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Abstract

In this note, we consider a minimum degree condition for a hamiltonian graph to have a 2-factor
with two components. LetG be a graph of ordern�3. Dirac’s theorem says that if the minimum
degree ofG is at least12n, thenGhas a hamiltonian cycle. Furthermore, Brandt et al. [J. Graph Theory
24 (1997) 165–173] proved that ifn�8, thenG has a 2-factor with two components. Both theorems
are sharp and there are infinitely many graphsGof odd order and minimum degree12(|G|−1)which
have no 2-factor. However, if hamiltonicity is assumed, we can relax the minimum degree condition
for the existence of a 2-factor with two components. We prove in this note that a hamiltonian graph
of ordern�6 and minimum degree at least5

12n+ 2 has a 2-factor with two components.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this note, we study how hamiltonicity affects a minimum degree condition for the
existence of a 2-factor with two components. Our starting point is Dirac’s[6] theorem.
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Theorem 1.1. Every graph of ordern�3 and minimum degree at least1
2n has a hamilto-

nian cycle.

A hamiltonian cycle is a 2-factor with one component. This interpretation naturally leads
us to consider a minimum degree condition for a graph to have a 2-factor with a specified
number of components. Actually, Brandt et al.[4] studied this problem, and proved that the
same bound of minimum degree as in Dirac’s Theorem guarantees the existence of such a
2-factor.

Theorem 1.2(Brandt et al.[4] ). Let k be a positive integer. Then every graph of order
n�4k and minimum degree at least1

2n has a2-factor with k components.

The notion of hamiltonicity has been extended in several other directions. One extension
is pancyclicity. A graph of ordern�3 is said to bepancyclicif it has a cycle of lengthl for
every integerl between 3 andn. Bondy[3] studied a minimum degree condition for a graph
to be pancyclic, and gave the same bound as in Dirac’s theorem.

Theorem 1.3(Bondy[3] ). Let G be a graph of ordern�3 and minimum degree at least
1
2n. Then G is pancyclic unless n is even andG � Kn/2,n/2.

The bound1
2n is sharp for all of Theorems 1.1, 1.2 and 1.3. The complete bipartite graph

G = Kk,k+1 has order|G| = 2k + 1 and minimum degreek = 1
2(|G| − 1). ButG has no

2-factor. This example shows that if we lower the bound by1
2, then we have infinitely many

counterexamples.

Theorems 1.1, 1.2 and 1.3 indicate that in terms of sufficient conditions based on mini-
mum degree, we cannot observe any difference among hamiltonicity, pancyclicity and the
existence of a 2-factor with a specified number of components. However, Amar et al.[1]
considered a variation for studying a relationship between hamiltonicity and pancyclic-
ity. They proved that if hamiltonicity is assumed, then the minimum degree condition for
pancyclicity can be relaxed.

Theorem 1.4(Amar et al.[1] ). Let G be a hamiltonian graph of order n. If the minimum
degree of G is at least(2n+ 1)/5, then G is pancyclic or bipartite.

A possible interpretation of Theorems 1.1 and 1.4 is that the bound1
2n is required to

forceG to have a cycle of lengthn, and that once the existence of a cycle of lengthn is
assured (andG is not bipartite), then a smaller bound of minimum degree guarantees the
existence of cycles of other lengths.

Now we turn our attention to a 2-factor with specified number of components. Considering
the relationship between hamiltonicity and pancyclicity, we may suspect that if hamiltonicity
is assumed, then a bound of minimum degree smaller than that in Theorem 1.2 guarantees
the existence of a 2-factor with specified number of components. Here we are interested in
a smaller coefficient ofn. More specifically, we make the following conjecture.
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Conjecture 1. For each integerk with k�2, there exist real numbersak andck and an
integernk such thatak < 1

2 and every hamiltonian graph of ordern�nk and minimum
degree at leastakn+ ck has a 2-factor withk components.

In this note, we prove this conjecture fork = 2.

Theorem 1.5. Let G be a hamiltonian graph of ordern�6 and minimum degree at least
5
12n+ 2.Then G has a2-factor with two components.

We give a proof of the above theorem in Section 2. We do not think Theorem 1.5 is
best-possible. We discuss the detail and give some remarks in Section 3.

Before proceeding we establish some notation. For graph-theoretic terminology not ex-
plained in this note, we refer the reader to[5]. LetG be a graph. We denote the minimum
degree ofG by �(G). For a vertexx of G, we denote byN(x) and degx the neighborhood
of xand the degree ofx inG, respectively. Given a vertexxon a cycleCwith an orientation,−→
C , then the successor ofx onCwill be denoted byx+ and the predecessor byx−. Further,
let N+(x) denote the set of successors of the neighbors ofx andN−(x) denote the set of
predecessors of neighbors ofx. Given a pair of verticesu, v in C, we denote byu

−→
C v the

subpath inC that starts fromu, traverses in the direction of
−→
C and ends atv. The subpath

of C that starts fromu and ends atv, but traverses in the opposite direction, is denoted by
u
←−
C v.

2. Proof of the main theorem

In this section, we prove Theorem 1.5.

Proof of Theorem 1.5. If n = 6, then�(G)�5, which impliesG = K6 and clearlyG
has a 2-factor with two components. Ifn = 7, then�(G)�5 andG is obtained fromK7
by removing at most three independent edges, and it is easy to see thatG has a required
2-factor.

Suppose 8�n�24, then�(G)� 5
12n + 2� 1

2n and henceG has a 2-factor with two
components by Theorem 1.2. Therefore, we may assumen�25.

AssumeG has no 2-factor with two components. LetC = x1x2x3 · · · xnx1 be a fixed
hamiltonian cycle ofG. Forx ∈ V (C) ande=uu+ ∈ E(C), (x, e) is said to be aninsertion
if {u, u+} ⊂ N(x). By the definition if(x, uu+) is an insertion, thenx = u, u+. Let I
be the set of all insertions. Forx ∈ V (G) and e ∈ E(C), we definei(x) and j (e) by
i(x)= |{e ∈ E(C): (x, e) ∈ I }| andj (e)= |{x ∈ V (C): (x, e) ∈ I }|. Note

∑
x∈V (G)

i(x)=
∑
e∈E(C)

j (e)= |I |. (1)

For x ∈ V (C) anduu+ ∈ E(C), (x, uu+) ∈ I if and only if x ∈ N(u) ∩ N(u+), and it
follows thatj (uu+)= |N(u) ∩N(u+)|.
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C

y+ y

xi-1 xi

Fig. 1. A 2-factor with two cycles.

Claim 1.

|I |>n2/8.

Proof. Observe, for eachy ∈ N(xi)−{xi−3, xi−1, xi+1} it must be the case thaty+ /∈N(xi−1),
for otherwise a 2-factor with 2 cycles would result (SeeFig. 1).

Also, note that there are at least 5n/12+2− i(xi) verticesy ∈ N(xi) so thaty+ /∈N(xi),
which follows from the definition ofi(xi). Hence we have

|(V (G)−N(xi)) ∩ (V (G)−N(xi−1))|� 5
12n− 1− i(x),

which implies|N(xi) ∪N(xi−1)|� 7
12n+ 1+ i(xi). But this yields

j (xixi−1)= |N(xi) ∩N(xi−1)| = |N(xi)| + |N(xi−1)| − |N(xi) ∪N(xi−1)|
� 5

12
n+ 2+ 5

12
n+ 2−

(
7

12
n+ 1+ i(xi)

)
>
n

4
− i(xi).

Hence, we see that

n∑
i=1

(n
4
− i(xi)

)
< |I |.

This gives by Eq. (1):

n2

4
− |I |< |I |.

Thus, we see that|I |>n2/8, completing the proof of Claim 1.
Consequently, by averaging over the vertices, it follows that there is a vertexxi such that

i(xi)> n/8. LetX=N(xi)−{xi−1, xi+1},Y =N+(xi+1)−{xi+3, xi} andZ=N−(xi−1)−
{xi−3, xi}. Clearly,|A|, |B|, |C|�5n/12. �
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Fig. 2. An example of insertion.

Claim 2.

X ∩ Y =X ∩ Z = ∅.

Proof. AssumeX ∩ Y = ∅ and letv ∈ X ∩ Y. It follows thatC1 = xi+1
−→
C v−xi+1 and

C2= xiv−→C x1 forms a 2-factor ofGwith two components, a contradiction. An analogous
argument shows thatX ∩ Z = ∅. �

Claim 3.

|Y ∩ Z|� n
4

.

Proof. Since|X|, |Y |, |Z|�5n/12 and|X ∪ Y ∪ Z|�n, the previous claim implies that

|Y ∩ Z|�3
(

5n
12

)
− n. This implies that|Y ∩ Z|�n/4, concluding the proof of Claim 3.

Recall thatxi was chosen so thati(xi)> n/8 and the setsX, Y,Z were defined with
respect toxi . �

Claim 4. For eachxj ∈ Y ∩ Z we havei(xj )= 0.

Proof. Let xj ∈ Y ∩Z and assumei(xj )>0, with (xj , xkxk+1) ∈ I . Note by Claim 2 that
k = i−1 andk = i. Also, sincei(xi)> n/8�2 we may assume that(xi, xmxm+1) ∈ I with
k = m. Consider the two cyclesxi+1

−→
C xj−1xi+1 andxj+1

−→
C xi−1xj+1 and by insertingxi

betweenxm andxm+1 and insertingxj betweenxk andxk+1, a 2-factor with two cycles
results, a contradiction (SeeFig. 2). Thus, it follows thati(xj )= 0 for eachxj ∈ Y ∩ Z.

�

Claim 5. There is a vertexxi with i(xi)> n/6.
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Proof. From Claim 1, we know that|I |>n2/8. Furthermore, from Claims 3 and 4 we have
that there are at most 3n/4 verticesx havingi(x)>0. Consequently, we have a vertexxi
with

i(xi)>
n2/8

3n/4
= n

6

and the claim follows.
Now to complete the proof of Theorem 1.5, letxi be a vertex withi(xi)> n/6, and ofX, Y

andZ be defined as above. Without loss of generality, we may assumei = 1. Also letxj ∈
Y∩Z. Sincei(xj )=0, clearly ifxk ∈ N(xj )with k < j−1, thenxk+1 /∈N(xj ). Furthermore,
if xk+1 ∈ N(x1) then the cyclex1

−→
C xkxj

←−
C xk+1x1 and the cyclexj+1

−→
C xnxj+1 would

form a 2-factor with two cycles. Ifxk ∈ N(xj ) with k > j + 1 then as above it follows
thatxk−1 /∈N(xj ) andxk−1 /∈N(x1). Also note thatxj /∈N(xj ) andxj /∈N(x1). Hence, it
follows that there is a setWof size at least 5n/12+ 2 withW ∩N(x1)=W ∩N(xj )= ∅.
Furthermore, sincei(x1)>n/6, it is easy to see that there are more thann

6 vertices inN(x1)

that cannot be inN(xj ). Consequently, this implies that

degxj <n−
(

5n

12
+ 2

)
− n

6
= 5n

12
− 2,

which contradicts the original hypothesis, and concludes the proof of the Theorem.�

3. Concluding remarks

We do not think Theorem 1.5 is best possible. Actually, we do not know whether a linear
bound of minimum degree in Conjecture 1 is appropriate. We cannot even construct a hamil-
tonian graph of minimum degree at least five which has no 2-factor with two components.
But there exist infinitely many hamiltonian graphs of minimum degree four which have no
2-factor with two components. LetK5− e denote the graph obtained fromK5 by deleting
one edge, and letG be a graph obtained from a cycle by replacing each vertex with a copy
ofK5− e so that resulting graph is 4-regular (SeeFig. 3). ThenG is hamiltonian, butGhas
no 2-factor with two components. Actually,G has only one non-hamiltonian 2-factor that
consists of15|V (G)| cycles.

. . .

K5 - e

K5 - e

K5 - e

K5 - e

K5 - e

Fig. 3. A hamiltonian graph with no 2-factor with two components.
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A graphG is said to be 1-tough if �(G − S)� |S| for every nonempty subsetS of
V (G). Trivially, a hamiltonian graph is 1-tough. Since a number of sufficient conditions
for hamiltonicity have been relaxed for 1-tough graphs and 1-toughness is easier to use
than hamiltonicity, one may think that a possible approach to Conjecture 1 is to replace
the assumption that the given graph is hamiltonian with a weaker assumption that it is 1-
tough. However, this approach does not work. The following example is due to Bigalke and
Jung[2]. LetN, referred to as thenet, be the unique graph of order six having the degree
sequence(3,3,3,1,1,1). For an integerk with k�2, letGk = kK1 + ((k − 1)K1 ∪ N).
ThenGk is a 1-tough graph with minimum degreek = 1

2|G| − 5
2, butGk does not have

a 2-factor. Therefore, we cannot relax the coefficient of|G| for 1-tough graphs without
allowing infinitely many exceptions.
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