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Abstract: Bollobás and Thomason showed that every 22k-connected
graph is k-linked. Their result used a dense graph minor. In this paper, we
investigate the ties between small graph minors and linkages. In particular,
we show that a 6-connected graph with a K�

9 minor is 3-linked. Further, we
show that a 7-connected graph with a K�

9 minor is ð2;5Þ-linked. Finally, we
show that a graph of order n and size at least 7n � 29 contains a K��

9 minor.
� 2005 Wiley Periodicals, Inc. J Graph Theory 49: 75–91, 2005
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1. INTRODUCTION

All graphs considered in this paper are simple graphs, that is, finite graphs

without multiple edges or loops. For any graph G, we will use jGj and jjGjj to

denote the number of vertices and the number of edges of G, respectively. Let H

be a connected subgraph of a graph G, then let G=H denote the graph obtained by

contracting all vertices of H to a vertex and let G½H� ¼ G½VðHÞ� denote the

subgraph induced by the vertex set of H in G. Let NðvÞ denote the set of vertices

in G, which are adjacent to v and set N½v� ¼ NðvÞ [ fvg. In this paper, Kn always

stands for the complete graph with n vertices, K�
n denotes a subgraph of Kn with

exactly one edge deleted, and K�i
n denotes a subgraph of Kn with exactly ið�2Þ

edges deleted. When i ¼ 2, we sometimes use K��
n for K�2

n .

Let s1, s2; . . . ; sk be k positive integers. A graph G is said to be (s1; s2; . . . ; sk)-
linked if it has at least

Pk
i¼1 si vertices and for any k disjoint vertex sets

S1; S2; . . . ; Sk with jSij ¼ si, G contains vertex-disjoint connected subgraphs F1,

F2; . . . ;Fk such that Si � VðFiÞ. The case s1 ¼ s2 ¼ � � � ¼ sk ¼ 2 has been

studied extensively. A (2; 2; . . . ; 2)-linked graph is called k-linked, that is, for any

2k distinct vertices x1, y1, x2, y2; . . . ; xk, and yk there exist k vertex-disjoint paths

P1, P2; . . . ;Pk such that Pi joins xi and yi, 1 � i � k.

A graph H is a minor of a graph G if H can be obtained from G by deleting

edges and/or vertices and contracting edges. An H-minor of G is a minor

isomorphic to H. A subdivision of a graph is obtained by replacing some of its

edges by paths so that the paths are pairwise internally disjoint. Clearly, if G

contains a subdivision of H then G has H as a minor, but the converse is not

necessarily true.

Linkages, subdivisions, and minors have been related in a number of results.

For example, Larman and Mani [12] and Jung [5] noticed that if �ðGÞ � 2k and if

G contains a subdivision of K3k then G is k-linked. Mader [15] showed that a

graph contains a subdivision of K3k if its connectivity is sufficiently large.

Robertson and Seymour [17] showed that the observation of Larman and Mani

and of Jung remains true under the very much weaker condition that G has K3k

as a minor. Instead of considering K3k minors, Bollobás and Thomason [1]

considered graphs containing a dense graph as a minor. Using this idea, they
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showed that every 22k-connected graph is k-linked, thus confirming the long-

standing belief that linear connectivity would suffice.

Jung [10] showed that every 4-connected non-planar graph is 2-linked.

Thomassen [21] and Seymour [19] gave a characterization of graphs, which are

not 2-linked. Chakravarti and Robertson also proved a variation of the result on

2-linked graphs [16]. Our main purpose is to develop more ties between small

graph minors and graph linkages. To do so, we study graphs containing dense

minors on 9 vertices. In particular, the following results are obtained.

Theorem 1.1. If a 6-connected graph G has K�
9 as a minor, then G is 3-linked.

Yu [23] completely characterized graphs G which do not contain two vertex-

disjoint connected subgraphs F1 and F2 such that S1 � VðF1Þ and S2 � VðF2Þ for

two disjoint vertex sets S1 and S2 with jS1j ¼ 2 and jS2j ¼ 3. Consequently, he

proved that every 8-connected graph is ð2; 3Þ-linked. We will prove the following

theorem.

Theorem 1.2. If a 7-connected graph G has K�
9 as a minor, then G is ð2; 5Þ-

linked.

Note that in [2], we consider several additional questions of this type. Finally,

we show the following.

Theorem 1.3. If G is a graph on n � 9 vertices with at least 7n� 29 edges,

then G has K��
9 as a minor.

We do not feel Theorem 1.3 is best possible. Hence, we make the following

conjecture.

Conjecture 1.4. If G is a graph on n vertices with at least 6n� 20 edges, then

G has K��
9 as a minor.

In addition, we make these related conjectures.

Conjecture 1.5. If G is a graph on n vertices with at least 13n�47
2

edges, then G

has K�
9 as a minor.

Conjecture 1.6. If G is a graph on n vertices with at least 7n� 27 edges, then

G has K9 as a minor with finitely many exceptions.

Conjecture 1.7. If G is a 6-connected graph with K��
9 as a minor, then G is 3-

linked.

Very recently, a proof of Conjecture 1.6 was announced by Thomas et al. [20].

Finally, we note another long-standing conjecture.

Conjecture 1.8. Every 8-connected graph graph is 3-linked.

We will give proofs of Theorems 1.1 and 1.2 in Section 2 and of Theorem 1.3

in Section 3.

We define Gþ H be the graph with vertex set VðGÞ [ VðHÞ and edge set EðGÞ [
EðHÞ, where G and H are two vertex disjoint graphs. We define 2G ¼ Gþ G0,
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where G0 is isomorphic to G and VðG0Þ \ VðGÞ ¼ ;. Let G be a graph and A be a

subset of VðGÞ. To avoid cumbersome notation, at times, we simply use A to

denote the subgraph induced by A, that is G½A�, provided no confusion will arise.

2. LINKAGES

In this section, we will prove Theorem 1.1 and Theorem 1.2. We will use

inductive arguments showing slightly stronger statements of each result. We will

need the following definitions.

Definition 2.1. Let S;A;B � VðGÞ be sets of vertices in a graph G. Let

‘ ¼ jA \ Bj. If S � A, VðGÞ ¼ A [ B, and there are no edges between AnB and

BnA, then we call ðA;BÞ an S-cut of size ‘.

Definition 2.2. Let H be a minor of a connected graph G. Let C1;C2; . . . ;CjHj
be a partition of VðGÞ, such that each G½Ci� is connected, and contraction of the

C0
is yields H. Let S � VðGÞ. An S-cut ðA;BÞ of G is called an SH-cut if Ci � BnA

for some 1 � i � jHj.

A. Proof of Theorem 1.1

Now we shall prove the following result, which is stronger than Theorem 1.1.

Theorem 2.1. Let G be a graph, and let S ¼ fx1; x2; y1; y2; z1; z2g � VðGÞ be a
set of 6 vertices. Let G� be the graph obtained from G by adding all missing edges

in G½S�. Suppose that there is a partition C1;C2; . . . ;C9 of VðGÞ, such that each

G�½Ci� is connected, and contraction of the C0
is in G� yields H ¼ K�

9 . Further

suppose that G� has no SH-cut of size smaller than 6. Then there are three vertex

disjoint paths in G connecting ðx1; x2Þ, ðy1; y2Þ, and ðz1; z2Þ, respectively.
Proof. Suppose the statement is false, and G is a counterexample with the

minimum number of edges. Let S;C1;C2; . . .C9 be as in the theorem, and

suppose the desired linkage cannot be found. By the choice of G, we know that

G½S� contains no edges.

Claim 2.1.1. The subgraphs G½Ci� (i ¼ 1; 2; . . . ; 9) contain no edges.

Suppose to the contrary that for some i, G½Ci� contains an edge. Without loss of

generality, we may assume that uv 2 EðC1Þ, and since G½S� is empty, v 62 S.

By the choice of G, there has to be an SH-cut ðA;BÞ of size 6 in G� with

u; v 2 A \ B, otherwise the contraction of uv would yield a smaller counter-

example.

A simple count shows that at least four of the nine Ci sets contain no vertices

of A \ B. By symmetry, we may assume that Ci \ A \ B 6¼ ; for 1 � i � k, and

Ci \ A \ B ¼ ; for i > k, where k is an integer with 1 � k � 5. As S � A, and

G�½Ci� is connected, we know that Ci � BnA or Ci � AnB for each i > k. By the

definition of SH-cuts, we know that Ci � B n A for at least one i > k, hence it is,
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in fact, true that Ci � B n A for all i > k, otherwise the Ci would not contract to a

K�
9 in G�.
Since there is no SH-cut of size less than 6 in G�, there does not exist a cut of

size less than 6 in A separating S and A \ B. By Menger’s Theorem, there are

6 vertex disjoint paths from S to A \ B in G½A�. Label the vertices of S0 ¼ A \ B

with x01; x
0
2; y

0
1; y

0
2; z

0
1; z

0
2 according to the starting vertices in S of these paths. Let

C0
i ¼ Ci \ B for 1 � i � 9. G½B�, S0, C0

1; . . . ;C
0
9 satisfy all the conditions of the

statement, and G½B� is smaller than G as there is at least one vertex in SnB (note

that v 62 S).

By the choice of G, we can find three vertex disjoint paths in G½B� connecting

ðx01; x02Þ, ðy01; y02Þ, and ðz01; z02Þ, respectively. This, together with the six paths in

G½A�, produces three vertex disjoint paths in G connecting ðx1; x2Þ, ðy1; y2Þ, and

ðz1; z2Þ, respectively, a contradiction. This shows that G½Ci� (i ¼ 1; . . . ; 9) contain

no edges. &

Note that this implies that for each 1 � i � 9, Ci � S or jCij ¼ 1. Therefore,

9 � jVðGÞj � 14. We will finish the proof by an analysis broken into cases

according to jVðGÞj. We may always assume that jCij � jCjj for 1 � i < j � 9.

Case 2.1.1. Suppose jVðGÞj ¼ 9.

Note that in this case jCij ¼ 1 for all 1 � i � 9. Let VðGÞnS ¼ fv1; v2; v3g. Since the

paths in the following sets fx1v1x2; y1v2y2; z1v3z2g and fx1v2x2; y1v3y2; z1v1z2g
are edge disjoint, respectively, one of these sets is the desired set of vertex-

disjoint paths, a contradiction.

Case 2.1.2. Suppose jVðGÞj ¼ 10.

In this case jC1j ¼ 2. Let VðGÞnS ¼ fv1; v2; v3; v4g.

First suppose that C1 ¼ fx1; x2g (the cases C1 ¼ fy1; y2g and C1 ¼ fz1; z2g are

analogous). There exists a matching from C1 into VðGÞnS, otherwise there is an

SH-cut smaller than 6 in G�. We may assume that fx1v1; x2v2g is such a matching.

If v1v2 2 EðGÞ, then one of fx1v1v2x2; y1v3y2; z1v4z2g and fx1v1v2x2; y1v4y2;
z1v3z2g is the desired set of vertex-disjoint paths, a contradiction. Thus, we may

assume that v1v2 62 EðGÞ. As G� contracts to a K�
9 , v3 has a neighbor in C1, hence

we may assume that x1v3 2 EðGÞ. But now fx1v3v2x2; y1v1y2; z1v4z2g is the

desired set of vertex-disjoint paths, a contradiction.

Now suppose that C1 ¼ fx1; y1g (again the other cases are handled by a similar

argument). There exists a matching from C1 into VðGÞnS. We may assume that

fx1v1; y1v2g is such a matching. At most, one of the edges in a path in

fx1v1x2; y1v2y2; z1v3z2g is missing, but then this edge can be replaced by a path of

length 2 through v4 to produce the desired set of vertex disjoint paths, a

contradiction completing this case.

Case 2.1.3. Suppose jVðGÞj ¼ 11.

Let VðGÞnS ¼ fv1; v2; v3; v4; v5g.
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First suppose that jC1j ¼ 3. We may assume that x1; y1 62 C1. Now

G�½x1; y1; v1; v2; v3; v4; v5� is a K7 or a K�
7 , and therefore 3-linked. We can find

a matching from fx2; y2; z1; z2g into fv2; v3; v4; v5g, otherwise there is an SH-cut

smaller than 6 in G�. Without loss of generality, suppose the matching is

x2v2, y2v3, z1v4, z2v5. We can now connect the paths in the necessary manner

inside G�½x1; y1; v1; v2; v3; v4; v5�, since this graph is 3-linked. Note that the edge

x1y1 is not used in this path system, so this is, in fact, a path system in G, a

contradiction.

Now suppose that jC1j ¼ jC2j ¼ 2. If x1; y1 62 C1 [ C2, the same argument as

above applies. By symmetry we may assume that C1 [ C2 ¼ fy1; y2; z1; z2g. If

xjvk 62 EðGÞ for some 1 � j � 2 and some 1 � k � 5, say x1v1 62 EðGÞ, then

G½x2; v1; v2; v3; v4; v5� is a K6 and thus 3-linked, and a very similar argument can

be used to find the paths. Thus, we may assume that xjvk 2 EðGÞ for 1 � j � 2

and 1 � k � 5. There is a matching from fy1; y2; z1; z2g into fv1; v2; v3; v4; v5g,

say y1v1; y2v2; z1v3; z2v4 2 EðGÞ. If v1v2; v3v4 2 EðGÞ, then fx1v5x2; y1v1v2y2;
z1v3v4z2g is the desired set of vertex disjoint paths, a contradiction. Hence, we

may assume that v1v2 62 EðGÞ. As G� contracts to a K�
9 , v5 is adjacent to both C1

and C2. If v5y1 2 EðGÞ (and similarly if v5y2 2 EðGÞ), then fx1v1x2; y1v5v2y2;
z1v3v4z2g is the desired set of vertex disjoint paths. Hence, v5z1; v5z2 2 EðGÞ. But

then fx1v4x2; y1v1v3v2y2; z1v5z2g are the desired paths and this contradiction

completes this case.

Case 2.1.4. Suppose jVðGÞj ¼ 12.

Let VðGÞnS ¼ fv1; v2; v3; v4; v5; v6g. If jC1j � 3, then jC3j ¼ 1 and G½C3 [
fv1; v2; v3; v4; v5; v6g� is a K7 or a K�

7 and the same argument as in Case 2.1.3

applies. Hence, we may assume that jC1j ¼ jC2j ¼ jC3j ¼ 2.

There is a matching from S into VðGÞnS, say fx1v1; x2v2; y1v3; y2v4; z1v5; z2v6g
is such a matching. One of the edges v1v2; v3v4; v5v6 is missing, otherwise the

three paths are easy to find. This implies that every vi has at least three neighbors

in S, one in each of C1, C2, and C3. Further, each vertex in S has at least two

neighbors in VðGÞnS, otherwise G is not minimal.

Suppose that x2v1 2 EðGÞ. Then, similar to our earlier arguments, either

fx1v1x2, y1v3v4y2, z1v5v2v6z2g or fx1v1x2, y1v3v2v4y2, z1v5v6z2g is the desired

path system, a contradiction. So, assume that x2v1 =2EðGÞ. By similar arguments,

we may conclude that x1v2; y1v4; y2v3; z1v6; z2v5 62 EðGÞ.
Suppose that x1v3; x2v3 2 EðGÞ. If y1v1 2 EðGÞ or y1v2 2 EðGÞ, or y1v42

EðGÞ, a path system can easily be found. So, we may assume y1v1; y1v2;
y1v4 =2 EðGÞ. Thus, y1v5 2 EðGÞ or y1v6 2 EðGÞ, by symmetry we may assume

y1v5 2 EðGÞ. If z1v1 2 EðGÞ, then fx1v3x2; y1v5v4y2; z1v1v6z2g is a path system, a

contradiction. Thus z1v1 =2 EðGÞ. Similarly, z1v2 62 EðGÞ. As v1 and v2 have at

least three neighbors in S, we have y2v1; y2v2; z2v1; z2v2 2 EðGÞ. If z1v4 2 EðGÞ,
then fx1v3x2; y1v5v1y2; z1v4v6z2g is a path system, a contradiction. Thus,

z1v4 62 EðGÞ, and z1v3 2 EðGÞ as z1 has at least two neighbors in VðGÞnS. If

x1v4 2 EðGÞ, then fx1v4v2x2; y1v5v1y2; z1v3v6z2g is a path system, a contra-
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diction. Thus, x1v4 62 EðGÞ, and similarly x2v4 62 EðGÞ. But now the only possible

neighbors of v4 in S are y2 and z2, a contradiction establishing that x1v3 and x2v3

cannot both be edges.

By symmetrical arguments, we can establish that Nðx1Þ \ Nðx2Þ ¼ Nðy1Þ \
Nðy2Þ ¼ Nðz1Þ \ Nðz2Þ ¼ ;. Therefore, every vi has exactly three neighbors in S.

By symmetry, we may assume that v1v2 62 EðGÞ and Nðv1Þ ¼ fx1; y1; z1g. If

x1v3 2 EðGÞ, then fx1v3v2x2; y1v1v4y2; z1v5v6z2g is a path system, a contra-

diction. Thus, x1v3 62 EðGÞ and hence x2v3 2 EðGÞ.
If y1v2 2 EðGÞ, then fx1v1v3x2; y1v2v4y2; z1v5v6z2g is a path system, a con-

tradiction. Thus, y1v2 62 EðGÞ and hence y2v2 2 EðGÞ.
If x2v4 2 EðGÞ, then fx1v1v4x2; y1v3v2y2; z1v5v6z2g is a path system, a con-

tradiction. Thus, x2v4 62 EðGÞ and hence x1v4 2 EðGÞ.
If y2v5 2 EðGÞ, then fx1v4v2x2; y1v3v5y2; z1v1v6z2g is a path system, a contra-

diction. Thus, y2v5 62 EðGÞ and hence y1v5 2 EðGÞ. But now, fx1v4v3x2;
y1v5v2y2; z1v1v6z2g is a path system, the final contradiction finishing the case

jVðGÞj ¼ 12.

Case 2.1.5. Suppose jVðGÞj > 12.

Let VðGÞ n S 	 fv1; v2; v3; v4; v5; v6; v7g. Then G½v1; v2; v3; v4; v5; v6; v7� is a K7

or a K�
7 , and therefore 3-linked. The path system can easily be found by finding a

matching from S to six vertices of VðGÞnS, establishing this last case and

completing the proof of the theorem.

B. Proof of Theorem 1.2

Again, we will prove a slightly stronger statement.

Theorem 2.2. Let G be a graph, and let S ¼ fx1; x2; y1; y2; y3; y4; y5g � VðGÞ
be a set of 7 vertices. Let G� be the graph obtained from G by adding all missing

edges in G½S�. Suppose that there is a partition C1;C2; . . . ;C9 of VðGÞ, such that

each G�½Ci� is connected, and contraction of the C0
is in G� yields H ¼ K�

9 .

Further suppose that G� has no SH-cut of size smaller than 7. Then there are two

vertex disjoint connected subgraphs in G containing fx1; x2g and fy1; y2; y3;
y4; y5g, respectively.

Proof. Suppose the statement is false and G is a counterexample with the

minimum number of edges. Let S;C1;C2; . . . ;C9 be as in the theorem, and

suppose the desired subgraphs cannot be found. By the choice of G, we know that

G½S� contains no edges.

Claim 2.2.1. The subgraphs G½Ci� contain no edges.

Suppose the result fails to hold. Without loss of generality, we may assume that

uv 2 EðC1Þ, and v 62 S. By the choice of G, there has to be an SH-cut ðA;BÞ of

size 7 with u; v 2 A \ B, otherwise the contraction of uv would yield a smaller

counterexample.

A simple count shows that at least three of the nine Ci sets contain no vertices

of A \ B. By symmetry, we may assume that Ci \ A \ B 6¼ ; for 1 � i � k, and
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Ci \ A \ B ¼ ; for i > k, where k is an integer with 1 � k � 6. As S � A, and

G�½Ci� is connected, we know that Ci � B n A or Ci � A n B for each i > k. Since

Ci � B n A for at least one i > k, it is, in fact, true that Ci � B n A for all i > k,

otherwise the Ci would not contract to a K�
9 in G�.

Since there is no SH-cut of size less than 7 in G�, there are 7 vertex disjoint

paths from S to A \ B in G½A�. Label the vertices of S0 ¼ A \ B with x01; x
0
2;

y01; y
0
2; y

0
3; y

0
4; y

0
5 according to the starting vertices of these paths. Let C0

i ¼ Ci \ B

for 1 � i � 9. G½B�, S0, C0
1, . . . ;C0

9 satisfy all the conditions of the statement, and

G½B� is smaller than G as there is at least one vertex in SnB (note that v 62 S).

By the choice of G, we can find two vertex disjoint connected subgraphs in

G½B� containing fx01; x02g and fy01; y02; y03; y04; y05g, respectively. This, together with

the seven paths in G½A�, produces the desired subgraphs in G, a contradiction,

completing the claim. &

Note that this implies that for each 1 � i � 9, Ci � S or jCij ¼ 1. Therefore,

9 � jVðGÞj � 15 and we can assume that jVðCiÞj � jVðCjÞj for 1 � i < j � 9.

We will finish the proof by an analysis broken up into cases according to jVðGÞj.

Case 2.2.1. Suppose jVðGÞj ¼ 9.

Note that in this case jCij ¼ 1 for all 1 � i � 9. Let VðGÞnS ¼ fv1; v2g. Then

one of G½x1; x2; v1�;G½y1; y2; y3; y4; y5; v2� and G½x1; x2; v2�;G½y1; y2; y3; y4; y5; v1�
is the desired set of connected subgraphs, a contradiction.

For all other cases note that every vertex in S has at least two neighbors in

VðGÞnS. Suppose the contrary, say y1, has at most one neighbor in VðGÞnS. If y1

has no neighbors in VðGÞnS, then ðA ¼ S;B ¼ VðGÞ n fy1gÞ is an SH-cut of

size 6. On the other hand, if y1 has exactly one neighbor in VðGÞnS, say

y1v1 2 EðGÞ, then Cinfy1g 6¼ ; for all 1 � i � 9 since jVðGÞnSj � 3, and

Gnfy1g with S0 ¼ ðSnfy1gÞ [ fv1g would be a smaller counterexample, con-

tradicting the minimality of EðGÞ.

Case 2.2.2. Suppose jVðGÞj ¼ 10.

Now jC1j ¼ 2. Let VðGÞnS ¼ fv1; v2; v3g. We know that Nðx1Þ \ Nðx2Þ \
VðGÞnS 6¼ ;, since jNðx1Þ \ ðVðGÞ n SÞj � 2 and jNðx2Þ \ ðVðGÞnSÞj � 2.

We may assume that x1v1; x2v1 2 EðGÞ. Every yi is connected to at least one

of v2 and v3. All we need to show in order to find a contradiction is that

G½y1; y2; y3; y4; y5; v2; v3� is connected. If v2v3 2 EðGÞ, this is clear. Otherwise,

observe that jCij ¼ 1 for 2 � i � 9, and thus there is a yj with yjv2; yjv3 2 EðGÞ.

Case 2.2.3. Suppose jVðGÞj ¼ 11.

Let VðGÞnS ¼ fv1; v2; v3; v4g. If Nðx1Þ \ Nðx2Þ \ ðVðGÞnSÞ 6¼ ;, say x1v1;
x2v1 2 EðGÞ, then G½x1; x2; v1� and G½y1; y2; y3; y4; y5; v2; v3; v4� are connected

subgraphs. Thus, suppose that Nðx1Þ \ Nðx2Þ \ ðVðGÞnSÞ ¼ ;, say Nðx1Þ ¼
fv1; v2g and Nðx2Þ ¼ fv3; v4g. Note that this implies that neither x1 nor x2 is in a
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Ci by itself, so at least three of the y0is have at least three neighbors in VðGÞnS, at

least two of the y0is are connected to all four vertices in VðGÞnS.

By symmetry, we may assume that v1v3; v1v4; v2v3 2 EðGÞ (potentially

v2v4 62 EðGÞ). As there are at most two vertices in fy1; y2; y3; y4; y5g with less

than three neighbors in VðGÞ n S, we can pick 1 � j < k � 4 such that G½x1;
x2; vj; vk� is connected, and such that every yi has a neighbor in

fv1; v2; v3; v4gnfvj; vkg. But now G½VðGÞ n fx1; x2; vj; vkg� is connected, a

contradiction.

Case 2.2.4. Suppose n ¼ jVðGÞj � 12.

Let VðGÞnS¼fv1; v2; v3; . . . ; vn�7g. If Nðx1Þ \ Nðx2Þ 6¼ ;, say x1v1; x2v1 2 EðGÞ,
then G½x1; x2; v1� and G½y1; y2; y3; y4; y5; v2; v3; . . . ; vn�7� are connected sub-

graphs. Thus, suppose that Nðx1Þ \ Nðx2Þ ¼ ;.

Suppose that jNðx1Þj ¼ jNðx2Þj ¼ 2, say Nðx1Þ ¼ fv1; v2g and Nðx2Þ ¼
fv3; v4g. By symmetry, we may assume that v1v3; v1v4; v2v3 2 EðGÞ (potentially

v2v4 62 EðGÞ). If every yi has a neighbor in fv1; v2; v3; . . . ; vn�7gnfv1; v3g,

then G½x1; x2; v1; v3� and G½y1; y2; y3; y4; y5; v2; v4; v5; . . . ; vn�7� are connected

subgraphs. Therefore, there is an yi with NðyiÞ ¼ fv1; v3g, say i ¼ 1. Similarly,

we may assume that Nðy2Þ ¼ fv1; v4g and Nðy3Þ ¼ fv2; v3g. But now ðA ¼
S [ fv1; v2; v3; v4g;B ¼ fy4; y5; v1; v2; . . . ; vn�7gÞ is an SH-cut of size 6 in G�, a

contradiction.

Now suppose that jNðx1Þ [ Nðx2Þj � 5, say Nðx1Þ 	 fv1; v2g and Nðx2Þ 	
fv3; v4; v5g. By symmetry, we may assume that v1v3; v1v4; v1v5; v2v3; v2v4 2
EðGÞ (potentially v2v5 62 EðGÞ). By similar arguments as above, Nðy1Þ ¼
fv1; v3g, Nðy2Þ ¼ fv1; v4g, Nðy3Þ ¼ fv1; v5g, Nðy4Þ ¼ fv2; v3g, and Nðy5Þ ¼
fv2; v4g. Further, we actually have Nðx1Þ ¼ fv1; v2g and Nðx2Þ ¼ fv3; v4; v5g.

If k ¼ 12, then four of the Ci, consist of vertices in S, and hence jNðuÞj � 4 for

some u 2 S, a contradiction. If k > 12, then ðA ¼ S [ fv1; v2; v3; v4; v5g;
B ¼ fv1; v2; . . . ; vn�7gÞ is an SH-cut of size 5 in G�, a contradiction, completing

the proof. &

3. GRAPH SIZE AND MINORS

The center piece of studying graph minors is the following conjecture due to

Hadwiger [4].

Conjecture 3.1. For all k � 1, every k-chromatic graph has a Kk minor.

For k ¼ 1; 2; 3, it is easy to prove, and for k ¼ 4, Hadwiger [4] and Dirac [3]

proved it independently. In 1937, Wagner [22] proved that the case k ¼ 5 is

equivalent to the Four Color Theorem. Robertson, Seymour, and Thomas [18]

proved that a minimal counterexample to the case k ¼ 6 is a graph G, which has a

vertex v such that Gnfvg is planar. Hence, the case k ¼ 6 of Hadwiger’s

conjecture holds. For k ¼ 7, Kawarabayashi and Toft [11] proved that any 7-
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chromatic graph has either K7 or K4;4 as a minor. Jakobsen [6] proved that every

7-chromatic graph has a K��
7 as a minor.

To study extremal graphs, for any positive integer k, let gðkÞ be the least value

such that every graph on n vertices and gðkÞn edges contains Kk as a minor. Mader

[15] showed that gðkÞ exists and is at most 2k�3. In fact, Mader [14] proved that

gðkÞ � 8k log2ðkÞ and that gðkÞ ¼ k � 2 for k � 7. J�rgensen [9] proved that

every graph G with jjGjj � 6jGj � 20 has K8 as a minor or G is a special graph.

We will prove Theorem 1.3 in this section. We first state the following related

results.

Theorem 3.2 [14]. For any k � 7, every graph with jGj � k vertices and

jjGjj � ðk � 2ÞjGj � ðk � 1Þðk � 2Þ=2 þ 1 contains Kk as a minor.

Theorem 3.3 [6]. Every graph G with jGj � 7 and jjGjj � 4jGj � 8 contains

K�2
7 as a minor.

Theorem 3.4 [8]. Every graph G with jGj � 7 and jjGjj � ð9jGj � 23Þ=2

contains K�
7 as a minor or a special graph with 8 vertices.

Theorem 3.5 [7]. Every graph G with jGj � 8 and jjGjj � 5jGj � 14 has K�2
8

as a minor.

Theorem 3.6 [9]. Every graph G with jGj � 8 and jjGjj � 6jGj � 20 has K8 as

a minor, unless G belongs to a special class of graphs with jjGjj ¼ 6jGj � 20 and

jGj ¼ 5m for some integer m � 2:

Let t be a positive integer and H be a graph. For any A � VðHÞ, let DEðAÞ
denote the set of edges of H dominated by A. Define

�tðHÞ ¼ max
A�VðHÞ

fjDEðAÞj : jAj ¼ tg:

Clearly, �1ðHÞ is the maximum degree of H. Let H denote the complement of H

and define that �0tðHÞ ¼ �tðHÞ. A vertex set S � NðvÞ is called a v-saturated cut if

S [ fvg is a cut of G. A v-saturated cut S is minimal if there is no v-saturated cut,

which is a proper subset of S.

A. Proof of Theorem 1.3

If jGj ¼ 9, we have that jjGjj � 7 
 9 � 29 ¼ 34, which implies that G is a K��
9 .

Assume that jGj ¼ n > 9, and Theorem 1.3 is true for any graph of order less

than n (but � 9), and G does not have K��
9 as a minor. Let �ðGÞ denote the

minimum degree of a graph G, v be a vertex of G such that dðvÞ ¼ �ðGÞ. Set

H ¼ G½NðvÞ� and h ¼ jHj ¼ dðvÞ. Since G does not have K��
9 as a minor, no

subgraph of G has K��
9 as a minor. In particular, G0 ¼ G n fvg does not have K��

9

as a minor. Thus, jjG0jj < 7jG0j � 29, which implies that � � 8. On the other

hand, if � � 14, then it is readily seen that jjG0jj � 7jG0j � 14, thus G0 has K��
9 as

a minor and hence, so does G, a contradiction. Thus, we have that

8 � dðvÞ � 13:
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Claim 3.1.1. �ðHÞ � 7 and �ðGÞ � 9.

Proof. Suppose to the contrary, there is a vertex u 2 NðvÞ such that dHðuÞ ¼
jNðuÞ \ NðvÞj � 6. Then, G=uv, the graph obtained from G by contracting the

edge uv, has jGj � 1 vertices and

jjG=uvjj � jjGjj � 7 � 7jGj � 29 � 7 ¼ 7jG=xyj � 29:

By our assumption, G=uv has K��
9 as a minor and so does G, a contradiction.

Since H is not K8, the fact that �ðGÞ � 9 is clear as �ðHÞ � 7. &

Claim 3.1.2. jjHjj � 5h� 15, and if G n N½v� is disconnected then there is a v-
saturated cut B such that B 6¼ NðvÞ.

Proof. Suppose the claim is false, then by Theorem 3.5, H has K��
8 as a

minor. Thus, G has K��
9 as a minor since v is adjacent to every vertex of H,

contrary to the assumption.

Now, suppose NðvÞ is the only v-saturated cut. Then each vertex in NðvÞ has a

neighbor in every component of G n N½v� (and there are at least two such

components). Since �ðHÞ � 7 and h ¼ dðvÞ � 13, we see that jjHjj � 4h� 8. By

Theorem 3.3, H has a K�2
7 as a minor, which implies G has a K��

9 as a minor,

contrary to the assumption. &

Claim 3.1.3. We have that h � 10. Further, equality holds only if G n N½v� is
disconnected and any neighbor of x and any neighbor of y are not in the same

component for any two nonadjacent vertices x, y 2 NðvÞ.
Proof. By Claim 3.1.1, jjHjj � 7h=2. Combining it with Claim 3.1.2, we

have that

7h=2 � 5h� 15;

and thus, h � 10. Suppose GnN½v� is connected. Let x; y 2 NðvÞ be two

nonadjacent vertices such that both are adjacent to the same component of

G n N½v�. Contracting this component to vertex x, we see that the resulting graph

in H still cannot have K��
8 as a minor, otherwise G would have K��

9 as a minor.

Hence, we have that

7h=2 þ 1 � 5h� 15;

which implies that h � 11. &

Claim 3.1.4. Let B be a minimal v-saturated cut. Then,

jjG½B�jj � 6b� 24 � 2�01ðG½B�Þ;

where b ¼ jG½B�j.
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Proof. Since B [ fvg is a cut of G, let G1 and G2 be two induced subgraphs

of G such that VðG1Þ [ VðG2Þ ¼ VðGÞ and VðG1Þ \ VðG2Þ ¼ B [ fvg. By the

minimality of B, we have that all vertices of B are adjacent to every component in

GnðB [ fvgÞ. Note that v may or may not have this property. Let x1 be a vertex of

B such that d
G½B�ðx1Þ ¼ �01ðG½B�Þ. Contracting all components of G2nðB [ fvgÞ to

x1, we obtain a graph G�
1. Clearly,

jG�
1j ¼ jG1j and jjG�

1jj ¼ jjG1jj þ �01ðG½B�Þ:

Since G does not have a K��
9 as a minor, G�

1 does not have a K��
9 as a minor.

Thus,

jjG�
1jj � 7jG�

1j � 30:

Thus, we have that

jjG1jj � 7jG1j � 30 � �01ðG½B�Þ:

Similarly, we can show that

jjG2jj � 7jG2j � 30 � �01ðG½B�Þ:

Thus,

7jGj � 29 � jjGjj ¼ jjG1jj þ jjG2jj � jjG½B [ fvg�jj
� 7jG1j � 30 � �01ðG½B�Þ þ 7jG2j � 30 � �1ðG½B�Þ � jjG½B�jj � b

¼ 7ðjGj þ bþ 1Þ � 60 � 2�01ðG½B�Þ � jjG½B�jj � b

¼ 7jGj þ 6b� 53 � 2�01ðG½B�Þ � jjG½B�jj:

Thus, Claim 3.1.4 is proved. &

Claim 3.1.5. Let B be a graph induced by a minimal v-saturated cut. Then,

b ¼ jBj � 5 and �02ðBÞ � 5, with the exception that b ¼ 7 or 8 and B is a 2-

regular graph. In any case, we have that �02ðBÞ � 4 and �03ðBÞ � 5.

Proof. The inequality b � 5 directly follows from Claim 3.1.4, since

0 � jjBjj � 6b� 24 � 2�01ðBÞ:

Note that �02ðBÞ � 5 if �01ðBÞ � 4 and jjBjj � 5. By the fact that jjBjj þ
jjBjj ¼ bðb� 1Þ=2 and from Claim 3.1.4, we have that jjBjj � 5 if �01ðBÞ � 4.

Thus, we assume that �01ðBÞ � 3.
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Suppose that �01ðBÞ ¼ 3 and �02ðBÞ < 5. Let x be the vertex such that

dBðxÞ ¼ 3. Then, the maximum degree of B n fxg is at most 1. Thus,

jjBjj � 3 þ ðb� 1Þ=2 � ðbþ 5Þ=2:

Applying that �01ðBÞ ¼ 3 to Claim 3.1.4, we have that

jjBjj ¼ bðb� 1Þ=2 � jjBjj � bðb� 1Þ=2 � ð6b� 24 � 6Þ � 1

2
ðb2 � 13bþ 60Þ:

However, the equation

ðbþ 5Þ=2 � 1

2
ðb2 � 13bþ 60Þ

does not have a solution. Thus, �01ðBÞ � 2.

Suppose that b ¼ 5. In this case, we have that jjBjj þ jjBjj ¼ 10 and jjBjj �
6 � 2�01ðBÞ � 6. Thus, jjBjj � 4, so �01ðBÞ � 2, which, in turn, implies that

jjBjj � 2. But then, �02ðBÞ � 5, proving the claim in this case.

Suppose now that b ¼ 6. Then we have that jjBjj þ jjBjj ¼ 15 and jjBjj �
12 � 2�01ðBÞ. Thus, jjBjj � 3 and so �01ðBÞ � 1. This, in turn, implies that jjBjj �
10. Hence, jjBjj � 5, and so, �01ðBÞ � 2. This, in turn, implies that jjBjj � 8. Now

jjBjj � 7, which implies that �01ðBÞ � 3, a contradiction.

Since G does not have K��
9 as a minor, B does not contain K7 as a subgraph.

Thus, �01ðBÞ � 1 for b � 7.

Now suppose that b ¼ 7. Then we have that jjBjj þ jjBjj ¼ 21 and jjBjj �
18 � 2�01ðBÞ � 16. Thus, jjBjj � 5, so �01ðBÞ � 2, which, in turn, implies that

jjBjj � 14. Thus, jjBjj � 7. Since �01ðBÞ � 2 and b ¼ 7, B is a 2-regular graph.

Suppose next that b ¼ 8. Then jjBjj þ jjBjj ¼ 28 and jjBjj � 24 � 2�01ðBÞ �
22, so that jjBjj � 6. Thus, �01ðGÞ � 2, which, in turn, implies that jjBjj � 20. But

since �01ðBÞ � 2 and b ¼ 8, B is a 2-regular graph.

Now let D1 and D2 be two components of G� ðVðBÞ [ fvgÞ such that

D2 \ NðvÞ 6¼ ;.

If B has K6 as a minor, contracting D1 and D2 along with using v yields a K��
9 .

Thus, we may assume that B does not have K6 as a minor. Using Theorem 3.2 for

the case k ¼ 6, we have that

jjBjj � 4b� 10:

Suppose that b � 9. In this case, we have that

jjBjj � ðbðb� 1Þ=2Þ � 4bþ 10 ¼ ðb� 2Þðb� 9Þ=2 þ 1 þ b;

which implies jjBjj � bþ 1. Hence, �01ðBÞ � 3 for b � 9, a contradiction. &
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Since H does not contain K��
8 as a minor, jjHjj � 5h� 15. We define

� ¼ 5h� 14 � jjHjj. Let C1, C2; . . . ;Cm be the components of G n N½v� and

Bi ¼ G½NðCiÞ \ NðvÞ� for each i ¼ 1, 2; . . . ;m. Note that Bi ¼ Bj may happen for

different i and j.

Claim 3.1.6.

� � 4 if h ¼ 10; 11; 12 and;
5 if h ¼ 13:

�

Further, the second equality holds only when all except one vertex in H have

degree 7 and the exception has degree 8.

Proof. Since the minimum degree of H is at least 7, we have that 5h�
14 � � � jjHjj � d7h=2e. It is readily seen that Claim 3.1.6 holds by solving the

inequality. &

Let u 2 NðvÞ such that dHðuÞ ¼ 7. Let H� ¼ G½VðHÞ [ fvg�nfug. Then,

jH�j ¼ h and

jjH�jj � 7h=2 � 7 þ h ¼ 9h=2 � 7:

Using the fact h � 13, we see that jjH�jj � 5h� 14, which together with

Theorem 3.5 implies that H� contains K��
8 as a minor. Note, every vertex of H� is

either adjacent to u or to one of the Ci, since dðvÞ is minimum degree of G. Now,

since G does not have K��
9 as a minor, the following claim holds.

Claim 3.1.7. m � 2.

Claim 3.1.8. There exists an i, 1 � i � m such that �02ðBiÞ < �.

Proof. Suppose, to the contrary, that �02ðBiÞ � � for all i. We now show that

there exist a vertex x in B1 and a vertex y in B2 such that jNB1
ðxÞ [ NB2

ðyÞj � �.

Let xi and yi be two vertices in Bi such that fxi; yig dominates at least � edges in

Bi for i ¼ 1; 2. Then

jNBi
ðxiÞ [ NBi

ðyiÞj � �;

and without loss of generality, assume dBi
ðxiÞ � dBi

ðyiÞ. We may further assume

that dB1
ðx1Þ � dB2

ðx2Þ. If dB1
ðx1Þ > �=2 or x1x2 62 EðB1Þ or x1x2 62 EðB2Þ, then

x ¼ x1 and y ¼ x2 are a pair of desired vertices. Thus,

dB1
ðx1Þ ¼ dB2

ðx2Þ ¼ �=2;

which give that

dB1
ðy1Þ ¼ dB2

ðy2Þ ¼ �=2:

88 JOURNAL OF GRAPH THEORY



In particular, we have that either � ¼ 2 or � ¼ 4, since � � 5. Further, we have

x1x2 2 EðB1Þ \ EðB2Þ. Similarly, we have that x1y2, y1x2, and y1y2 2 EðB1Þ \
EðB2Þ. Thus, � ¼ 4 and

NB2
ðy1Þ ¼ NB1

ðy1Þ:

Hence, x ¼ x1 and y ¼ y1 are a pair of desired vertices.

Now contracting C1 to x and C2 to y, we get a new subgraph H1 from

G½VðH [ C1 [ C2Þ� such that jH1j ¼ jNðvÞj and jjH1jj � 5jH1j � 14, since

jjHjj � 5h� 14 � �. Thus, H1 has K��
8 as a minor. This minor along with v

shows that G has K��
9 as a minor, a contradiction. &

Combining Claims 3.1.5 and 3.1.8, we have the following: 4 � �02ðBiÞ < � for

some i. Thus, � ¼ 5 and then by Claim 3.1.6 we obtain the following.

Claim 3.1.9. h ¼ dðvÞ ¼ 13 and jjHjj ¼ ð5h� 14Þ � 5. In particular, all ver-

tices of H have degree 7 except one which has degree 8.

Using Claim 3.1.5, we see that �03ðBiÞ � 5. If m � 3, using an argument similar

to before it is straightforward to show that there are vertices xi in Bi ði ¼ 1; 2; 3Þ
such that

jNB1
ðx1Þ [ NB2

ðx2Þ [ NB3
ðx3Þj � 5:

Contracting Ci to xi for i ¼ 1; 2; 3 again produces a K��
8 minor in H from

G½VðH [ C1 [ C2 [ C3Þ�, a contradiction. Thus we obtain the following.

Claim 3.1.10. m ¼ 2.

Let B�
i be a graph induced by a minimal v-saturated cut with VðB�

i Þ � VðBiÞ
for i ¼ 1, 2. By Claim 3.1.5 and without loss of generality, assume that

�02ðB�
1Þ ¼ 4 < � ¼ 5: Hence, 7 � jB�

1j � 8 and B�
1 is a 2-regular graph.

Claim 3.1.11. �02ðB�
2Þ ¼ 4:

Proof. Suppose to the contrary that �02ðB�
2Þ � 5. Then there exists x2 2 VðB�

2Þ
such that dB�

2
ðx2Þ � 3. Since B�

1 is 2-regular, there exists x1 2 VðB�
1Þ such that

x1x2 =2EðB�
1Þ. Now contracting C1 to x1 and C2 to x2, we again gain at least 5

edges. Then, as before, K��
8 would be a minor of H, a contradiction completing

the proof of the claim. &

By Claims 3.1.5 and 3.1.11, 7 � jB�
2j � 8 and B�

2 is 2-regular.

Claim 3.1.12. jVðB�
1Þ \ VðB�

2Þj ¼ 1, jB�
1j ¼ jB�

2j ¼ 7, B�
1 ¼ B1; and B�

2 ¼ B2.

Proof. Since jB�
1j � 7 and jB�

2j � 7 and jVðB�
1Þ [ VðB�

2Þj � 13, we have that

jVðB�
1Þ \ VðB�

2Þj � 1. Suppose jVðB�
1Þ \ VðB�

2Þj � 2. Since all vertices in H have

degree 7 except one, which has degree 8, there is a vertex x 2 VðB�
1Þ \ VðB�

2Þ
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such that dHðxÞ ¼ 7. Then dHðxÞ ¼ 5 as h ¼ 13. Without loss of generality,

assume dB1
ðxÞ � 3. Since B�

2 is 2-regular and jB�
2j � 7, let y 2 B�

2 such that y is

not adjacent to x in B2. As before, contracting C1 to x and C2 to y leads to a

contradiction.

The statement of jB�
1j ¼ jB�

2j ¼ 7 directly follows from the fact that jVðB�
1Þ \

VðB�
2Þj ¼ 1 and jB�

1 [ B�
2j � 13. Further, VðB�

1Þ [ VðB�
2Þ ¼ NðvÞ. Let w be the

vertex in VðB�
1Þ \ VðB�

2Þ. Since B�
2 is 2-regular, B�

2 is 4-regular of order 7, hence

hamiltonian. Therefore, B�
2nfwg is connected. Thus, NðC1Þ \ ðVðB�

2ÞnfwgÞ ¼ ;,

for otherwise GnðVðB�
1Þ [ fvgÞ is connected, a contradiction to the fact that B�

1 is

a v-saturated cut. Thus, B�
1 ¼ B1. Similarly, B�

2 ¼ B2. &

Let x1 2 VðB1ÞnVðB2Þ. Since jVðB1Þ [ VðB2Þj � 13 and jB1j ¼ jB2j ¼ 7, we

see that NðvÞ ¼ VðB1Þ [ VðB2Þ. Since x1 is adjacent to 4 vertices in B1, we have

jNðx1Þ \ ðVðB2ÞnfwgÞj ¼ 3. Let y1 2 VðB2Þ n fwg such that x1y1 2 EðGÞ. Then,

since dHðx1Þ ¼ 7, we have that

jNðx1Þ \ ðVðB2Þnfy1;wgÞj � 2:

Similarly, jNðy1Þ \ ðVðB1Þnfx1;wgÞj � 2: Thus, jðNHðx1Þ \ NHðy1ÞÞnfwgj � 4,

and so jNðx1Þ \ Nðy1Þ \ N½v�j � 6. Since m ¼ 2, Nðx1Þ \ Nðy1Þ \ ðVðGÞn
N½v�Þ ¼ ;. Thus, jNðx1Þ \ Nðy1Þj � 6. Now, as in the proof of Claim 3.1.1,

G=x1y1 would contain a K��
9 minor, a contradiction, completing the proof. &

Finally, we note that a similar proof technique can be used to show that a graph

of order n � 9 with size at least 9n� 45 contains a K9 minor. Despite the fact this

is not near the conjectured value, when combined with Theorem 1.1 it implies

that 18-connected graphs are 3-linked.
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90 JOURNAL OF GRAPH THEORY



[5] A. Huck, A sufficient condition for graphs to be weakly k-linked, Graphs and

Combinatorics 7 (1991), 323–351.

[6] I. T. Jakobsen, A homomorphism theorem with an application to the

conjecture of Hadwiger, Studia Sci Math Hung 6 (1971), 151–160.

[7] I. T. Jakobsen, On certain homomorphism properties of graphs I, Math Scand

31 (1972), 379–404.

[8] I. T. Jakobsen, On certain homomorphism properties of graphs II, Math

Scand 52(2) (1983), 229–261.

[9] L. K. J�rgensen, Contractions to K8, J Graph Theory 18(5) (1994), 431–448.

[10] H. A. Jung, Eine Verallgemeinerung des n-fachen zusammenhangs f€ur

Graphen, Math Ann 187 (1970), 95–103.

[11] K. Kawarabayashi and B. Toft, Any 7-chromatic graph has K7 or K4;4 as a

minor, Combinatorica, accepted.

[12] D. G. Larman and P. Mani, On the existence of certain configurations within

graphs and the 1-skeleons of polytopes. Proc Londo Math Soc 20 (1974),

144–160.

[13] W. Mader, Hinreichende Bedingungen f€ur die Existenz von Teilgraphen, die
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