Neighborhood Unions and Independent Cycles

Jill R. Faudree
University of Alaska Fairbanks
Fairbanks AK 99775

Ronald J. Gould
Emory University
Atlanta GA 30322

February 3, 2003

Abstract

We prove that if G is a simple graph of order $n \geq 3 k$ such that $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x and y, then G contains k vertex independent cycles.

1 Introduction

(Notation will go here. FYI I use $N\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to mean $N\left(x_{1}\right) \cup N\left(x_{2}\right) \cup$... $N\left(x_{n}\right)$.)

In 1963 Corradi and Hajnal in [1] produced the following result which proved a conjecture of Erdos:

Theorem 1 If G is a graph of order $n \geq 3 k, k \geq 1$, with $\delta(G) \geq 2 k$, then G contains k independent cycles.

In 1989, Justesen in [2] generalized this result to degree sums of nonadjacent pairs and in 1999 Justesen's result was improved by Wang in [4] with the following sharp result:

Theorem 2 If G is a graph of order $n \geq 3 k$ such that $\operatorname{deg}(u)+\operatorname{deg}(v) \geq 4 k-$ 1 for all pairs u, v of nonadjacent vertices, then G contains k independent cycles.

A summary of results on independent cycles in graphs can be found in [3].

In this paper, we look at neighborhood unions that imply the existence of k independent cycles. Specifically we prove the following result:

Theorem 3 If G is a graph of order $n \geq 3 k$ such that $|N(x) \cup N(y)| \geq$ $3 k$ for all nonadjacent pairs of vertices x and y, then G contains k vertex independent cycles.
(I don't know if this is useful or not but...) The result is sharp in the sense that for any k the graph $G=K_{3 k-1} \cup K_{2}$ has $|N(x, y)|=3 k-1$ for all nonadjacent vertices x and y and does not have k independent cycles. Also, for $k=1$ and for any n, we need $|N(x, y)| \geq 3 k$ in order to be guaranteed the existence of a cycle.

2 Proof of Theorem 3

The proof will proceed by double induction on n and k.
The theorem is clearly true for small values of n. Thus, we assume the statement of the theorem is true for graphs of order less than n.

Let G be a graph of order n satisfying the hypothesis of the theorem. Let $k=1$. Then $|N(x, y)| \geq 3$ for all nonadjacent pairs of vertices. Thus G must contain a cycle.

Assume G does not contain k independent cycles for $k \leq n / 3$. If G contains a triangle, T, then $G-T$ contains $k-1$ independent cycles by the inductive hypothesis. Thus, G contains k independent cycles. So we assume $g(G) \geq 4$.

Let $\mathcal{C}=\left\{C_{1}, C_{2}, C_{3}, \ldots, C_{k-1}\right\}$ be a collection of $k-1$ vertex disjoint cycles which exist by the inductive hypothesis. Choose \mathcal{C} so that $|V(\mathcal{C})|$ is minimized. Let $L=G-V(\mathcal{C})$. Note that our choice of \mathcal{C} implies that $|V(L)| \geq 3$ since $G-\left\{v_{1}, v_{2}, v_{3}\right\}$ contains $k-1$ independent cycles for any choice of v_{1}, v_{2}, v_{3}.

Of all collections \mathcal{C} such that $|V(\mathcal{C})|$ is minimized, choose one such that L has a minimum number of connected components. Finally, of all collections \mathcal{C} with a minimum number of connected components, pick one such that the order of a maximum component of L is maximized.

Claim 1: L has at most one connected component.
Assume L has two or more components. Let v and w be end vertices of distinct trees in L such that w is in a component of maximum order. Then $\left|N_{\mathcal{C}}(v, w)\right| \geq 3 k-2$. So there exists $C_{i} \in \mathcal{C}$ such that $\left|N_{C_{i}}(v, w)\right| \geq 4$. By the minimality of $|V(\mathcal{C})|$, we know that C_{i} must be a 4 -cycle with vertices (in order), $u_{1} u_{2} u_{3} u_{4}$, such that $v u_{1}, v u_{3}, w u_{2}, w u_{4} \in E(G)$.

Let C_{i}^{\prime} be the cycle $u_{1} v u_{3} u_{4}$. Let $\mathcal{C}^{\prime}=\mathcal{C}-C_{i} \cup\left\{C_{i}^{\prime}\right\}$. Now $L^{\prime}=G-V\left(\mathcal{C}^{\prime}\right)$ has a larger maximum connected component than L. This contradicts our
choice of \mathcal{C}. Thus, L has at most one component.
Claim 2: We can assume L is a path.
If L is not a path, pick a path P of maximum length in L. Let w be an end vertex of this path. Let v be an end vertex of L not on this path. As in the proof of claim 1, we can simultaneously insert v into \mathcal{C} and append u_{2} to P. Continue this process until L is a path.

Claim 3: We can assume that at least one penultimate vertex on the path L has degree at least $3 k / 2$.

Pick v, w to be end vertices of L. Without loss of generality, we assume $d(w) \geq 3 k / 2$. If neither(or possibly the) penultimate vertex as degree at least $3 k / 2$, then, as in the proof of claim 1 , we can simultaneously insert v into \mathcal{C} and append u_{2} to L. Now w is a penultimate vertex with degree at least $3 k / 2$.

Label the vertices of the path $L: x_{1} x_{2} \ldots x_{m}$. Now, $\left|N_{\mathcal{C}}\left(x_{1}, x_{2}, x_{3}\right)\right|=$ $\left|N_{\mathcal{C}}\left(x_{1}, x_{3}\right)\right|+\left|N_{\mathcal{C}}\left(x_{2}\right)\right| \geq 3 k-2+\frac{3 k}{2}-2=\frac{9 k}{2}-4>4(k-1)$ for $k \geq 1$. But this means there exists $C_{i} \in \mathcal{C}$ such that $\left|N_{C_{i}}\left(x_{1}, x_{2}, x_{3}\right)\right| \geq 5$ which contradicts the minimality of $|V(\mathcal{C})|$. Thus, G has k independent cycles.

References

[1] K. Corradi and A. Hajnal, On the maximal number of independent circuits in a graph. Acta. Math. Acad. Sci. Hungar. 14 (1963) 423-439.
[2] P. Justesen, On independent circuits in finite graphs and conjecture of Erdos and Posa. Annals of Discrete Math 41 (1989) 299-306.
[3] L. Lesniak, Independent cycles in graphs. J. Combin. Math. Combin. Comput. 17 (1995), 55-63.
[4] H. Wang, On the maximum number of independent cycles in a graph. Discrete Math. 205 (1999), no. 1-3,183-190.

