈L(A,B,π)

max
P∈P

|E(P )|, and

distπ(A, B) = min
P∈L(A,B,π)

min
P∈P

|E(P )|.

If L(A, B, π) = ∅, we let distπ(A, B) = distπ(A, B) = distπ(A, B) = ∞.
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Figure 1: Different types of distances

A BA BA B

dist(A,B)=0dist(A,B)=4dist(A,B)=9

Using this, we define the following distance and diameter measures:

dist(A, B) = min
π∈Π(A,B)

distπ(A, B),

dist(A, B) = min
π∈Π(A,B)

distπ(A, B),

dist(A, B) = min
π∈Π(A,B)

distπ(A, B),

diamk(G) = max
(A,B)∈Vk(G)2

dist(A, B),

diamk(G) = max
(A,B)∈Vk(G)2

dist(A, B), and

diamk(G) = max
(A,B)∈Vk(G)2

dist(A, B).

We see that S(A, B) is empty if, and only if,

dist(A, B) = dist(A, B) = dist(A, B) = ∞,

so saying that G is k-connected is equivalent to saying that any of the k-
diameters are finite.

The linked-distances between two k-sets and the corresponding (k, t)-
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linked diameters are defined as follows:

ldist(A, B) = max
π∈Π(A,B)

distπ(A, B),

ldist(A, B) = max
π∈Π(A,B)

distπ(A, B),

ldist(A, B) = max
π∈Π(A,B)

distπ(A, B),

ldiamk,t(G) = max
(A,B)∈Vk(G)2

|A∩B|=t

ldist(A, B),

ldiamk,t(G) = max
(A,B)∈Vk(G)2

|A∩B|=t

ldist(A, B), and

ldiamk,t(G) = max
(A,B)∈Vk(G)2

|A∩B|=t

ldist(A, B).

We see that L(A, B, π) = ∅ for some π ∈ Π(A, B) if, and only if, ldist(A, B) =
ldist(A, B) = ldist(A, B) = ∞, so saying that any one of these (k, t)-
diameters are finite is equivalent to saying that G is (k, t)-linked.

Finally we make the following definitions which extend in two different di-
rections the notion of k-Hamilton-connectedness due to Bondy and Chvátal.

We say that G is Hamilton k-connected if for any (A, B) ∈ Vk(G)2, there
is a path-system P in S(A, B) such that P covers all the vertices of G. We say
that G is Hamilton (k, t)-linked if for any (A, B) ∈ Vk(G)2 with |A ∩ B| = t
and any π ∈ Π(A, B), there is a P in L(A, B, π) such that P covers all the
vertices of G. Note that k-Hamilton-connected is equivalent to Hamilton-
(k, k−1)-linked (which is also equivalent to Hamilton k-connected restricted
to k-sets that intersect on a (k − 1)-set).

3 Results

One may easily see that

σ2(G) ≥ n + k − 2 implies κ(G) ≥ k. (2)

Indeed, this is the contrapositive of

κ(G) ≤ k − 1 implies σ2(G) ≤ n + k − 3. (3)
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This can be seen to be true since if C is a cut set of order k−1 and A and B
were two components of G − C, then taking two vertices x ∈ A and y ∈ B,
we see that xy ∈ E(G) yet

d(x) + d(y) ≤ (|A| − 1) + |C|+ (|B| − 1) + |C| ≤ n + k − 3.

By considering the case where A and B are the only components of G, and
both (A ∪ C) and (B ∪ C) induce complete graphs, we see that σ2(G) =
n + k − 3, yet κ(G) = k − 1, so the bound on σ2(G) is the best possible.

Proposition 1 Let G be a graph on n vertices and k ∈ [n] be such that
σ2(G) ≥ n + k − 2. Then for any k-sets A and B of vertices of G, we have

dist(A, B) ≤ 2(k − |A ∩B|).

This implies that diam(G) ≤ 2k, and we will show that if n ≥ 3k, there
are graphs G with σ2(G) ≥ n + k − 2 and diam(G) = 2k. This diameter is
essentially the lowest possible in the sense that, in order to reduce it further,
one must have a graph that is nearly complete. But the actual lowest possible
k-diameter of a graph is k, so for completeness, we include the bounds on
σ2(G) implying lower diameters than 2k. The following Theorem shows the
effect of σ2(G) on the k-diameters of G.

Theorem 5 Let G be a graph of order n ≥ 2k and l ∈ [k]. The following
table relates the value of σ2(G) to the lowest upper bound on the k-diameter
of G.

diamk(G) ≤ diamk(G) ≤ diamk(G) ≤
σ2 ≤ n + k − 3 ∞ ∞ ∞

n + k − 2 ≤ σ2 ≤ 2n− 2k − 2 2k 2 2
σ2 = 2n− 2k − 2 + l 2k − l 2 1

2n− k − 2 ≤ σ2 k 1 1

We see that the minimum bound on σ2(G) ensuring diamk(G) < ∞ (k-
connectivity) is n+k−2, and when this happens, we have automatically the
small diameter of 2k. Then, until 2n− 2k − 1 we cannot lower the diameter
further. At 2n−k−2 we attain the smallest possible diameter diamk(G) = k
(equivalently, diamk = diamk = 1).
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Note that σ2(G) cannot be larger than 2n − 4, and that those graphs G
for which σ2(G) = 2n− 4 have the property that a vertex cannot have more
than one non-adjacency. Hence these graphs are isomorphic to Kn − Mm

where Mm is a set of m independent edges of Kn for some m ∈ [
⌊
n/2

⌋
].

The following Theorem shows the effect of σ2(G) on the linked-diameters of
G. Since even σ2(G) = 2n − 4 is not sufficient to force ldiamk(G) < 2k, we
include the linked-diameters of the Kn −Mm graphs.

Theorem 6 Let G be a graph of order n ≥ 4k and 0 ≤ t ≤ k − l ≤ k − 1.
Let Mk−t−l be a set k− t− l independent edges of a complete graph Kn. The
following table relates the value of σ2(G) to the lowest upper bound on the
linked-diameters of G.

ldiamk,t(G) ≤ ldiamk,t(G) ≤ ldiamk,t(G) ≤
σ2 ≤ n + 2k − t− 4 ∞ ∞ ∞

σ2 = n + 2k − t + l − 4 3(k − t)− l 3 2
n + 3k − t− 4 ≤ σ2 2(k − t) 2 2
G = Kn −Mk−t−l 2(k − t)− l 2 1

G = Kn k − t 1 1

Note that, for t = k − 1 and l = 1, Theorem 6 implies (2).
In order to extend Theorem 4 we prove the following Theorem:

Theorem 7 If n ≥ 4k and σ2(G) ≥ n + k then any (A, B)-system P can
be extended to an (A, B)-system P ′ covering all the vertices of G such that
the paths of P and P ′ have the same end-vertices. On the other hand, if
σ2(G) ≥ n + k− 1 there are sets A, B ∈ Vk(G)2 for which there is no (A, B)-
system covering all the vertices of G.

The last statement of this Theorem shows that lower bound on σ2 is not
only the best possible to allow path systems to be extended while conserving
the end-vertices of each individual path, but is also the best possible if we
allow these paths to swap end-vertices. Using this Theorem, we see that
Theorems 5 and 6 have the following corollaries:

Corollary 8 If n ≥ 3k and σ2(G) ≥ n + k then G is Hamilton-k-connected.

Corollary 9 If n ≥ 4k, 0 ≤ t ≤ k − 3, and σ2(G) ≥ n + 2k − t− 3, then G
is Hamilton-(k, t)-linked.

And the lower bounds on σ2 are best possible here again.
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4 Proofs

Proof of Proposition 1: Suppose G satisfies the conditions of Proposition
1 and take any (A, B) ∈ Vk(G)2 where A = (a1, . . . , ak) and B = (b1, . . . , bk).
Let T = A ∩ B, t = |T | and k1 be the maximum number of indepen-
dent edges in E(A − T,B − T ). Without loss of generality we may assume
that T = {a1, . . . , at} = {b1, . . . , bt} and that the k1 independent edges are
at+1bt+1, . . . , at+k1bt+k1 . Let A1 = {at+1, . . . , at+k1}, B1 = {bt+1, . . . , bt+k1},
A2 = A− T −A1, and B2 = B − T −B1. Let k2 = |A2| = |B2| = k − k1 − t.

If k2 = 0, we are done, so assume k2 6= 0. Now for all t + k1 + 1 ≤ i ≤ k,

d(ai, A− T ) + d(bi, B − T ) ≤ |A| − 1 + |B| − 1 = 2(k − 1), and (4)

d(ai, B − T ) + d(bi, A− T ) ≤ k1, (5)

since the maximality of k1 shows that E(A2, B2) = ∅ and if d(ai, B1) +
d(bi, A1) > k1, there was a j with t+1 ≤ j ≤ k1+t such that aibj, biaj ∈ E(G),
thus replacing ajbj with these two edges, we would contradict the maximality
of k1.

Since aibi /∈ E(G), we have d(ai) + d(bi) ≥ n + k− 2, so (4) and (5) show
that

d(ai, G− A−B) + d(bi, G− A−B) ≥ n + k − 2− 2k + 2− k1

= (n− 2k + t) + (k − t− k1)

= |G− A−B|+ k2. (6)

This shows that |N(ai, G − A − B) ∩ N(bi, G − A − B)| ≥ k2, ensuring
that there are k2 distinct vertices z1, . . . , zk2 of G − A − B such that zj is
adjacent to both ai and bi for 1 ≤ j ≤ k2. Using these zj vertices, one may
easily construct the required (A, B)-system.

The (A, B)-system constructed verifies dist(A, B) ≤ 2, thus dist(A, B) ≤
2(k − t) = 2(k − |A ∩B|). 2Proposition 1

Proof of Theorem 5: We use the same definitions as the above proof.
Since the pair (A, B) constructed above was arbitrary, and Proposition 1

verified dist(A, B) ≤ 2, diam(G) ≤ 2 and diamk(G) ≤ 2k.
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If σ2(G) ≥ 2n− 2k − 2 + l, where l ∈ [k], then for all t + k1 + 1 ≤ i ≤ k,

d(at, B) + d(bt, A) ≥
(2n−2k−2+ l)−

(
d(ai, G−A−B)+d(bi, G−A−B)+d(ai, A)+d(bi, B)

)
,
(7)

thus, since

d(ai, G− A−B) + d(bi, G− A−B) ≤ 2|G− A−B| = 2n− 4k,

using (4), we get

d(at, B) + d(bt, A) ≥ (2n− 2k − 2 + l)− (2n− 4k + 2(k − 1))

= l.

By (5) then, we get k1 ≤ l, which shows that diam(G) = 1 and diam(G) ≤
2k − l.

We have already seen, in Section 3 that σ2(G) ≤ n + k − 2 is the lowest
bound implying k-connectivity, or equivalently a finite diameter. To see that
σ2(G) = 2n− 2k− 2 + l is the smallest value of σ2(G) implying diamk(G) ≤
2k − l, consider the complete graph Kn, and two disjoint k-sets A and B
and a subset Bk−l+1 ⊂ B of order k − l + 1. Then the graph G = Kn −
EKn(A, Bk−l+1) verifies σ2(G) = 2n− 2k− 3 + l, yet dist(A, B) = 2k− l + 1.
By letting l = 1 we also see that σ2(G) = 2n− 2k − 2 is not enough to yield
diamk(G) = 1 and diamk(G) < 2k. 2Theorem 5

Proof of Theorem 6: First we take care of the case t = 0 and l = 1:

Claim 1 If G is a graph on n ≥ 4k vertices and σ2(G) ≥ n + 2k − 3 then
ldiamk,0(G) ≤ 3.

Let G be a graph such that

σ2(G) ≥ n + 2k − 3 (8)

where k is an integer such that n ≥ 4k. Let A and B be two disjoint k-sets
of V (G), S = A ∪ B, and π ∈ Π(A, B). Let A = {a1, . . . , ak} and B =
{b1, . . . , bk} be such that for every i ∈ [k], π(ai) = bi. Let P = {P1, . . . , Pk′}
be a family of paths linking k′ vertices of A to the corresponding vertices of
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B, where all paths have order no more than 4. Without loss of generality, we
may assume that for some non-negative integers k1, k2, k3, and k4 such that
k = k1 + k2 + k3 + k4 and k′ = k1 + k2 + k3, we have |P1| = . . . = |Pk1| = 2,
|Pk1+1| = . . . = |Pk1+k2| = 3, and |Pk1+k2+1| = . . . = |Pk1+k2+k3| = 4. We
choose P so that

k′ = |P| is maximal, (9)

and under this condition,

Σk′

i=1|Pi| is minimal, (10)

and under this condition,

max
i>k′

min{d(ai, G− S − V (P)), d(bi, G− S − V (P))} is maximal. (11)

Let R = V (G)− S. By (10), for every i (k1 + 1 ≤ i ≤ k), aibi /∈ E(G) so
that

d(ai, S), d(bi, S) ≤ |S| − 2 = 2k − 2, thus (12)

d(ai, S) + d(bi, S) ≤ 4k − 4. (13)

Note that if k′ = k then we have our result, so assume k′ < k (i.e.
k4 ≥ 1) and let S1 = S ∩ ∪k1

i=1V (Pi), S2 = S ∩ ∪k1+k2
i=k1+1V (Pi), S3 = S ∩

∪k1+k2+k3
i=k1+k2+1V (Pi), and S4 = S − S1 − S2 − S3. Let R2 = R ∩ ∪k1+k2

i=k1+1V (Pi),

R3 = R ∩ ∪k1+k2+k3
i=k1+k2+1V (Pi), and R4 = R−R2 −R3.

Let u = aj and v = bj where k′ + 1 ≤ j ≤ k is such that

min{d(u, R4), d(v, R4)} = max
i>k′

min{d(ai, R4), d(bi, R4)}.

Let α = d(u, R4) and β = d(v, R4) and assume, without loss of generality,
that α ≤ β. Note that

d({u, v}, R3) ≤ 2k3 (14)

since otherwise there would be an k1 + k2 + 1 ≤ i ≤ k1 + k2 + k3 such that
d({u, v}, Pi ∩R) ≥ 3, implying that one of the two vertices w of Pi − ai − bi

is adjacent to both u and v. Yet then the path Pi of order 4 may be replaced
with the path uwv of order 3, contradicting the minimality (10).
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Case 1: Assume α ≥ 1. Then let x and y be any vertices of N(u, R4)
and N(v, R4) respectively.

We prove a few upper bounds on the number of edges between vertices
u, v, x and y, and different parts of the graph. First of all,

d({x, y}, S2 ∪R2) + d({u, v}, R2) ≤ 6k2. (15)

Indeed, if this isn’t the case, then for some k1 + 1 ≤ i ≤ k1 + k2, we must
have d({x, y}, Pi) + d({u, v}, Pi ∩R) ≥ 7. Note that

|{x, y}| · |Pi|+ |{u, v}| · |Pi ∩R| = 8,

so there is at most one missing edge. Let Pi = aiwbi. If edge uw is missing
then

P ′ = (P − Pi) ∪ vwxu ∪ aiybi

contradicts the maximality (9). One may verify that every other case of a
missing edge leads to a similar situation where one may find two disjoint
paths; a [u, v]-path of order 3 and an [ai, bi]-path of order 3, contradicting
(9).

Further,

d({x, y}, S3 ∪ S4) ≤ 2(k3 + k4) (16)

as if this were not true, there would be an k1 + k2 + 1 ≤ i ≤ k such that
d({x, y}, {ai, bi}) ≥ 3, ensuring the existence of the path aixbi (or aiybi) of
order 3. If k1 + k2 + 1 ≤ i ≤ k1 + k2 + k3, this contradicts (10), and if
k1 + k2 + k3 + 1 ≤ i ≤ k, this contradicts (9).

Since |S1| = 2k1 and |R3| = 2k3 we have

d({x, y}, S1 ∪R3) ≤ 4(k1 + k3). (17)

Finally, if d(x, N(v) ∩R4) 6= 0 or d(y, N(u) ∩R4) 6= 0, then (9) would be
contradicted, so

d(x, R4) ≤ |G− x| − |S| − |R2| − |R3| − |N(v, R4)|
= n− 1− 2k − k2 − 2k3 − β (18)

and

d(y, R4) ≤ |G− y| − |S| − |R2| − |R3| − |N(u, R4)|
= n− 1− 2k − k2 − 2k3 − α. (19)

One may verify that
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d(x) + d(y) + d(u) + d(v) ≤
d({u, v}, S)
+ d({u, v}, R3) +d({u, v}, R4)
+ d({x, y}, S2 ∪R2) +d({u, v}, R2)
+ d({x, y}, S3 ∪ S4) +d({x, y}, S1 ∪R3)
+ d(x, R4) +d(y, R4)

Using (13), (14), (15), (16), (17), (18) and (19), we see that

d(x) + d(y) + d(u) + d(v) ≤
4k − 4
+ 2k3 +α + β
+ 6k2

+ 2(k3 + k4) + 4(k1 + k3)
+ n− 1− 2k − k2 − 2k3 − β +n− 1− 2k − k2 − 2k3 − β

Simplifying this expression, and using the fact that k1 + k2 + k3 + k4 = k,
we see that

d(x) + d(y) + d(u) + d(v) ≤ 2n− 6 + 4k − 2k4.

Since uy, vx /∈ E(G), our degree sum condition (8) shows on the other hand
that

d(x) + d(y) + d(u) + d(v) ≥ 2n + 4k − 6.

This shows that we must have k4 = 0, a contradiction.

Case 2: Assume α = 0. First we show that β ≥ 3. Indeed, uv /∈ E(G),
so using (14) we get

d(u, R4) + d(v, R4) ≥ n + 2k − 3− d({u, v}, S)

− |N({u, v}, R2)| − d({u, v}, R3)

≥ n + 2k − 3− (4k − 4)− 2k2 − 2k3

= n− 2k + 1− 2(k2 + k3),

and since k4 ≥ 1, k2 + k3 ≤ k − 1, hence using the fact that n ≥ 4k and
d(u, R4) = 0, we have

β = d(v, R4) ≥ n− 4k + 3 ≥ 3.
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Let y be a vertex of N(v, R4). Note that

d(u, R2) + d(y, S2) ≤ 2k2 (20)

since otherwise, for some k1 + 1 ≤ i ≤ k1 + k2 we would have d(u, Pi ∩R) +
d(y, Pi ∈ S) ≥ 3, implying that yai, ybi, uw ∈ E(G) where w is the middle
vertex of Pi. But then replacing Pi with the path aiybi, we obtain a system
of paths satisfying conditions (9) and (10), but contradicting (11) since u is
adjacent to w and v is still adjacent to at least 2 vertices of G− S − V (P).
Further,

d(u, R3) + d(y, R3 ∪ S3) ≥ 4k3. (21)

Indeed, if this were not the case, for some k1 + k2 + 1 ≤ i ≤ k1 + k2 + k3,
we would have d(u, Pi ∩ R) + d(y, Pi) ≥ 5. Since we cannot have both
yai ∈ E(G) and ybi ∈ E(G) (or (10) would be contradicted), this shows
that letting Pi = aiwzbi, we have yw, yz, uw, uz ∈ E(G), and without loss of
generality, ybi ∈ E(G). Replacing Pi by the path aiwybi one may verify that
we again contradict (11). Finally,

d(y, S4) ≤ k4 (22)

or there would be a k1 + k2 + k3 + 1 ≤ i ≤ k with xai, xbi ∈ E(G), hence a
path aixbi contradicting (9).

Now

d(u) + d(y) = d(u, S) + d(u, R2) + d(y, S2) + d(u, R4)

+ d(u, R3) + d(y, S3 ∪R3)

+ d(y, R2 ∪R4) + d(y, S1) + d(y, S4)

Using (12), (20), (21), (19), we find that

d(u) + d(v) ≤ (2k − 2) + 0 + 2k2 + 4k3 + (n− 1− 2k − 2k3) + 2k1 + k4

= n− 3 + 2(k1 + k2 + k3 + k4)− k4

= n + 2k − 3− k4

< n + 2k − 3,

since k1 + k2 + k3 + k4 = k and k4 ≥ 1. Yet since uy /∈ E(G) this contradicts
(8).
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Hence k4 = 0, so G is (k, 0)-linked and since we required all paths of P
to be of order at most four, we see that, in fact, ldiamk,0(G) ≤ 3. 2Claim 1

The following claim takes care of the case t = 0 and 1 ≤ l ≤ k:

Claim 2 Let G be a graph of order n, k and l be positive integers such that
n ≥ 4k and l ∈ [k]. If σ2(G) ≥ n + 2k + l − 4 then ldiamk(G) ≤ 3k − l.

Proof: Let G be a graph satisfying the conditions of the Claim. Let S, R,
A, B, P , k1, k2, k3 and k4 be defined as in the proof of Claim 1. The said
Claim shows that k4 = 0, so that k = k1 + k2 + k3. If k1 + k2 ≥ l, then

|P| = 2k1 + 3k2 + 4k3

= 4(k1 + k2 + k3)− (k1 + k2)− k2

≤ 4k − l,

which implies ldiamk(G) = |P| − k ≤ 3k − l, which is to be proven. Hence
we assume

k2 + k3 ≤ l − 1. (23)

Now for every k1 + k2 + 1 ≤ i ≤ k we have aibi /∈ E(G), so

d(ai, bi,P − S) ≥ σ2(G)− 2(2k − 2)

≥ n− 2k + l

= |G− S|+ l,

implying that there are at least l vertices in G which are adjacent to both ai

and bi. The minimality of |P| implies that none of these vertices may be in
Pi or in G−P since otherwise a (ai, bi)-path of order four could be replaced
by a path of order three. Also, by (23), at least one of these vertices must
be in Pj − {aj, bj}, where k1 + k2 + 1 ≤ j ≤ k and j 6= i.

Let D be a digraph of order k3 obtained by taking Pk1+k2+1, . . . , Pk to
correspond to the vertices, and where there is an edge from Pi to Pj (i 6= j) if
and only if there is a vertex w in Pj−{aj, bj} such that aiw, biw ∈ E(G). One
may easily verify that if D had a directed cycle then one could replace every
path Pi of order 4 corresponding to the vertices of this directed cycle with
an (ai, bi)-path of order 3, hence contradicting the minimality of |P|. Yet
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the previous paragraph implies that every vertex of D has at least one edge
coming out of it, and this can be seen to imply the existence of a directed
cycle in D (note that we allow this cycle to be of order two).

Indeed, take the last vertex z of a directed path Z of D of maximal order.
Since z must be adjacent to a vertex z′ of D, and that z′ cannot be in D−Z,
or the maximality of Z would be contradicted, we see that z′ must be in Z,
creating a directed cycle in D, and hence completing the proof of our Claim.
2Claim 2

Now suppose 1 ≤ t ≤ k − l ≤ k − 1, σ2(G) ≥ n + 2k − t + l − 4 and that
A, B ∈ Vk(G) intersect on t vertices. Let T = A ∩B. It is easy to see that

σ2(G− T ) ≥ σ2(G)− 2|T |
= n + 2k − t + l − 4− 2t = (n− t)) + 2(k − t) + l − 4

= |G− T |+ 2(k − t) + l − 4.

Hence, by Claim 2, ldistk−t,0(A−T,B−T ) ≤ 3(k−t)−l, ldistk−t,0(A−T,B−
T ) ≤ 3, and ldiamk−t,0(A− T, B − T ) ≤ 2, so ldistk−t,0(A, B) ≤ 3(k − t)− l,
and since A and B were arbitrary,

ldiamk,t(G) ≤ 3(k − t)− l,

ldiamk,t(G) ≤ 3, and

ldiamk,t(G) ≤ 2.

If l = k−t, then all the linking paths have order at most three, so ldiamk,t(G) ≤
2.

One may easily verify that the graph Kn−Mk−t, where Mk−t is a set of t
independent edges of Kn, verifies σ2(Kn−Mk−t) = 2n−4, yet ldiamk,t(Kn−
Mk−t) = 2(k − t) and ldiamk,t(Kn −Mt) = ldiamk,t(Kn −Mt) = 2. On the
other hand, for any two disjoint t-sets A′, B′Vt(Kn −Mk−t−l) there must be
at least l independent edges in EKn−Mk−t−l

(A′, B′). This shows that

ldiamk,t(Kn −Mk−t−l) ≤ 2(k − t)− l,

ldiamk,t(Kn −Mk−t−l) ≤ 2, and

ldiamk,t(Kn −Mk−t−l) = 1.

To see that if n ≥ 4k−3t+l−4, the lower bound σ2(G) ≥ n+2k−t+l−4
is the smallest possible ensuring that the (k, t)-linked-diameters are finite (for
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Figure 2: Counter Example

B C D

A

n−k+tK

indicated by dotted lines
except for those 
all edges are present
Inside the boxes

l = 1) and that ldiamk,t(G) ≤ 3(k−t)−l, ldiamk,t(G) ≤ 3 and ldiamk,t(G) ≤ 2
consider the following construction. Take the complete graph Kn−t, and let
B, C and L be disjoint subgraphs of Kn−k+t or orders k, k − t− 1 and l− 1
respectively. The vertices of B will be labeled b1, . . . , bk and B′ will be the
set {b1, . . . , bk−t}. Let A = {a1, . . . , ak} be a complete graph on k vertices
where A′ = {a1, . . . , ak−t} is disjoint from Kn−k+t and for all t + 1 ≤ i ≤ k,
ai = bi. Consider the graph

G = (A′ + Kn−k+t) −E(B′, C)− E(A′, Kn−k+t −B′ − C − L)

−{a1b1, . . . , ak−tbk−t}

of order n. A sketch of this graph may be found in figure 2.
Let u and v be any two non-adjacent vertices of G. If u ∈ V (B′) and
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v ∈ V (C), then

d(u) + d(v) = d(u, G− A′ − C) + d(u, A′) + d(v, G− A′ −B′) + d(v, A′)

= ((n− k + t− 1)− (k − t− 1)) + (k − t− 1)

+((n− k + t− 1)− (k − t− 1)) + k − t

= 2n− 2(k − t)− 1

≥ n + 2k − t + l − 5

since n ≥ 4k − 3t + l − 4. If u ∈ V (A′) and v ∈ V (G) then first note that
whether v ∈ V (B′) or v ∈ V (G−B −C − L), we have d(v) = n− k + t− 1,
and so

d(u) + d(v) = d(u, A′) + d(u, B′) + d(u, C ∪ L) + d(v)

= (t− 1) + (k − 1) + (t− 1 + l − 1) + n− t− 1

= n + 2k − t + l − 5.

These are up to symmetry, the only possibilities for u and v, with uv /∈ E(G),
thus σ2(G) = n + 2k − t + l − 5.

Now suppose that π ∈ Π(A, B) is defined to be such that for all i, π(ai) =
bi. Since we removed the edges a1b1, . . . , ak−tbk−t, the edges of E(A′, B′)
cannot be used in a (A, B, π)-linkage P . The only edges left from A′ to the
rest of the graph G are those of EG(A′, C ∪L), so the paths linking A′ to B′

must go through C or L.
Hence, if l = 1, since |C| = k − t − 1, we see that there is no (A, B, π)-

linkage in G, hence

ldiamk,t(G) = ldiamk,t(G) = ldiamk,t(G) = ∞.

Since EG(C, B′) = ∅, paths going through C will have order at least four,
the only paths having order three being those going through L. Since |C| = t
and |L| = l − 1,

ΣP∈P |P | ≥ 3(l − 1) + 4(k − t− l + 1) = 4(k − t)− l + 1,

implying that ldiamk,t(G) ≥ 3(k − t)− l + 1.
This concludes the proof of Theorem 6 2Theorem 6

Proof of Theorem 7: First, we show that the lemma is true for
t = 0, i.e. A ∩ B = ∅. Let G satisfy the conditions of the Lemma and let
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A = {a1, . . . , ak} and B = {b1, . . . , bk} be two disjoint k-sets of vertices of
V (G) such that there is an (A, B)-system P = {P1, . . . , Pk} in G where for
1 ≤ i ≤ k, Pi is an [ai, bi]-path. Take P to be of maximal order and let
q = |Q|, p = |P |, and for every 1 ≤ i ≤ k, let pi = |Pi|. Let P = (P)G and
Q = G− P .

Note that for any u ∈ Q and Pi ∈ P , if z ∈ N(u, Pi) , then z+ /∈ N(u, Pi)
or replacing Pi with [ai, z]Pi

∪ zu ∪ uz+ ∪ [z+, bi]Pi
we would contradict the

maximality of P . This implies that d(u, Pi) ≤
⌊

pi+1
2

⌋
, thus

d(u, P ) ≤
⌊p + k

2

⌋
, (24)

which in turn yields that for any two vertices u and v of Q,

d(w, Q) + d(w′, Q) ≥ n + k − (p + k) = q,

showing that Q is connected.
The fact that σ2(G) ≥ n+(k+2)−2 shows by Theorem 5 that G is (k+2)-

connected. Thus |N(Q, P )| ≥ k + 2, so by the pigeon-hole principal, some
member of P , without loss of generality P1, satisfies |N(Q,P1)| ≥ 2. Let x
and y be such that {x, y} ∈ N(Q,P1), y appears after x in P1, and |[x, y]P1|
is minimal. Let u, v ∈ V (Q) be such that ux, vy ∈ E(G) and R = [x+, y−]P1 .
We cannot have y = x+ or the maximality of P would be contradicted, so
R 6= ∅. Let r = |R|, P ′

1 = [a1, x]P1 and P ′′
1 = [y, b1]P1 .

By the minimality of |[x, y]P1|, d(S, R) = 0, so inequality (24), when
applied to P ′, shows that for all w ∈ V (Q),

d(w,P) = d(w,P ′) ≤ p− r + k + 1

2
. (25)

Since for all w ∈ V (Q) and z ∈ V (R), wz /∈ E(G), our degree condition
yields

d(z,P ′) ≥ σ2(G)− d(w, Q)− d(w,P ′)− d(z, R)

≥ (n + k)− (q − 1)− p− r + k + 1

2
− (r − 1)

=
p− r + k + 3

2
. (26)

If |R| = 1, since

d(x+,P ′) ≥ p− r + k + 3

2
>

p− r + k + 1

2
,
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there is a path P ∈ P ′ and a vertex z ∈ V (P ) such that x+z, x+z+ ∈ E(G),
so we can insert x+ into P , and obtain a larger (A, B)-linkage than P .

If |R| = 2 then x+ 6= y−, and (26) shows that

d(x+,P ′) + d(y−,P ′) ≥ p− r + k + 3.

This implies that for some Z ∈ P ′,

d(x+, Z) + d(y−, Z) ≥ |Z|+ 1.

Note that we can choose Z to be of order at least 2 since for 2 ≤ i ≤ k,
|Pi| ≥ 2, and if both P ′

1 and P ′′
1 have order 1, we still have

d(x+, P − P1) + d(y−, P − P1) ≥ |P − P1|+ 1.

This shows that for some vertex z ∈ Z such that zx+, z+y− ∈ E(G) or
z+x+, zy− ∈ E(G). Let us assume we are in the later case, since the other
case is similar. If Z = Pi for some 2 ≤ i ≤ k, replacing the path P1 of P
with

[a1, x]P1 ∪ xu ∪ S ∪ vy ∪ [y, b1],

and Pi with
[ai, z]Pi

∪ zy− ∪R ∪ x+z+ ∪ [z+, bi]Pi
,

we contradict the maximality of P . If Z = P ′
1, we can replace the path P1 of

P with

[a1, z]P1 ∪R ∪ x+y+ ∪ [y+, x]P1 ∪ xu ∪ S ∪ vy ∪ [y, b1]P1 ,

we again have a contradiction. The case Z = P ′′
1 is similar to the previous

one. Hence the Lemma is true for t = 0.
If t = |T | = |A ∩ B| 6= 0 now, notice that for all non-adjacent vertices u

and v of G− T ,

d(u, G− T ) + d(v, G− T ) ≥ n + k − 2|T | = (n− t) + k − t

This shows that σ2(G − T ) ≥ |G − T | + k − t, so that any (A − T, B − T )-
system of G − T may be extended to an (A − T,B − T )-system covering
all the vertices of G − T while conserving the endpoints of the paths of the
original system.

To see that the condition σ2(G) ≥ n + k − 1 isn’t even enough to extend
some (A, B)-systems to a Hamilton (A, B)-system, consider the graph G =
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X + Y where n ≥ 4k, X is an empty graph (no edges) on n−k+1
2

vertices
and Y is a complete graph on n+k−1

2
vertices. Note that Gn,k can be seen to

be obtained by taking the complete graph Kn and removing all vertices of a
subgraph X on n−k+1

2
vertices of V (Kn).

One will verify that σ2(G) = n+k−1 yet if A and B are k-sets of vertices
of X intersecting on t vertices, there can be no (A, B)-system in G covering
all the vertices of the graph. 2Theorem 7

References
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