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Abstract

We prove that if G is a simple graph of order n ≥ 3k such that
|N(x) ∪ N(y)| ≥ 3k for all nonadjacent pairs of vertices x and y, then
G contains k vertex independent cycles.

1 Introduction

(Notation will go here. FYI I use N(x1, x2, ..., xn) to mean N(x1)∪N(x2)∪
...N(xn).)

In 1963 Corradi and Hajnal in [1] produced the following result which
proved a conjecture of Erdos:

Theorem 1 If G is a graph of order n ≥ 3k, k ≥ 1, with δ(G) ≥ 2k, then

G contains k independent cycles.

In 1989, Justesen in [2] generalized this result to degree sums of nonad-
jacent pairs and in 1999 Justesen’s result was improved by Wang in [4] with
the following sharp result:

Theorem 2 If G is a graph of order n ≥ 3k such that deg(u)+deg(v) ≥ 4k−
1 for all pairs u, v of nonadjacent vertices, then G contains k independent

cycles.

A summary of results on independent cycles in graphs can be found in
[3].

In this paper, we look at neighborhood unions that imply the existence
of k independent cycles. Specifically we prove the following result:
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Theorem 3 If G is a graph of order n ≥ 3k such that |N(x) ∪ N(y)| ≥
3k for all nonadjacent pairs of vertices x and y, then G contains k vertex

independent cycles.

(I don’t know if this is useful or not but...) The result is sharp in the
sense that for any k the graph G = K3k−1∪K2 has |N(x, y)| = 3k−1 for all
nonadjacent vertices x and y and does not have k independent cycles. Also,
for k = 1 and for any n, we need |N(x, y)| ≥ 3k in order to be guaranteed
the existence of a cycle.

2 Proof of Theorem 3

The proof will proceed by double induction on n and k.
The theorem is clearly true for small values of n. Thus, we assume the

statement of the theorem is true for graphs of order less than n.
Let G be a graph of order n satisfying the hypothesis of the theorem.

Let k = 1. Then |N(x, y)| ≥ 3 for all nonadjacent pairs of vertices. Thus G
must contain a cycle.

Assume G does not contain k independent cycles for k ≤ n/3. If G
contains a triangle, T , then G− T contains k − 1 independent cycles by the
inductive hypothesis. Thus, G contains k independent cycles. So we assume
g(G) ≥ 4.

Let C = {C1, C2, C3, ..., Ck−1} be a collection of k − 1 vertex disjoint
cycles which exist by the inductive hypothesis. Choose C so that |V (C)|
is minimized. Let L = G − V (C). Note that our choice of C implies that
|V (L)| ≥ 3 since G − {v1, v2, v3} contains k − 1 independent cycles for any
choice of v1, v2, v3.

Of all collections C such that |V (C)| is minimized, choose one such that L
has a minimum number of connected components. Finally, of all collections
C with a minimum number of connected components, pick one such that the
order of a maximum component of L is maximized.

Claim 1: L has at most one connected component.
Assume L has two or more components. Let v and w be end vertices of

distinct trees in L such that w is in a component of maximum order. Then
|NC(v, w)| ≥ 3k − 2. So there exists Ci ∈ C such that |NCi

(v, w)| ≥ 4. By
the minimality of |V (C)|, we know that Ci must be a 4-cycle with vertices
(in order), u1u2u3u4, such that vu1, vu3, wu2, wu4 ∈ E(G).

Let C ′
i
be the cycle u1vu3u4. Let C′ = C−Ci∪{C ′

i
}. Now L′ = G−V (C′)

has a larger maximum connected component than L. This contradicts our
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choice of C. Thus, L has at most one component.
Claim 2: We can assume L is a path.
If L is not a path, pick a path P of maximum length in L. Let w be an

end vertex of this path. Let v be an end vertex of L not on this path. As in
the proof of claim 1, we can simultaneously insert v into C and append u2

to P . Continue this process until L is a path.
Claim 3: We can assume that at least one penultimate vertex on the

path L has degree at least 3k/2.
Pick v, w to be end vertices of L. Without loss of generality, we assume

d(w) ≥ 3k/2. If neither(or possibly the) penultimate vertex as degree at
least 3k/2, then, as in the proof of claim 1, we can simultaneously insert v
into C and append u2 to L. Now w is a penultimate vertex with degree at
least 3k/2.

Label the vertices of the path L : x1x2...xm. Now, |NC(x1, x2, x3)| =
|NC(x1, x3)| + |NC(x2)| ≥ 3k − 2 + 3k

2
− 2 = 9k

2
− 4 > 4(k − 1) for k ≥ 1.

But this means there exists Ci ∈ C such that |NCi
(x1, x2, x3)| ≥ 5 which

contradicts the minimality of |V (C)|. Thus, G has k independent cycles.
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