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Abstract. Given positive integers k £ m £ n, a graph G of order n is (k, m)-pancyclic
ordered if for any set of k vertices of G and any integer r with m £ r £ n, there is a cycle of
length r encountering the k vertices in a specified order. Minimum degree conditions that
imply a graph of sufficiently large order n is (k, m)-pancylic ordered are proved. Examples
showing that these constraints are best possible are also provided.

1. Introduction

In this paper we will deal only with finite graphs without loops or multiple edges.
Notation will be standard, and we will generally follow the notation of Chartrand
and Lesniak in [2]. Given a vertex x on a cycle C with an orientation, then the
successor of x on C will be denoted by xþ and the predecessor by x�. For a graph
G we will use G to represent the vertex set V(G) and the edge set E(G) when the
meaning is clear. Given a subset (or subgraph)H of a graph G and a vertex v, then
dH ðvÞ will denote the degree of v relative to H . Given a subset H of vertices of a
graph G, the subgraph induced by H will also be denoted by H when it does not
lead to confusion. Thus, for example, G� H will denote a set of vertices and also
a subgraph, depending on the context. To shorten several of the expressions let
�p ¼ 2dp=2e � p for any positive integer p. Thus, �p ¼ 0 or 1 depending on whether
p is even or odd, and note also that �p ¼ p � 2b p=2c.

Various degree conditions have been investigated which imply that a graph has
hamiltonian type properties. The most common degree condition is the minimum
degree of a graph G, which will be denoted by dðGÞ. Another common degree
condition studied is the sum of degrees of nonadjacent vertices. For a graph G, let
r2ðGÞ � s mean that dðuÞ þ dðvÞ � s for each pair of nonadjacent vertices in G. A
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graph G of order n is called pancyclic whenever G contains a cycle of each length r
for 3 � r � n. A stronger related property is vertex pancyclic which requires for
any specified vertex v of G, there are cycles of length 3 through n containing v.

The following was introduced by Gary Chartrand [private communication]
but first used by Ng and Schultz [7]. A graph G is k-ordered (hamiltonian) if given
any ordered set S of k vertices, there is a (hamiltonian) cycle that contains S and
the vertices of S are encountered on the cycle in the specified order. Additional
results on dðGÞ and r2ðGÞ that imply a graph G is k-ordered or k-ordered ham-
iltonian can be found in [6] and [5]. Here, we investigate a generalization of both
k-ordered and pancyclic graphs given in the following:

Definition 1. Let 0 � k � m be fixed integers and G be a graph of order n � m. The
graph G is ðk;mÞ-pancyclic ordered if for any ordered set Sk of k vertices there is a
cycle Cr of length r containing Sk and encountering the vertices of Sk in the specified
order for each m � r � n.

Dirac [3] proved that any graph G of order n with dðGÞ � n=2 is hamiltonian,
and Ore in [O60] showed that if r2ðGÞ � n the graph is also hamiltonian. Bondy
[1] proved that if r2ðGÞ � nþ 1, then G is pancyclic. Kierstead, Sárközy, and
Selkow verified the following result on a minimum degree condition for a graph to
be k-ordered hamiltonian.

Theorem 1 [6]. Let k � 2 and G a graph of order n � 11k � 3. If

dðGÞ � dn=2e þ bk=2c � 1:

then G is k-ordered hamiltonian.

The graph F1 in Fig. 1, which is K2bk=2c�1 þ ðKdðn�2bk=2cþ1Þ=2e [ Kbðn�2bk=2cþ1Þ=2cÞ,
verifies that Theorem 1 is sharp. The graph F1 is not k-ordered and
dðGÞ � dn=2e þ bk=2c � 2 (see [6]).

The following, which is a result on pancyclic ordered graphs involving the sum
of degrees of nonadjacent vertices, was proved in [4].

Theorem 2. Let 4 � k � m � n be positive integers, and let G be a graph of order n.
The graph G is (k,m)-pancyclic ordered if r2ðGÞ satisfies any of the following
conditions:

(i) r2ðGÞ � 2n� 3 when k � m < b3k=2c,
(ii) r2ðGÞ � 2n� 4 when b3k=2c � m < dð5k � 2Þ=3e,
(iii) r2ðGÞ � 2n� 5 when dð5k � 2Þ=3e � m < 2k,
(iv) r2ðGÞ � nþ 4k � m� 6 when 2k � m � ð5k � 3Þ=2,
(v) r2ðGÞ � nþ ð3k � 9Þ=2 when m > ð5k � 3Þ=2.

Also, all of the conditions on r2ðGÞ are sharp.
We will prove in the following minimum degree analogue of Theorem 2 for

pancyclic ordered graphs. Note that Theorem 3 is not a direct consequence of
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Theorem 2, since the minimum degree conditions are less than one-half the r2

conditions in the last two cases, which are the most substantial cases. As a con-
sequence the proof techniques are different, and in fact are more complicated and
technical.

Theorem 3. Let 4 � k � m � n be positive integers, and let G be a graph of suffi-
ciently large order n. The graph G is (k, m)-pancyclic ordered if dðGÞ satisfies any
of the following conditions:

(i) dðGÞ ¼ n� 1 when k � m < b3k=2c,
(ii) dðGÞ � n� 2 when b3k=2c � m < 2k,
(iii) dðGÞ � n=2þ 2, when m = 10 or 11, k = 5 and n even.
(iv) dðGÞ � n=2þ 7=2; when m ¼ 12; k ¼ 6 and n odd:
(v) dðGÞ � dn=2e þ bk=2c þ t when m ¼ 3k � 2t � 6� �n for �1 < t �
ðk � 6� �nÞ=2

(vi) dðGÞ � dn=2e þ bk=2c � 1 when m � maxf2k; 3k � 4� �ng, unless m = 11,
k = 5 and n even.

Also, all of the conditions on dðGÞ are sharp.

2. Proofs

We begin with a proof of two lemmas that show that the degree condition
dðGÞ � dn=2e þ bk=2c þ t for appropriate t assures the existence of a ‘‘small cycle’’
containing specified vertices in a given order.

Fig. 1. F1
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Lemma 1. If 4 � k � n, S is an ordered set of k vertices, and G is a graph of
sufficiently large order n with dðGÞ � dn=2e þ bk=2c � 1, then G contains a cycle C
encountering the vertices of S in the designated order such that the distance in C
between consecutive vertices of S is at most 5.

Proof. Denote the ordered set by S ¼ fx1; x2; � � � ; xkg. Assume that the con-
clusion is not true. We can assume that G is edge maximal with this property.
Thus, the addition of any edge to G will result in the existence of the required
cycle. With no loss of generality we can assume that x1x2 62 EðGÞ, and so
Gþ x1x2 has a cycle C0 with the property claimed. Let Ni for i ¼ 1; 2 be the
neighborhood of xi in G� C0. By assumption, N1 \ N2 ¼ ;, and there are no
edges between N1 and N2.

For i ¼ 1; 2; jNij � dn=2e þ bk=2c � 5k � n=2� 9k=2, and by a straightfor-
ward counting argument jG� C0 � ðN1 [ N2Þj � 4k, jNij � n=2� k=2, and each
vertex in Ni is adjacent to at least n=2� 17k=2 vertices of Ni. This implies, since n
is large, each Ni is nearly a complete graph. Associate with each vertex y of
G� ðS [ N1 [ N2Þ either N1 or N2 depending on which set has the larger number of
adjacencies of y. Add to Ni the vertices associated with Ni to obtain the superset
N 0i . Thus N 01 and N 02 is a partition of G� S. Clearly each vertex in N 0i is adjacent to
nearly n=4 vertices of Ni. Hence, since n is sufficiently large, any pair of vertices in
the same N 0i will have a path between them of length at most 3, even after some
function of k, say 8k, vertices are deleted.

Since G is k-ordered, there is a cycle that encounters the vertices of S in the
correct order. Let D be a smallest such cycle. For any pair of consecutive
vertices xj and xjþ1 of S the path Pj in D between xj and xjþ1 will either start
and end in the same N 0i or will start in N 01 and end in N 02, or conversely. In the
first case, the minimality of D will imply that the path Pj will be of length at
most 5 (using a path of length at most 3 in N 0i ). In the second case the path Pj

will be of length at most 9 (using paths of length at most 3 in each of N 01 and
N 02 along with an edge joining N 01 and N 02.

This implies there is a cycle D that encounters the vertices of S in the correct
order and has length at most 9k. Let Pj ¼ ðxj ¼ y1; y2; � � � ; yr ¼ xjþ1Þ be the path
between xj and xjþ1 in D. If r � 7, then consider the three vertices y1; y4; y7. Their
neighborhoods in G� D are disjoint, for otherwise the path Pj, and thus the cycle
D, could be shortened. Thus, for i ¼ 1; 4, or 7,

dðyiÞ � ðn� 8kÞ=3þ 8k � n=3þ 16k=3:

This gives a contradiction, since n is large and dðyiÞ � dn=2e þ bk=2c � 1. This
completes the proof of the Lemma 1.

Lemma 2. If 4 � k � n, S is an ordered set of k vertices, �1 � t � k � 6� �nð Þ=2,
and G is a graph of sufficiently large order n with dðGÞ � dn=2e þ bk=2c þ t, then G
contains a cycle of length at most maxf2k; 3k � 2t � 6� �ng encountering the ver-
tices S in the designated order.
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Proof. Associated with the cycle C of Lemma 1 are k paths between the con-
secutive vertices of S. Select C to be of minimal length relative to the conditions of
Lemma 1. Let mi be the number of these paths of C containing i vertices not in S.
We can assume that the cycle C is chosen such that m0 is a large as possible,
relative to the restriction on m0 that m1 is a large as possible, and relative to the
restriction on m1 that m2 is as large as possible. Since Lemma 1 implies that all
such paths are of length at most 5, mi ¼ 0 for i � 5. Also, clearly
m0 þ m1 þ m2 þ m3 þ m4 ¼ k.

Let P1 ¼ ðy0; y1; . . . ; yrÞ and P2 ¼ ðz0; z1; . . . ; zsÞ be two of these paths. Thus,
r; s � 5 and y0; yr; z0; zs 2 S. If r > 2, then the neighborhoods of y0 and yr in G� C,
say N 00 and N 0r respectively, are disjoint and their union spans all but at most 9k
vertices of G� C. Of course, the same is true for z0 and zs when s � 2. If r ¼ 5,
then y1 and y2 have no adjacencies in N 0r and y3 and y4 have no adjacencies in N 00,
since this would contradict the minimality of the length of C. This implies y1 and
y2 are adjacent to nearly all of the vertices of N 00 and the same is true for y3 and y4
relative to N 0r. If r ¼ 4, then y1 is adjacent to nearly all of the vertices of N 00 and no
vertices of N 0r, y3 is adjacent to nearly all of the vertices of N 0r and no vertices of N 00,
and y2 has many adjacencies in either N 00 or N 0r, and possibly both. Clearly, the
same is true for P2 and s and the corresponding neighborhoods N 000 and N 00s relative
to P2. When r; s > 2, because we can reverse the order of one of the paths, there is
no loss of generality in assuming that there are large sets N0 and N1 of order
approximately n=4 such that N0 � N 00 \ N 00 and N1 � N 00r \ N 00s . If r � 4 then y0; y1
(and y2 if r ¼ 5) are adjacent to nearly all of the vertices of N0, and also s � 4 then
z0; z1 (and z2 if s ¼ 5) are adjacent to nearly all of the vertices of N0. The sym-
metric condition is true for N1. Also, with no loss of generality we can assume the
remaining yi and zj will have a large number of adjacencies in either N0 or N1.

The minimal length of the cycle C places restrictions on the number of edges
between the interior vertices of one of these paths of C and the endvertices of
another of these paths. Let qrðsÞ be the maximum number of edges between the
interior vertices of a path of C of length s and the endvertices of a path of C of
length r � s.

Claim 1. q5ðsÞ � 2 for s � 5.

Proof. For the path P1 assume that r ¼ 5 and for the path P2 assume that
1 � s � 5. If s � 2, then the result is obvious, since there is at most one interior
vertex in a path of length at most 2. If s ¼ 3, then y0 and y5 will have at most 2
adjacencies in fz1; z2g unless they have a common adjacency z‘ for ‘ ¼ 1 or 2.
However, if this occurs then P1 can be replaced by the path ðyo; z‘; y5Þ of length 2
and P2 can be replaced by a path ðz0;w1; y2; y3;w2; z4Þ of length 5 with w1 2 N0 and
w2 2 N1. This contradicts the minimality of the length of C.

Consider the case when s ¼ 4. If y0 is adjacent to z3, then there is a path of
length 3, namely ðy0; z3;w01; y5Þ with w01 2 N1, that can replace P1. There is a similar
path if y5 is adjacent to z1. If y0 and y5 are adjacent to consecutive vertices in the
interior of P2, then there is also a path of length 3 that can replace P1. If y0 and y5
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have as many as 3 adjacencies in the interior of P2, then one of the three previous
situations must occur. Since the path P2 can be replaced by a path
ðz0;w1; y2; y3;w2; z4Þ of length 5 with w1 2 N0 and w2 2 N1, this gives a contra-
diction to the length of C. Hence, y0 and y5 have at most 2 adjacencies in the
interior of P2.

The case when s ¼ 5 is completely analogous to the s ¼ 4 case. There is a path
of length at most 4 that can replace P1 if y0 is adjacent to either z3 or z4, y5 is
adjacent to either z1 or z2, or y0 and y5 have adjacencies in the interior of P2 within
a distance 2. If y0 and y5 have at least 3 adjacencies in the interior of P2, then one
of these situations will occur. Since the path P2 can be replaced by a path
ðz0;w1; y2; y3;w2; z4Þ of length 5 with w1 2 N1 and w2 2 N2, this gives a contra-
diction to the length of C. This completes the proof of Claim 1. (

Claim 2. q4ðsÞ � 2 for s � 4.

Proof. The argument for Claim 2 mimics the proof for Claim 1. The result if
obvious when s ¼ 2, since there is at most one interior vertex. When s ¼ 3,
assume that y0 and y4 have a total of at least 3 adjacencies in the interior of
P2. Then, y0 and y4 have a common adjacency in the interior of P2, and so
there is a path of length 2 that can replace P1. As before, since y2 has an
adjacency in either N0 or N1, there is a path of length 5 that can replace P2 and
is disjoint from the path of length 2. This new path system has the same length
as the original system, but has one more path of length 2, a contradiction.
Consider the case when s ¼ 4. There is a path of length at most 3 that can
replace P1 if either y0 is adjacent to z3, y4 is adjacent to z1, or y0 and y4 have a
common adjacency or are adjacent to consecutive vertices in the interior of P2.
If y0 and y4 have at least 3 adjacencies in the interior of P2, then one of these
situations will occur. There is a path of length 5 than can replace P2 and is
disjoint from any of the paths just described. The new path system is no longer
than the original system, but has one more path of length at most 3. This gives
a contradiction, which completes the proof of Claim 2. (

Claim 3. If m3 ¼ m4 ¼ 0 and m2 > 0, then there is a path of length 3 associated
with C whose endvertices have at most 2 adjacencies to the interior vertices of any
of the other paths associated with C.

Proof. Assume this is not true. Then, the endvertices of each path of length 3 have
at least 3 common adjacencies in the interior of some other path of length 3
associated with C, and so the endvertices have a common adjacency in the second
path. Identify with each path P of length 3 a second path Q for which the end-
vertices of P have a common adjacency in the interior of Q. This results in a cycle
of paths Q1;Q2; . . . Qb with b � 2 such that the relation between Qi and Qiþ1 taken
modulo b is the same as the relationship between P and Q. Replacing the b paths
Q1;Q2; . . . ;Qb with the corresponding b paths of length 2 results in a cycle of
length less than that of C. This contradiction completes the proof of Claim 3. (
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Select two vertices x and y that are endvertices of one of the paths of C of
maximum length, say r. If r � 2, then jCj � 2k, giving the required cycle. If r � 3,
then by Claims 1, 2 and 3 the pair x and y of endvertices of a path of C have at most
two adjacencies in the interior of any of the paths associated with C. Therefore, by
counting the number of adjacencies of x and y is each of the paths of C,

2ðdn=2e þ bk=2c þ tÞ � dðxÞ þ dðyÞ
� ðn� k � m1 � 2m2 � 3m3 � 4m4Þ þ 2ðm1 þ m2 þ m3 þ m4Þ þ 2ðk � 3Þ þ a;

where a is the number of vertices in S adjacent in C to either x or y. This implies
that

�n � �k þ 2t þ 6 � m1 � m3 � 2m4 þ a:

Therefore,

jCj ¼ k þ m1 þ 2m2 þ 3m3 þ 4m4

¼ k þ 2ðm0 þ m1 þ m2 þ m3 þ m4Þ � 2m0 � m1 þ m3 þ 2m4:

Hence,

jCj ¼ 3k � 2m0 � m1 þ m3 þ 2m4 � 3k � 2t � 6� �n � 2m0 þ aþ �k:

Since m0 � a, it follows that jCj � 3k � 2t � 6� �n if either k is even or m0 > 0.
Thus the proof is complete except for the case when k is odd and m0 ¼ 0.

Consider the special case when k is odd and m0 ¼ 0. Since k is odd and n is
large, some pair of consecutive vertices of S will have a large number (greater than
3k) of common adjacencies in G� S. With no loss of generality we can assume
that x1 and x2 are the vertices. Consider the new graph G� ¼ Gþ x1x2, which
satisfies the same initial conditions as G. A repeat of the previous arguments
results in a cycle C� in G� satisfying

jC�j ¼ 3k � 2m�0 � m�1 þ m�3 þ 2m�4 � 3k � 2t � 6� �n � 2m�0 þ a� � a0 þ �k;

where a� ¼ 1 if x or y is incident to the edge x1x2 and 0 otherwise, and the same is
true for a0, which represents the change in the sum of the degrees of x and y from
G to G�. In this case jC�j � 3k � 2t � 6� �n � 1. However, if the edge x1x2 is
replaced by a path of length 2 from x1 to x2 in G that follows from their large
common neighborhood, there is a cycle C in G of length at most 3k � 2t � 6� �n.
This completes the proof of Lemma 2 (

An immediate corollary of Lemma 2 is the special case when t ¼ �1, (e.g.
dðGÞ � dn=2e þ bk=2c � 1).

Corollary 1. If 4 � k � n, S is an ordered set of k vertices, and G is a graph of
sufficiently large order n with dðGÞ � dn=2e þ bk=2c � 1, then G contains a cycle of
length at most maxf2k; 3k � 4� �ng encountering the vertices S in the designated
order.

Minimal Degree and (k, m)-Pancyclic Ordered Graphs 203



The corollary is particularly noteworthy since it shows that the minimum
degree condition implying k-ordered hamiltonian is a candidate to be the mini-
mum degree condition that implies ðk;mÞ-pancyclic ordered for m approximately
3k.

Before giving a proof of Theorem 3, some additional notation will be intro-
duced. Given a path P , a vertex x 62 P is insertible in P , if it is adjacent to two
consecutive vertices of P . Thus, if dP ðxÞ > djP j=2e, then it is insertible. Also, given
two vertices of a cycle C, an edge between these two vertices is an ‘-chord if the
distance between the vertices on C is ‘.

Proof. (Theorem 3)We start with the sharpness of each of the conditions. Let S be
an ordered set of k vertices in the graph Kn � bk=2cK2 in which the bk=2c missing
edges are between pairs of consecutive vertices of S. There will be no cycle of
length m < b3k=2c that encounters the vertices of S in the correct order. Since
dðKn � bk=2cK2Þ ¼ n� 2, this verifies the sharpness of ðiÞ. Consider the graph
H ¼ Kn � EðCkÞ, and let S be the ordered set of k vertices associated with the cycle
Ck. Note that dðHÞ ¼ n� 3 and any cycle of H that encounters the vertices of S in
the correct order will have at least 2k vertices. This verifies the sharpness of ðiiÞ.
For the sharpness in ðiiiÞ, consider the graph G ¼ Kn=2�1þ ððK5 � EðC5Þ [ Kn=2�4Þ,
and the ordered set S of 5 vertices from the missing cycle C5 in G. There is a cycle
of length 10 but no cycle of length 11 in G that encounters the vertices of S in the
correct order. Futhermore, dðGÞ ¼ n=2þ 1. For the sharpness of ðivÞ consider F2

(see Figure 2) in the case when n is odd, k ¼ 6 and t ¼ �1. In this graph there is no
cycle of length 12 that encounters the vertices of S, derived from the vertices of the
missing C6 in the correct order. Futhermore, dðGÞ ¼ ðnþ 5Þ=2. Next, consider the
graph F2 with k even. For �1 � t � ðk � 6� �nÞ=2, the smallest cycle in F2 that

Fig. 2. F2

204 R.J. Faudree et al.



encounters the vertices of S derived from the missing cycle Ck in the correct order
has length 3k � 2t � 6� �n. Futhermore, dðF2Þ ¼ dn=2e þ bk=2c þ t. If k is odd
note that xk has the same neighborhood as x1 in F2. For t � 0 this verifies the
sharpness for ðvÞ. The sharpness of the bound on m for ðviÞ follows from example
F2 and the bound on d follows from fact that dðGÞ � dn=2e þ bk=2c � 1 is required
for G to be k-ordered hamiltonian, given in Theorem 1.

If dðGÞ � n� 1, then G is complete and is clearly ðk; kÞ-pancyclic ordered. This
verifies ðiÞ. If dðGÞ � n� 2, then G ¼ Kn � pK2 for 0 � p � bn=2c. Therefore, for
n � b5k=2c it is easy to find a cycle of length m for m � b3k=2c that encounters, in
the appropriate order, any ordered set of k vertices of G. This verifies ðiiÞ.

We will now deal with cases ðiiiÞ; ðivÞ; ðvÞ and ðviÞ with the smallest possible
value of m in each case. Assume that dðGÞ � dn=2e þ bk=2c þ t, for
�1 � t � ðk � 6� �nÞ=2. Let S ¼ fx1; x2; . . . ; xkg be an ordered set of k vertices of
G that implies that G is not ðk;mÞ-pancyclic ordered. We will show that this leads
to a contradiction. Assume that G is an edge maximal graph with respect to not
being ðk;mÞ-pancyclic ordered relative to the set S. By Lemma 2 we know there is
a cycle of length at most m that encounters the vertices of S in the required order.
Select a cycle D of maximal length p � m that encounters the vertices of S in the
required order. Let H ¼ G� D. Once the existence of the necessary small cycles
has been verified, which will be accomplished in Claims 1 and 2, the existence of
larger cycles will follow in the successive claims. From that point on, it will be
sufficient to assume that dðGÞ � dn=2e þ bk=2c � 1, except when m ¼ 2k þ 1, n is
even, and k is odd, or when m ¼ 2k, n is odd, and k is even. In these cases
dðGÞ � dn=2e þ bk=2c is sufficient, and this will complete the special cases of ðiiiÞ
and ðivÞ.

Claim 1. p � 2k.

Proof. Assume that p < 2k. Since n is large, for each vertex x 2 D, nearly half of
the vertices of H are adjacent to x. Thus, there is a vertex y 2 H such that xy 2 G.
By assumption y is not adjacent to two consecutive vertices of D, and so xþy 62 G.
This implies that y can be chosen such that xþþy 2 G. First consider the case when
p � 2k � 3. Then, y and xþ have no common adjacencies in H . Therefore,

2ðdn=2e þ bk=2c � 1Þ � dðyÞ þ dðxþÞ � ð p � 1Þ þ bp=2c þ ðn� p � 1Þ:

This implies �n þ 2bk=2c � b p=2c � 0. Since p < 2k � 2, this gives �n þ 2bk=2c�
ðk � 2Þ � 0, a contradiction. Thus, jDj � 2k � 2.

If p ¼ 2k � 2, then x can be chosen so that xþ 62 S. Thus xþ and y can be
interchanged. This implies that xþ has at most bp=2c adjacencies in D. Since y and
xþ have no common adjacencies in H , this gives the inequality

2ðdn=2e þ bk=2c � 1Þ � dðyÞ þ dðxþÞ � 2bp=2c þ ðn� p � 1Þ < n;

a contradiction. Hence we may assume that p ¼ 2k � 1.
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If x can be chosen so that both xþ and xþþ are not in S, then observe that xþþ

can be interchanged with some vertex in H , and thus has at most bp=2c adja-
cencies in D. Note also that xþþ and y have no common adjacencies in H , which
gives the inequality

2ðdn=2e þ bk=2c � 1Þ � dðyÞ þ dðxþþÞ � 2bp=2c þ ðn� pÞ < n;

a contradiction. Hence we can assume the vertices of S alternate with vertices not
in S on D except there are precisely two that are adjacent.

Given an x 2 S such that xþ 62 S, then it has been shown that there is a path
ðx; y; y0; xþÞ whose interior vertices are in H . Thus, for any z 2 S � x with z� and
zþ not in S, zzþþ; zz�� 62 G. Hence, dDðzÞ � p � 3. If zþþw 2 G with w 2 H , then w
and z have no common adjacency in H , since this would give the existence of a
required cycle of length p þ 1. This implies

2ðdn=2e þ bk=2c � 1Þ � dðwÞ þ dðzþþÞ � n� p þ bp=2c þ p � 3:

This implies �n þ 2bk=2c � bp=2c þ 1 � 0. Since p � 2k � 1, this gives �nþ
2bk=2c � ðk � 1Þ þ 1 � 0, a contradiction. Thus, jDj � 2k, and this completes the
proof of Claim 1. (

Note that Lemma 2 and Claim 1 imply that the degree condition in Case ðivÞ is
sufficient to get a cycle of length 12. The remainder of the cycles for Case ðivÞ will
follow from the case m ¼ 13, which is part of Case ðviÞ.

Claim 2. p ¼ m.

Proof. First consider the case when m ¼ 2k þ 1, and assume that Claim 2 is not
true. By Claim 1 we know that p ¼ 2k. If there is a vertex x 2 S such that both
xþ; xþþ 62 S, then the same proof used in the case p ¼ 2k � 1 of Claim 1 can be
used here. Hence, on D we can assume that the vertices of S alternate with vertices
not in S. As in the proof of the Claim 1, for any x 2 S, there is a y 2 H that is
adjacent to both x and xþþ. Hence y and xþ can be interchanged, implying that xþ

has at most k adjacencies on D. It follows immediately that y and xþ have a
common adjacency, say w 2 H , which results in a cycle with 2k þ 2 vertices. This
implies that any z 2 S cannot be adjacent to either z�� or zþþ, since this gives a
cycle of length 2k þ 1. Thus, each vertex x 2 S has at most 2k � 3 adjacencies on
D. There is no common adjacency of y and xþþ in H , since this gives a required
cycle of length 2k þ 1. Thus, the following inequality holds, where a ¼ 1 when n is
even and k is odd, and a ¼ 0 otherwise;

2ðdn=2e þ bk=2c � 1þ aÞ � dðyÞ þ dðxþþÞ � n� 2k þ k þ 2k � 3:

This implies �n � �k þ 1þ 2a � 0. When a ¼ 0, this gives a contradiction when n is
odd or when k is even, and it clearly gives a contradiction when a ¼ 1. Thus, we
can assume that p � 2k þ 1 and m > 2k þ 1.
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Select consecutive vertices y1; y2; y3; y4 2 D such that y2 and y3 are not in S.
Since p � 3k, there is a vertex z1 2 H adjacent to y1 and another vertex z2 2 H
adjacent to y4. If z1 and z2 have a common adjacency, say z 2 H , then the path
ðy1; z1; z; z2; y4Þ can replace the path ðy1; y2; y3; y4Þ of D to get a cycle of length p þ 1
with the required property, a contradiction. If this does not occur, then

2ðdn=2e þ bk=2c � 1Þ � dðz1Þ þ dðz2Þ � 2bp=2c þ ðn� pÞ � n;

a contradiction. This proves Claim 2. (

Note that Lemma 2, Claim 1, and Claim 2 imply that the degree condition in
Case ðiiiÞ is sufficient to get cycles of length 10 and 11. The remainder of the cycles
for Case ðiiiÞ will follow from the case m ¼ 12, which is part of Case ðviÞ.

Assume there exist cycles of every length from m to p < n that encounter S in
the correct order, but there is no cycle of length p þ 1 with this property. Let
C ¼ Cp be such a cycle, and let H ¼ G� C. The k vertices of S divide the vertices
of C into k disjoint intervals except for endvertices, each starting and ending with
a vertex of S.

Claim 3. Some vertex of C has no adjacencies in H.

Proof. Assume that this is not true. If p ¼ 2k, then the argument of Claim 1
implies the existence of of a cycle of length 2k þ 1. Thus, we can assume that
p � 2k þ 1. We can select consecutive vertices y1; y2; y3; y4 2 C such that y2 and y3
are not in S. First consider the case when there is a vertex z1 2 H adjacent to y1
and another vertex z2 2 H adjacent to y4. In this case the proof used in Claim 2
can be used here.

We now consider the only other possibility when z1 ¼ z2. Observe that y2 and
y3 have no common adjacency in H . Also, if y2 is adjacent to a vertex of C that
precedes (or succeeds) an adjacency of y3 in C, then the edge y2y3 can be inserted
into C at a location other than between y1 and y4. This cannot occur, since this
would result in a cycle of length p þ 1 containing z1 with the required property.
Thus,

2ðdn=2e þ bk=2c � 1Þ � dðy2Þ þ dðy3Þ � ðn� pÞ þ p � n;

a contradiction. This completes the proof of Claim 3. (

Select two vertices y and y0, if they exist, that are at a minimum distance along
C in one of the intervals of C and have a common adjacency, say z 2 H . Let A be
the vertices of C strictly between y and y0 in this interval and let a ¼ jAj. Thus,
none of the vertices A are in S.

Claim 4. Some vertex in A has an adjacency in H.

Proof. Suppose not and consider the cycle obtained from C by replacing A by
the path ðy; z; y0Þ. If all of the vertices of A can be inserted into the path from y0 to
y in the cycle C, then the required cycle of length p þ 1 exists, which gives a
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contradiction. If not, then insert as many vertices as possible, and assume you are
left with a set ; 6¼ B � A of vertices that cannot be inserted into the path with
vertices C � B. Select a vertex w 2 B. Since w has no adjacency in H and if we let
b ¼ jBj, then we have the following inequality:

2ðdn=2eþ bk=2c� 1Þ � dðwÞþ dðzÞ
� ððb� 1Þ þ ðp� bþ 1Þ=2Þ þ ððn� p� 1Þ þ ðp� bþ 1Þ=2Þ<n;

a contradiction, completing the proof of Claim 4. (

Claim 5. jAj ¼ 1.

Proof. Suppose instead jAj � 2. If all of the vertices in A are insertible in the path
C � A, then the required cycle of length p þ 1 is obtained. Assume not, and let
ðy1; y2; . . . ; ysÞ be the path of C using vertices in A. Let yq be the first vertex of A
starting from y1 that is not insertible. Observe that yq and z must have a common
adjacency in H , since if this is not true then we get the following inequality:

2ðdn=2e þ bk=2c � 1Þ � dðyqÞ þ dðzÞ � ðn� p � 1Þ þ ða� 1Þ þ ðp � aþ 1Þ < n;

a contradiction. Let zq be such a common adjacency. If q > 1, then the required
cycle of length p þ 1 is obtained by using the path ðz; zq; yq; . . .Þ to replace the
vertices in the path ðy1; y2; . . . ; yq�1Þ and inserting the vertices fy1; y2; . . . ; yq�2g of
A into C � A. Hence, we must have that y1 is not insertible, and so q ¼ 1. Like-
wise, ys is not insertible, and there is a vertex zs 2 H that is a common adjacency of
ys and z. If s ¼ 2, then the required cycle of length p þ 1 can be obtained by using
the path ðy; z; z2; y2; y0Þ and avoiding the vertex y1. The required cycle can also be
obtained if all of vertices of A strictly between y1 and ys can be inserted. Thus, we
can assume that s > 2, and let yr be the first vertex past y1 that is not insertible.
Associated with yr is the vertex zr 2 H that is commonly adjacent to z and yr.
Again, the required cycle is obtained by using the path ðy; z; zr; yr; � � �Þ, inserting
the vertices strictly between y1 and yr and avoiding y1. Therefore, we can conclude
that jAj ¼ 1, completing the proof of Claim 5. (

Claim 6. No vertex of H can have 3 adjacencies in one interval.

Proof. Assume there is a vertex z 2 H with adjacencies y1; y2; y3. By Claim 5 we
can assume that there is precisely one vertex on C between y1 and y2 and one
between y2 and y3. Denote these vertices by w1 and w2. Neither w1 nor w2 is
insertible, since this would give the desired cycle of length p þ 1. Also, w1w2 62 G
for the same reason. Therefore, w1 and w2 have a common adjacency in H , which
we will denote by z0, since if this did not occur the following inequality results:

2ðdn=2e þ bk=2c � 1Þ � dðw1Þ þ dðw2Þ � ðn� pÞ þ p=2þ p=2 � n;

a contradiction. This implies that y2 is not insertible for the same reason as w1 and
w2. Observe that y2 and z cannot have a common adjacency in H , since this gives a
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cycle of length p þ 1 avoiding w1 and using z and the common adjacency. The
same argument implies that w2 and z0 do not have a common adjacency in H . This
implies the following inequality involving y2;w2; z; z0:

4ðdn=2e þ bk=2c � 1Þ � dðy2Þ þ dðz0Þ þ dðw2Þ þ dðzÞ � 2ðn� pÞ þ 4ðp=2Þ � 2n;

a contradiction. Therefore, no vertex of H can have three adjacencies in an
interval of C, completing the proof of Claim 6. (

Claim 7. Two vertices at a distance 3 in the same interval of C cannot both have
adjacencies in H.

Proof. Assume the claim is not true and let ðy1; y2; � � � ; ysÞ be the vertices in
some interval such that yi has an adjacency z1 2 H and yiþ3 has adjacency
z2 2 H . Observe that z1 6¼ z2 by Claim 5. Also, z1 and z2 have a common
adjacency in H , say z, by the same count appearing in the first displayed
inequality of Claim 6. Replacing the path ðyi; yiþ1; yiþ2; yiþ3Þ by the path
ðyi; z1; z; z2; yiþ3Þ gives the required path with p þ 1 vertices. This contradiction
completes the proof of Claim 7. (

Claim 8. If z1; z2 2 H each have two adjacencies in some interval of C, then they
have the same two adjacencies in that interval.

Proof. Assume the claim is not true, let ðy1; y2; . . . ; ysÞ be the vertices in some
interval, and suppose that z1yi; z1yiþ2, z2yj; z2yjþ2 2 G with i < j. Observe that
z1 6¼ z2 by Claim 6. Also, z1 and z2 have a common adjacency in H , say z. Both yiþ1
and yjþ1 have adjacencies in H by Claim 4. Therefore, by Claim 7, j � iþ 6. Let
A ¼ fyiþ3; yiþ4; . . . ; yj�1g, which has at least 3 vertices, and let P be the path
containing the remaining vertices of C. Starting with yiþ3 and using the natural
order of A insert one at a time the vertices of A into P or into the present path
obtained from P from inserting the previous vertices of A. If all of the vertices of A
can be inserted, then a Cpþ1 cycle can be constructed using the path
ðyiþ2; z1; z; z2; yjÞ and inserting all of the vertices of A into P . If all of the vertices of
A cannot be inserted, then let yq be the first vertex that cannot be inserted. Let
B ¼ fyq; yqþ1; . . . ; yj�1g with b ¼ jBj. There must be some common adjacency, say
z0, of yq and z1, for otherwise the following inequality results:

2ðdn=2e þ bk=2c � 1Þ � dðyqÞ þ dðz1Þ � ðn� p � 1Þ þ ðb� 1Þ þ 2ððp � bþ 1Þ=2Þ
< n;

a contradiction. By Claim 7, q � iþ 6. A Cpþ1 can be constructed by using the
path ðyiþ2; z1; z0; yqÞ and inserting all of the vertices of A� B except for yq�1. This
gives a contradiction that completes the proof of Claim 8. (

Since, by Claim 3, C has a vertex with no adjacencies in H , we see that
jCj � dn=2e þ bk=2c and jH j � n� dn=2e � bk=2c. Claim 6 implies that no vertex
of H has more than 2k adjacencies in C; hence jH j � dn=2e þ bk=2c � 2k. This
results in the following inequalities:
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dn=2e þ bk=2c � jCj � n� dn=2e � bk=2c þ 2k;

and

dn=2e þ bk=2c � 2k � jH j � n� dn=2e � bk=2c:

Claim 9. dn=2e þ bk=2c � jCj � dn=2e þ bk=2c þ 1.

Proof. When jCj � dn=2e þ bk=2c þ 2, then jH j � n� dn=2e � bk=2c � 2. This
implies that each vertex of H is adjacent to at least

dn=2e þ bk=2c � 1� jH j þ 1 � �n þ k � �k þ 2 � k þ 1

vertices of C. Therefore, in this case each vertex of H will have two adjacencies in
some interval of C. Since n is large, jH j is large and so by Claims 5 and 8 there will
be a set R of at least k þ 3 vertices of H that are adjacent to the same pair of
vertices at a distance 2 in some interval of C. No pair of vertices of R can be
adjacent, since this would imply a cycle Cpþ1, a contradiction. This implies
that jH j � dn=2e þ bk=2c � 1þ ðk þ 3Þ � 2k. This contradicts the fact that
jH j � n� dn=2e � bk=2c, which completes the proof of Claim 9. (

Claim 10. jCj 6¼ dn=2e þ bk=2c þ a for a ¼ 0 or 1.

Proof. Assume that jCj ¼ dn=2e þ bk=2c þ a for a ¼ 0 or 1. Then dðGÞ and jCj
imply that each vertex of C with no adjacencies in H will be adjacent to all of the
other vertices of C except for possibly a. By Claim 7, nearly one half of the
vertices of C have no adjacencies in H . Also, each vertex in H will have at least
k � 1þ a adjacencies in C and because of Claim 6, will have no more than 2k
adjacencies in C.

We will first show that at most one vertex in an interval of C can have adja-
cencies in H . Assume not. Then select two vertices yi and yiþs with s > 0 in some
interval of C with adjacencies in H , say z1 and z2 respectively (possibily z1 ¼ z2).
Select s as small as possible, so that none of the vertices fyiþ1; . . . ; yiþs�1g between
yi and yiþs have adjacencies in H . All of the vertices in fyiþ1; . . . ; yiþs�1g are
insertible in the path of C between yiþs and yi. Thus, if z1 ¼ z2 there is a required
cycle of length p þ 1 using the path ðyi; z1; yiþsÞ and inserting the vertices of
fyiþ1; . . . ; yiþs�1g into the path of C between yiþs and yi. If z1 6¼ z2, then there is
common adjacency, say z0 2 H , of z1 and z2 since n is large. Using the path
ðyi; z1; z0; z2; yiþsÞ and again inserting the vertices of fyiþ1; . . . ; yiþs�1g will give a
cycle of length p þ 1; p þ 2, or p þ 3 with the required properties. However, the
cycles of length p þ 2 or p þ 3 can be reduced to a cycle of length p þ 1, since there
are many vertices of C adjacent to all of the other vertices of C except for possibly
one giving many chords of length 2. This gives a contradiction, which implies
there is a most one vertex in each of the k intervals of C with an adjacency in H . (

The previous conclusion implies that each vertex of H has between k � 1þ a
and k adjacencies in C and is adjacent to all of the other vertices of H except for
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possibily 1� a. Also, all of the vertices of C except for at most k have no adja-
cencies in H and are adjacent to all but at most a vertices of C. If a ¼ 0, then there
is a vertex z 2 H with adjacencies y1 and y2 in the interior of consecutive intervals
of C. The edge y�1 y�2 2 G, which implies that the cycle C0 ¼ ðy�1 ; y�2 ; y��2 ; . . . ;
y1; z; y2; yþ2 ; . . . ; y�1 Þ is a cycle of length p þ 1 with the required property. If a ¼ 1,
then there is a, in fact any, vertex z 2 H with adjacencies y1; y2 and y3 in the
interior of consecutive intervals of C. Either the edge y�1 y�2 2 G or the edge
y�2 y�3 2 G. In either case a cycle of length p þ 1 with the required property can be
formed just as in the case when a ¼ 0. This gives a contradiction, which completes
the proof of Claim 10.

Hence with all cases exhausted, it must be the case that G is ðk;mÞ-pancyclic
ordered, completing the proof of Theorem 3. (

3. Questions

In the statement of Theorem 3 the order n of the graph G is sufficiently large. This
is a consequence of the proof and not of examples for small order graphs. It
would be of interest to show that the statements of Theorem 3 are valid for all
n � 2k. In particular it would be of interest to know if statement (vi) of Theorem 3
is valid for all n � 2k.
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