Pancyclicity of 3-Connected Graphs: Pairs of Forbidden Subgraphs

Ronald J. Gould, ${ }^{1}$ Tomasz Łuczak, ${ }^{1,2}$ and Florian Pfender ${ }^{1}$
${ }^{1}$ DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
EMORY UNIVERSITY
ATLANTA, GEORGIA 30322
E-mail: rg@mathcs.emory.edu
E-mail: fpfende@mathcs.emory.edu
²DEPARTMENT OF DISCRETE MATHEMATICS
ADAM MICKIEWICZ UNIVERSITY
60-769 POZNAŃ, POLAND
E-mail: tomasz@amu.edu.pl

Received November 15, 2001; Revised June 12, 2003

Published online in Wiley InterScience(www.interscience.wiley.com).
DOI 10.1002/jgt. 20030

Abstract

We characterize all pairs of connected graphs $\{X, Y\}$ such that each 3-connected $\{X, Y\}$-free graph is pancyclic. In particular, we show that if each of the graphs in such a pair $\{X, Y\}$ has at least four vertices, then one of them is the claw $K_{1,3}$, while the other is a subgraph of one of six specified graphs. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 183-202, 2004

Keywords: pancyclic graphs; claw-free graphs; forbidden subgraph

[^0]
1. INTRODUCTION

A graph G on n vertices is pancyclic if for each $k, 3 \leq k \leq n$, a cycle of length k can be found in G. We say that G is $\left\{H_{1}, \ldots, H_{\ell}\right\}$-free, if it contains no induced copies of any of the graphs H_{1}, \ldots, H_{ℓ}. For all terms not defined here, we refer the reader to [1]. The problem of characterizing all families of H_{1}, \ldots, H_{ℓ} such that each "sufficiently connected" $\left\{H_{1}, \ldots, H_{\ell}\right\}$-free graph is pancyclic has been studied by a number of authors. In particular, the family of all pairs of graphs X, Y, such that each 2-connected $\{X, Y\}$-free graph $G \neq C_{n}$ on $n \geq 10$ vertices is pancyclic, has been characterized by Faudree and Gould in [2] (we refer the reader to this paper for further references to this problem). In this paper, we characterize all graphs X, Y such that each 3-connected $\{X, Y\}$-free graph is pancyclic.

For any graph H, let $S(H)$ be the graph obtained from H through subdivision of every edge. Let $L(H)$ be the line graph of H.

Let $G_{0}=L\left(S\left(K_{4}\right)\right)$. Let G_{1} be the graph obtained from G_{0} by contraction of the two edges $x_{1} x_{2}, x_{3} x_{4} \in E\left(G_{0}\right)$, where the edges $x_{1} x_{2}$ and $x_{3} x_{4}$ are selected in a way that $N\left(x_{i}\right) \cap N\left(x_{j}\right)=\emptyset$ for $1 \leq i<j \leq 4$ (see Fig. 2). It is not hard to see that both G_{0} and G_{1} are 3-connected claw-free graphs. Furthermore, neither of them contains a cycle of length four.

Let $S_{3}\left(K_{4}\right)$ be the graph obtained from K_{4} by a subdivision of each edge by three vertices of degree 2 . Let H be the multigraph obtained from $S_{3}\left(K_{4}\right)$ by doubling each edge of $S_{3}\left(K_{4}\right)$ incident with a vertex of degree 3. Finally, let $G_{2}=L(H)$. Alternatively, one can obtain G_{2} through a replacement of each triangle of G_{0} by the 9 -vertex graph T pictured in Figure 1. Again, it is easy to see that G_{2} is 3-connected, claw-free, and it contains no cycle of length $10 \leq \ell \leq 11$. Further, G_{2} contains no induced cycles of length $4 \leq \ell \leq 9$.

By G_{3} we denote the graph consisting of a $K_{n-4}(n \geq 7)$ and four extra vertices $x_{1}, x_{2}, x_{3}, x_{4}$ with $N\left(x_{1}\right)=N\left(x_{2}\right)=N\left(x_{3}\right)=N\left(x_{4}\right)$ and $\left|N\left(x_{1}\right)\right|=3$ (see Fig. 2). Clearly, G_{3} is 3 -connected and not Hamiltonian (and thus not pancyclic). Finally, G_{4} is the point-line incidence graph of a projective plane of order seven, that is,

FIGURE 1. The graph T.

FIGURE 2. 3-Connected non-pancyclic graphs.
the vertices of G_{4} correspond to the points and the lines of the plane, and two of them, v and w, are adjacent if v stands for a point and w for a line containing it. It is easy to check that G_{4} is 3 -connected, has girth six, and is thus not pancyclic.

Theorem 1.1. For every connected graph $X, X \notin\left\{K_{1}, K_{2}\right\}$, the following two statements are equivalent:
(1) each X-free 3-connected graph G is pancyclic;
(2) $X=P_{3}$.

Proof. Any P_{3}-free connected graph is complete and therefore pancyclic. Thus, it is enough to show that (i) implies (ii).

As $K_{3,3}$ and the graph G_{1} are not pancyclic, an induced copy of X must be contained in both $K_{3,3}$ and G_{1}. As G_{1} does not contain a copy of C_{4}, X cannot contain a copy of C_{4}. As any induced subgraph of $K_{3,3}$ with diameter greater than two contains C_{4}, we know that X is a star $K_{1, r}$. As there are no induced copies of $K_{1, r}$ with $r \geq 3$ in G_{1}, we infer that $X=P_{3}$.

Lemma 1.1. Let X and Y be connected graphs on at least three vertices and $X, Y \neq P_{3}$. If each $\{X, Y\}$-free 3-connected graph is pancyclic, then one of X, Y is $K_{1,3}$.

Proof. Suppose that $X, Y \neq K_{1,3}$. As $K_{3,3}$ is not pancyclic, one of X and Y has to be an induced subgraph of $K_{3,3}$. Without loss of generality, we may assume that X is an induced subgraph of $K_{3,3}$. As X is not $K_{1,3}$ or P_{3}, X contains C_{4}.

As C_{4} is not a subgraph of G_{4}, Y is an induced subgraph of G_{4}, and thus Y has girth at least six and maximum degree at most three. Furthermore, G_{3} contains no induced copies of C_{4}, so Y has to be an induced subgraph of G_{3}. But the only induced subgraphs of G_{3} with girth larger than three and maximum degree at most three are $K_{1,3}$ and its subgraphs. This proves the lemma.

Finally, each connected graph F which appears as an induced subgraph of all of G_{0}, G_{1}, and G_{2}, and is not contained in the claw $K_{1,3}$, is a subgraph of one of the following six subgraphs:

- P_{7}, the path on seven vertices,
- ℓ, the graph which consists of two vertex-disjoint copies of K_{3} and an edge joining them;
- $N_{4,0,0}, N_{3,1,0}, N_{2,2,0}, N_{2,1,1}$, where $N_{i, j, k}$ is the graph which consists of K_{3} and vertex disjoint paths of length i, j, k rooted at its vertices.

To see this, observe first that F has at most $\left|V\left(G_{1}\right)\right|=10$ vertices, and F cannot contain an induced cycle of length greater than 3 since F needs to be contained in G_{2}. If F contains at most one triangle, G_{1} can be used to limit the possibilities to the graphs mentioned above. Further, if F contains more than one triangle, there are exactly two triangles, and they are at distance one from each other due to G_{0}. Finally, at most one vertex in each of the two triangles can have degree greater than 2; otherwise, such a triangle in an induced copy of F in G_{2} has to be located in one of the K_{6} 's in the center of one of the copies of T, but there is no other triangle in G_{2} with distance 1 to such a triangle.

Let \mathcal{F} denote the family which consists of the above six graphs (see Fig. 3).
As we have already deduced from the properties of graphs G_{0}, G_{1}, and G_{2}, if each 3-connected $\left\{K_{1,3}, Y\right\}$-free graph is pancyclic, then Y is a subgraph of one of the graphs listed above. Our main result states that the inverse implication holds as well.

Theorem 1.2. Let X and Y be connected graphs on at least three vertices such that $X, Y \neq P_{3}$ and $Y \neq K_{1,3}$. Then the following statements are equivalent:
(1) Every 3-connected $\{X, Y\}$-free graph G is pancyclic.
(2) $X=K_{1,3}$ and Y is a subgraph of one of the graphs from the family $\mathcal{F}=\left\{P_{7}, \notin, N_{4,0,0}, N_{3,1,0}, N_{2,2,0}, N_{2,1,1}\right\}$.

Since (i) implies (ii), it is enough to show that for each graph Y from \mathcal{F} and each 3-connected $\left\{K_{1,3}, Y\right\}$-free graph G, G is pancyclic. Hence, the proof of Theorem 1.2 consists, in fact, of six statements, one for each graph from \mathcal{F}, which we show in the following sections of the paper.

FIGURE 3. The family \mathcal{F}.

In the proofs, for a cycle C we always distinguish one of the two possible orientation of C. By v^{-}and v^{+}, we denote the predecessor and the successor of a vertex v on such a cycle, with respect to the orientation. We write $v C w$ for the path from $v \in V(C)$ to $w \in V(C)$, following the direction of C, and by $v C^{-} w$, we denote the path from v to w opposite to the direction of C. By $\left\langle x_{1}, \ldots, x_{k}\right\rangle$, we mean the subgraph induced in G by vertices x_{1}, \ldots, x_{k}.

2. FORBIDDING \lfloor

In this section, we make the first step towards proving Theorem 1.2: we show the fact that each 3 -connected claw-free graph which contains no induced copy of $Ł$ is pancyclic.
Theorem 2.1. Every 3-connected $\left\{K_{1,3}\right.$, , E$\}$-free graph is pancyclic.
Proof. Suppose that G is a minimal counterexample to the above statement, and that G contains a cycle C of length t but no cycles of length $t+1$ (the existence of triangles is obvious). Let H be a component of $G-C$. Note that for every vertex $x \in N(H) \cap V(C)$ and $v \in N(x) \cap V(H)$, we have that $v x^{-}, v x^{+} \notin E$, and thus $x^{-} x^{+} \in E$ to avoid a claw.

Claim 2.1. No vertex from H has more than two neighbors on C.
Proof. Suppose there is a vertex $v \in V(H)$ with $x, y, z \in N(v) \cap V(C)$. As $\langle v, x, y, z\rangle$ is not a claw, there is an extra edge, say $x y \in E$. As $\left\langle v, x, y, z, z^{-}, z^{+}\right\rangle$is not ℓ, there is an extra edge between two of these vertices. We have $y z^{+} \notin E$,
otherwise $y z^{+} C y^{-} y^{+} C z v y$ is a cycle of length $t+1$, a contradiction. A similar argument shows that none of the pairs $y z^{-}, x z^{-}, x z^{+}$, is an edge of G.

Therefore, either $y z \in E$, or $x z \in E$. If $x z \notin E$, then $\left\langle y, x, z, y^{+}\right\rangle$is a claw, thus $x z \in E$. Similarly, $y z \in E$, and so, by the previous argument $x y^{ \pm}, x^{ \pm} y, x^{ \pm} z$, $y^{ \pm} z \notin E$. Furthermore $x^{+} y^{+} \notin E$, since otherwise $x^{+} y^{+} C x v y C^{-} x^{+}$is a cycle of length $t+1$, contradicting the choice of G. Similarly, $x^{-} y^{-} \notin E$.

As $\left\langle x, x^{-}, x^{+}, y, y^{-}, y^{+}\right\rangle$is not ℓ, either $x^{+} y^{-} \in E$, or $x^{-} y^{+} \in E$. By symmetry, we may assume $x^{+} y^{-} \in E$. Now $x^{++} y \notin E$, since otherwise the cycle $y x^{++} C y^{-} y^{+}$ $C x^{-} x^{+} x v y$ has length $t+1$, while $C_{t+1} \nsubseteq G$. The edge $x^{++} v$ would lead to the cycle $v x^{++} C x^{-} x^{+} x v$, thus $x^{++} v \notin E$. Finally, $x^{++} z \notin E$ to avoid the cycle $x^{-} x z v x^{++} C z^{-} z^{+} C x^{-}$.

Note that $x^{++} y^{-} \notin E$, since otherwise $\left\langle x^{+}, x^{++}, y^{-}, y, v, z\right\rangle$ is ℓ. To avoid the claw $\left\langle x^{+}, x, x^{++}, y^{-}\right\rangle$, we have $x x^{++} \in E$. To avoid the claw $\left\langle x, x^{++}, x^{-}, v\right\rangle$, we have $x^{++} x^{-} \in E$. But now the cycle $x^{-} x^{++} C y^{-} x^{+} x v y C x^{-}$has length $t+1$ (see Fig. 4), the contradiction establishing the claim.

Claim 2.2. Let $x, y \in V(C) \cap N(H)$. Then $x y \in E$ if and only if $N(x) \cap N(y) \cap$ $V(H) \neq \emptyset$.

Proof. For one direction, suppose $z \in N(x) \cap N(y) \cap V(H)$. Let P be a shortest path from z to C in $G-\{x, y\}$. Let v be the first internal vertex on this path. By Claim 2.1, $v \notin V(C)$. If $v \in N(x) \cap N(y)$, start over with $z^{\prime}=v$ and $P^{\prime}=P-x$. So assume that $v \notin N(x) \cap N(y)$, say $v x \notin E$. If $v y \notin E$, then $x y \in E$ to avoid a claw, and we are done. Assume that $x y \notin E$, and thus $v y \in E$. We know that $v x^{-}, v x^{+} \notin E$, otherwise we can expand C by including vertices v and z and omitting y to get a cycle of length $t+1$. Moreover, $y x^{-}, y x^{+} \notin E$, since otherwise we can replace $y^{-} y y^{+}$by $y^{-} y^{+}$, and insert y and z between x and x^{+}or between x^{-}

FIGURE 4.
and x, respectively, to increase the length of the cycle by one. But now $\left\langle z, y, v, x, x^{-}, x^{+}\right\rangle$is ℓ, a contradiction.

For the other direction, let P be a shortest $x-y$ path through H not using $x y$. By symmetry, we may assume that $y \neq x^{+}$. Let x_{1} be the successor of x on P, let y_{1} be the predecessor of y on P. If $x_{1}=y_{1}$ we are done, so let $x_{1} \neq y_{1}$. To avoid the claw $\left\langle x, x^{+}, x_{1}, y\right\rangle, x^{+} y \in E$. If $x_{1} y_{1} \in E$, then we can extend C through $x x_{1} y_{1} y x^{+}$ and skip y and another vertex in $N(H) \cap V(C)$ to get a cycle of length $t+1$. So assume $x_{1} y_{1} \notin E$.

Let x_{2} be another neighbor of x_{1} not on P, and let y_{2} denote another neighbor of y_{1} not on P. We know that $N\left(x_{2}\right) \cap\left\{x^{-}, x^{+}\right\}=N\left(y_{2}\right) \cap\left\{y^{-}, y^{+}\right\}=\emptyset$, as otherwise a cycle of length $t+1$ can be found. Now $x x_{2}, y y_{2} \in E$ to avoid claws and ''s around x_{1} and y_{1}. If $x_{2}, y_{2} \in V(H)$, we get the $\ell=\left\langle x, x_{1}, x_{2}, y, y_{1}, y_{2}\right\rangle$, as P is shortest. Thus, we may assume that $x_{2} \in V(C)$, and $N\left(x_{2}\right) \cap\left\{y, y_{1}, y_{2}\right\} \neq \emptyset$. By the first part of the claim, this implies that $x_{2} y \in E$ or $x_{2} y_{2} \in E$ and $y_{2} \in V(C)$.

If $x_{2} y \in E$, then the cycle $x x_{1} x_{2} y x^{+} C x_{2}^{-} x_{2}^{+} C y^{-} y^{+} C x$ has length $t+1$ (see Fig. 5). If $x_{2} y_{2} \in E$ and $y_{2} \in V(C)$, and $x_{2} y_{2} \notin E(C)$, then the cycle $x x_{1} x_{2} y_{2} y x^{+} C x_{2}^{-} x_{2}^{+}$ $C y_{2}^{-} y_{2}^{+} C y^{-} y^{+} C x$ has length $t+1$.

Finally, if $x_{2} y_{2} \in E(C)$, say $y_{2}=x_{2}^{+}$, then $x_{2}^{-} y_{2}^{+} \in E$ to avoid the claw $\left\langle x_{2}, x_{1}, x_{2}^{-}, y_{2}^{+}\right\rangle$. But now the cycle

$$
x x_{1} x_{2} y_{2} y x^{+} C\left(x_{2}\right)^{-}\left(y_{2}\right)^{+} C y^{-} y^{+} C x
$$

has length $t+1$.
Note that, as a consequence of Claim 2.2, $N(H)$ does not include two consecutive vertices on C.

FIGURE 5.

Claim 2.3. If $x, y \in N(H) \cap V(C)$ and $x y \in E$, then $x y^{-}, x y^{+} \notin E$.
Proof. Suppose $x y^{-} \in E$. By Claim 2.2, there is a vertex $z \in N(x) \cap$ $N(y) \cap V(H)$. Now the cycle $x z y C x^{-} x^{+} C y^{-} x$ has length $t+1$, a contradiction. The symmetric case $x y^{+} \in E$ can be treated in the same way.

Claim 2.4. If $x, y, z \in N(H) \cap V(C)$ and $x z, y z \in E$, then $x y \in E$.
Proof. Otherwise, $\left\langle z, z^{+}, x, y\right\rangle$ is a claw by Claim 2.3.
Claim 2.5. $\langle N(H) \cap V(C)\rangle$ is complete.
Proof. Suppose the claim is false. Then there are two vertices $x, y \in$ $N(H) \cap V(C)$ with $x y \notin E$. Let P be a shortest $x-y$ path through H. We may assume that x and y were chosen such that P is shortest. Let $P=v_{0}$ $(=x) v_{1} \ldots v_{k-1} v_{k}(=y)$. By Claim 2.2, $k+1=|V(P)| \geq 4$. Let $R=R(P)$ be a shortest path in $G-\left\{v_{0}, v_{2}\right\}$ from v_{1} to C. We may assume that P is chosen such that R is shortest.

Suppose that $k=3$. Suppose there is a vertex $z \in N\left(v_{1}\right) \cap N\left(v_{2}\right)$. Then, one of the pairs $x z, y z$ is not an edge, otherwise, either $z \in V(C)$ and $x y \in E$ by Claim 2.4, or $z \notin V(C)$ and $x y \in E$ by Claim 2.2. Say $x z \notin E$. By Claim 2.2, $z \notin V(C)$. But now we can find a copy of ℓ at $\left\langle v_{1}, v_{2}, z, x, x^{+}, x^{-}\right\rangle$, a contradiction showing that $N\left(v_{1}\right) \cap N\left(v_{2}\right)=\emptyset$.

Let z_{1} be the first vertex on R following v_{1} and let $z_{2} \in N\left(v_{2}\right) \backslash V(P)$. To avoid claws, $x z_{1}, y z_{2} \in E$. If one of the pairs $y z_{1}, x z_{2}$ is an edge, then Claims 2.2 and 2.4 imply that $x y \in E$, a contradiction. Furthermore, $z_{1} z_{2} \notin E$, for otherwise $P^{\prime}=x z_{1} z_{2} y$ would allow a shorter R. But now $\left\langle z_{1}, v_{1}, x, z_{2}, v_{2}, y\right\rangle$ is a copy of ℓ, a contradiction showing that $k>3$.

Just like above, let z_{1} be the first vertex on R following v_{1} and let $z_{2} \in N\left(v_{2}\right) \backslash V(P)$. If $z_{2} \in V(C)$, then $x z_{2}, y z_{2} \in E$ as P is shortest, implying that $x y \in E$ by Claim 2.4. Thus, $z_{2} \notin V(C)$. If $v_{1} z_{2} \in E$, then $x z_{2} \in E$ to avoid a copy of ℓ at $\left\langle v_{1}, v_{2}, z_{2}, x, x^{+}, x^{-}\right\rangle$. By the same argument, if $v_{2} z_{1} \in E$, then $z_{1} \notin V(C)$ and $x z_{1} \in E$. But, as before, this is impossible since R is shortest. Thus, $v_{2} z_{1} \notin E$ and $x z_{1} \in E$ to avoid the claw $\left\langle v_{1}, v_{2}, x, z_{1}\right\rangle$.

If $v_{1} z_{2} \notin E$, then $v_{3} z_{2} \in E$ to avoid the claw $\left\langle v_{2}, v_{1}, v_{3}, z_{2}\right\rangle$. If $z_{1} \in V(C)$, then $z_{1} z_{2} \notin E$, otherwise $y z_{1} \in E$ as P is shortest, and thus $x y \in E$ by Claim 2.4. If $z_{1} \notin V(C)$, then $z_{1} z_{2} \notin E$ as R is shortest. But now $\left\langle v_{2}, v_{3}, z_{2}, v_{1}, x, z_{1}\right\rangle$ is a copy of ℓ. Thus, $v_{1} z_{2}, x z_{2} \in E$.

Let $z_{3} \in N\left(v_{3}\right) \backslash V(P)$. If $x z_{3} \in E$, then $z_{3} \in V(C)$ as P is shortest. But then $y z_{3} \in E$ as $z_{3} v_{3} v_{4} \ldots v_{k}$ is shorter than P, and so $x y \in E$ by Claim 2.4. Thus, $x z_{3} \notin E$. If $v_{2} z_{3} \in E$, then $x z_{3} \in E$ by the above argument, a contradiction. Thus, $v_{2} z_{3} \notin E$, and therefore $v_{4} z_{3} \in E$ to avoid the claw $\left\langle v_{3}, v_{2}, v_{4}, z_{3}\right\rangle$. Moreover, $z_{2} z_{3} \notin E$, since otherwise $\left\langle z_{2}, v_{2}, x, z_{3}\right\rangle$ is a claw. But now, $\left\langle v_{2}, v_{1}, z_{2}, v_{3}, v_{4}, z_{3}\right\rangle$ is a copy of ℓ, the final contradiction establishing the claim.

Now we are ready to complete the proof of the theorem. By Claim 2.1, $|V(H)| \geq 2$. Contract H to a single vertex h in the new graph G^{\prime}. As
$\langle N(H) \cap V(C)\rangle$ is complete by Claim 2.5, G^{\prime} is 3-connected and claw-free. Since $N(h)$ induces a complete graph G^{\prime} contains no copies of ℓ involving h as one of the center vertices. If there was $£$ with h as a corner vertex of a triangle $x y h$, there would be ℓ in G with the triangle $x y z$, where z is a vertex in $N(x) \cap N(y) \cap V(H)$ whose existence is guaranteed by Claim 2.2. Consequently, G^{\prime} is a 3-connected $\left\{K_{1,3}, Ł\right\}$-free graph smaller than G. Thus, G^{\prime} is pancyclic and contains a cycle C^{\prime} of length $t+1$. If $h \notin V\left(C^{\prime}\right)$, then C^{\prime} is a cycle of length $t+1$ contained in G. If h appears on C^{\prime} between x and y, replace it with $z \in N(x) \cap N(y) \cap V(H)$ from Claim 2.2, again forming a cycle of length $t+1$, a contradiction proving the theorem.

3. FORBIDDING $\boldsymbol{N}_{2,2,1}$

In this section, we deal with 3-connected claw-free graphs, which contain no induced copy of the graph $N_{2,2,1}$, a common supergraph of both $N_{2,2,0}$ and $N_{2,1,1}$.

Here and below a hop is a chord of a cycle C of type $v v^{++}$.
Lemma 3.1. Let G be a claw-free graph with minimum degree $\delta(G) \geq 3$, and let C be a cycle of length t without hops, for some $t \geq 5$. Set

$$
X=\{v \in V(C) \mid \text { there is no chord incident to } v\}
$$

and suppose for some chord $x y$ of C we have $|X \cap V(x C y)| \leq 2$. Then G contains cycles C^{\prime} and $C^{\prime \prime}$ of lengths $t-1$ and $t-2$, respectively.

Proof. Let us choose a chord $x y$ such that $|X \cap V(x C y)|$ is minimal, and among those such that $|V(x C y)|$ is minimal. Consider the cycle $\bar{C}=x y C x$. As C has no hops, $|V(\bar{C})| \leq t-2$. A vertex $v \in V\left(x^{+} C y^{-}\right) \backslash X$ has a neighbor $w \in V\left(y^{+} C x^{-}\right)$as $|V(x C y)|$ is minimal. To avoid the claw $\left\langle w, w^{+}, w^{-}, v\right\rangle$, one of the edges $v w^{+}, v w^{-}$appears in G, thus v can be inserted into \bar{C}, that is \bar{C} can be extended to the cycle $x y C w v w^{+} C x$ or $x y C w^{-} v w C x$. This way, we can append all the vertices from $V\left(x^{+} C y^{-}\right) \backslash X$ to \bar{C} one-by-one. The only possible problem in this process occurs if we want to insert a second vertex $v^{\prime} \in V\left(x^{+} C y^{-}\right) \backslash X$ at the same spot. But as G is claw-free and there are no chords inside $x^{+} C y^{-}$, $\left\langle N(w) \cap V\left(x^{+} C y^{-}\right)\right\rangle$consists of at most two complete subgraphs of size at most two each, where one of them is a subset of $N(w) \cap N\left(w^{+}\right)$, the other one a subset of $N(w) \cap N\left(w^{-}\right)$. Therefore, we can insert any number of vertices in $N(w) \cap$ $V\left(x^{+} C y^{-}\right)$into \bar{C}. So we conclude that we can transfer any number of vertices from $V\left(x^{+} C y^{-}\right) \backslash X$ into \bar{C}.

As $|X \cap V(x C y)| \leq 2$, we can build in this way a cycle $C^{\prime \prime}$ of length $t-2$. Using this procedure, we can also construct a cycle of length $t-1$ unless $|X \cap V(x C y)|=2$. But then $|X \cap V(y C x)| \geq 2$ by the minimality of $|X \cap V(x C y)|$, and we can extend $C^{\prime \prime}$ through a vertex $z^{\prime} \in N(z) \backslash V(C)$, where $z \in X \cap V(y C x)$ (observe that one of $z^{\prime} z^{+}, z^{\prime} z^{-}$is an edge to avoid a claw at z, and no vertex of $V(x C y)$ was inserted next to z as z is not an end of a chord).

Fact 3.1. Let G be a 3-connected claw-free graph which contains no cycles of length t, for some $4 \leq t \leq n$. Let C be a cycle of length $t-1$ in G and $x \in V(G) \backslash V(C)$ be adjacent to vertices $v, w \in V(C)$, which are themselves adjacent in G. Then, G contains an induced copy of $N_{2,2,1}$.

Proof. Let P be a shortest path from x to C in $G-\{v, w\}$. We may assume that x was chosen from $N(v) \cap N(w) \backslash V(C)$ such that P is shortest.

To avoid claws, $v^{-} v^{+}, w^{-} w^{+} \in E$. Note that $w v^{-}, v w^{-} \notin E$, otherwise C could be extended through x. Let $v_{2} \in V\left(v^{+} C w\right)$ be the vertex closest to v on C with $v v_{2} \notin E$, let $v_{1}=v_{2}^{-}$. Let $w_{2} \in V\left(w^{+} C v\right)$ be the vertex closest to w on C with $w w_{2} \notin E$, let $w_{1}=w_{2}^{-}$.

First, we want to show that $\left\langle x, v, v_{1}, v_{2}, w, w_{1}, w_{2}\right\rangle$ is an induced copy of $N_{2,2,0}$. If $x w_{i} \in E$ for $i \in\{1,2\}$, then the cycle $w x w_{i} C w^{-} w^{+} C w_{i}^{-} w$ has length t. Thus, $x w_{i} \notin E$ for $i \in\{1,2\}$ and, by symmetry, $x v_{i} \notin E$ for $i \in\{1,2\}$.

If $v_{i} w_{j} \in E$ for $i, j \in\{1,2\}$, then

$$
v_{i} w_{j} C v^{-} v^{+} C v_{i}^{-} v x w w_{j}^{-} C^{-} w^{+} w^{-} C^{-} v_{i}
$$

is a cycle of length t. Thus, $v_{i} w_{j} \notin E$ for $i, j \in\{1,2\}$, and $\left\langle x, v, v_{1}, v_{2}, w, w_{1}, w_{2}\right\rangle$ is an induced copy of $N_{2,2,0}$.

Now consider the vertex x_{1}, the unique neighbor of x on P. If $x_{1} v \in E$, then also $x_{1} w \in E$ as otherwise $\left\langle v, x_{1}, w, v^{-}\right\rangle$is a claw (if $x_{1} v^{-} \in E, C$ can be extended through x_{1} to form a cycle of length t unless $x_{1} \in V(C)$. But then, the cycle $v^{-} x_{1} x v C x_{1}^{-} x_{1}^{+} C v^{-}$contains t vertices). Consequently, since P is shortest, $x_{1} \in$ $V(C)$. Now one can mimic the argument we have used above to show that $\left\langle x_{1}, x_{1}^{+}, v, v_{1}, v_{2}, w, w_{1}, w_{2}\right\rangle$ is an induced copy of $N_{2,2,1}$.

So assume that $x_{1} v, x_{1} w \notin E$. If $x_{1} v_{i} \in E$ for some $i \in\{1,2\}$, then we can again extend C through x and x_{1}, possibly skipping a third neighbor of $V(G) \backslash V(C)$ on the cycle to create a C_{t}. Thus, $x_{1} v_{i}, x_{1} w_{i} \notin E$ for $i \in\{1,2\}$, and $\left\langle x, x_{1}, v, v_{1}, v_{2}, w, w_{1}, w_{2}\right\rangle$ is an induced copy of $N_{2,2,1}$, finishing the proof.

Lemma 3.2. Let G be a 3-connected claw-free graph such that for some $6 \leq t \leq n, G$ contains a cycle C of length $t-1$ but contains no cycles of length t. Then, G contains an induced copy of $N_{2,2,1}$.

Proof. Suppose, for the sake of contradiction, that G contains no induced copy of $N_{2,2,1}$. Let H be a component of $\langle V(G) \backslash V(C)\rangle$, and let $u, v, w \in$ $N(H) \cap V(C)$. Let $x \in V(H)$, and let P_{u}, P_{v}, and P_{w} be shortest paths through H from x to u, v, and w, respectively. Let $S=V\left(P_{u}\right) \cup V\left(P_{v}\right) \cup V\left(P_{w}\right)$. We may assume that H, u, v, w, and x are chosen in a way that $|S|$ is minimal and that x has degree three in $\langle S\rangle$. To avoid a claw at x, there has to be an edge between two vertices $y, z \in N(x) \cap S$. By symmetry, we may assume that $y \in V\left(P_{v}\right)$ and $z \in V\left(P_{w}\right)$. By the minimality of $|S|$, the only other possible additional edges in $\langle S\rangle$ are the edges $\{u v, u w, v w\}$.

Furthermore, note that there are no edges between $S \backslash\{u, v, w\}$ and $V(C) \backslash\{u, v, w\}$. Otherwise, either $|S|$ is not minimal, or G, being claw-free,
forces a situation like in Fact 3.1, guaranteeing $N_{2,2,1}$. This observation, together with the fact that for any two vertices $a, b \in V(C)$ with $a b \in E$, we have $N(a) \cap N(b) \cap V(H)=\emptyset$ (Fact 3.1), implies that $\langle N(u) \cap V(C)\rangle,\langle N(v) \cap V(C)\rangle$, and $\langle N(w) \cap V(C)\rangle$ are complete graphs.

Let $P_{x}=P_{u}, P_{y}=P_{v}-x$, and $P_{z}=P_{w}-x$. By symmetry, we may assume that $\left|V\left(P_{z}\right)\right| \leq\left|V\left(P_{y}\right)\right| \leq\left|V\left(P_{x}\right)\right|$, and that u, w, and v appear on C in this order. By Fact 3.1, $\left|V\left(P_{y}\right)\right| \geq 2$.

Case 1. $\left|V\left(P_{z}\right)\right|=1$, that is, $z=w$.
Suppose first that $v w \in E$. Thus, $\left\langle v^{-}, v, v^{+}, w^{-}, w, w^{+}\right\rangle$is complete as $\langle N(v) \cap V(C)\rangle$ and $\langle N(w) \cap V(C)\rangle$ are complete. As $t \geq 5$, there is a vertex $a \in\left\{w^{+}, w^{-}, v^{+}, v^{-}\right\}-\{u, v, w\}$. If $\left|V\left(P_{y}\right)\right| \geq 4$, then $\left\langle\{w, a\} \cup V\left(P_{x}\right) \cup V\left(P_{y}\right)\right\rangle$ contains an induced $N_{2,2,1}$. Thus, $\left|V\left(P_{y}\right)\right| \leq 3$.

Consider the cycle $C^{\prime}=w y P_{y} v C^{-} w^{+} v^{+} C w$. We have $t \leq\left|V\left(C^{\prime}\right)\right| \leq t+1$. As $C_{t} \nsubseteq G$, we know that $\left|V\left(C^{\prime}\right)\right|=t+1$. But now the cycle obtained from C^{\prime} by skipping u (this is always possible as $\langle N(u) \cap V(C)\rangle$ is complete) has length t, a contradiction. Therefore, $v w \notin E$.

If $\left|V\left(P_{y}\right)\right| \geq 4$, then $\left\langle\left\{w, w^{+}\right\} \cup V\left(P_{x}\right) \cup V\left(P_{y}\right)\right\rangle$ contains an induced $N_{2,2,1}$. Thus, $\left|V\left(P_{y}\right)\right| \leq 3$.

Now suppose that $w v^{-} \in E$. Then $w^{-} v^{-} \in E$ as $\langle N(w) \cap V(C)\rangle$ is complete. Consider the cycle $C^{\prime}=w y P_{y} v C w^{-} v^{-} C^{-} w$. Then $t \leq\left|V\left(C^{\prime}\right)\right| \leq t+1$ and, since $C_{t} \nsubseteq G$, we have $\left|V\left(C^{\prime}\right)\right|=t+1$. But now the cycle obtained from C^{\prime} by skipping u has length t, a contradiction. Therefore, $w v^{-} \notin E$.

Let b be the first vertex on $w C v$ with $w b \notin E$. If $v b \in E$, then the cycle $C^{\prime}=v b C v^{-} v^{+} C w^{-} w^{+} C b^{-} w y P_{y} v$ has length t or $t+1$. We can then skip u if needed to create a cycle of length t, a contradiction. Thus, $v b \notin E$ and, by an analogous argument, $v b^{-} \notin E$. If $\left|V\left(P_{x}\right)\right| \geq 4$, then $\left\langle\left\{w, b^{-}, b\right\} \cup V\left(P_{x}\right) \cup V\left(P_{y}\right)\right\rangle$ contains an induced $N_{2,2,1}$. Thus, $\left|V\left(P_{x}\right)\right| \leq 3$.

If $u b \in E$, then the cycle $C^{\prime}=u b C u^{-} u^{+} C w^{-} w^{+} C b^{-} w x P_{x} u$ has length t or $t+1$. Then omitting v if necessary, one can find a cycle of length t in G, a contradiction. Thus, $u b \notin E$ and, by a similar argument $u b^{-} \notin E$.

Observe that $\left\langle\left\{w, b^{-}, b\right\} \cup V\left(P_{x}\right) \cup V\left(P_{y}\right)\right\rangle$ contains an induced $N_{2,2,1}$, unless $\left|V\left(P_{x}\right)\right|=\left|V\left(P_{y}\right)\right|=2$. But then since $C_{t} \nsubseteq G$, we see that $\left\langle x, y, w, u, u^{+}, v\right.$, $\left.v^{+}, w^{+}\right\rangle$is an induced copy of $N_{2,2,1}$.

Case 2. $\left|V\left(P_{z}\right)\right|=2$.
If $\left|V\left(P_{y}\right)\right| \geq 4$, then $\left\langle\{z, w\} \cup V\left(P_{x}\right) \cup V\left(P_{y}\right)\right\rangle$ contains an induced $N_{2,2,1}$. Thus, $\left|V\left(P_{y}\right)\right| \leq 3$.

Suppose that $v^{+} w^{+} \in E$. Let $C^{\prime}=w z y P_{y} v C^{-} w^{+} v^{+} C u^{-} u^{+} C w$. Then $t \leq\left|V\left(C^{\prime}\right)\right| \leq t+1$, so, as $C_{t} \nsubseteq G,\left|V\left(C^{\prime}\right)\right|=t+1$. Since $C_{t} \nsubseteq G, C^{\prime}$ contains no hops. Hence, no vertex of $V(C) \backslash\left\{u, u^{-}, u^{+}, v, v^{+}, w, w^{+}\right\}$has a neighbor in $V(G) \backslash V(C)$. Observe also that all neighbors of u, v and w on C are completely connected. Consequently, the chordless vertices of C^{\prime} are contained in the set $\left\{z, u^{-}, u^{+}\right\} \cup V\left(P_{y}\right) \backslash\{v\}$. Thus, C^{\prime} has at most five chordless vertices and one
can use Lemma 3.1 to reduce it to a cycle of length t, which contradicts the assumption that $C_{t} \nsubseteq G$. Therefore, $v^{+} w^{+} \notin E$. This also implies that $v w, v w^{+}$ $\notin E$.

A similar argument shows that $u w, u w^{+} \notin E$ if $\left|V\left(P_{x}\right)\right| \leq 3$. If $\left|V\left(P_{y}\right)\right|=3$, this implies that $\left\langle\left\{z, w, w^{+}\right\} \cup V\left(P_{x}\right) \cup V\left(P_{y}\right)\right\rangle$ contains an induced $N_{2,2,1}$. Thus, $\left|V\left(P_{y}\right)\right|=2$.

We have already seen that $v^{+} w^{+} \notin E$, so there are no edges between $\left\{w, w^{+}\right\}$ and $\left\{v, v^{+}\right\}$. Similarly, there are no edges between u and $\left\{v, v^{+}, w, w^{+}\right\}$if $\left|V\left(P_{x}\right)\right|=2$. But now $\left\langle\left\{z, y, w, w^{+}, v, v^{+}\right\} \cup V\left(P_{x}\right)\right\rangle$ contains an induced $N_{2,2,1}$.

Case 3. $\left|V\left(P_{z}\right)\right| \geq 3$.
If $\left|V\left(P_{x}\right)\right| \geq 4$, then $\left\langle V\left(P_{z}\right) \cup V\left(P_{x}\right) \cup V\left(P_{y}\right)\right\rangle$ contains an induced $N_{2,2,1}$. Thus, $\left|V\left(P_{z}\right)\right|=\left|V\left(P_{x}\right)\right|=\left|V\left(P_{y}\right)\right|=3$. Furthermore, we know that $u v, u w$, $v w \in E$ for the same reason. This implies that the graph $\langle(N(u) \cup N(v) \cup N(w)) \cap$ $V(C)\rangle$ is complete. Since $|V(C)|=t-1 \geq 5$, we know that $\mid(N(u) \cup N(v) \cup$ $N(w)) \cap V(C) \mid \geq 5$, and so $\langle(N(u) \cup N(v) \cup N(w)) \cap V(C) \cup S\rangle$ is a pancyclic graph on at least eleven vertices. Thus $t \geq 12$.

Let us assume that $u C w$ is the longest among the paths $u C w, w C v$, and $v C u$. Since $t \geq 12,|V(u C w)| \geq 4$. In fact, since none of the cycles of the type

$$
w P_{z} z[x] y P_{y} v C^{-} w^{+} v^{+} C u^{-}[u]\left[u^{+}\right]\left[w^{-}\right] w
$$

has length t, we have $|V(u C w)| \geq 8$.
We call a chord $a b$ peripheral, if $V(a C b) \subseteq V\left(u^{+} C w^{-}\right), a^{++} \neq b$, and each other chord $c d$ such that $c, d \in V(a C b)$, is a hop, that is, c and d lie at distance two on C. Note that since $u^{+} w^{-} \in E$, there exists at least one peripheral chord. Consider the cycle

$$
C^{\prime}=u P_{x} x z P_{z} w C v^{-} v^{+} C u^{-} w^{-} C^{-} u
$$

of length $t+2$. If the path $u^{+} C w^{-}$contains two hops $a^{-} a^{+}$and $b^{-} b^{+}$such that a and b are non-consecutive vertices of C (and C^{\prime}), then clearly we can omit a and b in C^{\prime} obtaining a cycle of length t, contradicting the fact that $C_{t} \nsubseteq G$. Hence, we may assume that there are at most two hops on $u^{+} C w^{-}$, say $a^{-} a^{+}$and $a a^{++}$. Let $b c$ be a peripheral chord of C. Assume first that $\left|V\left(b^{+} C c^{-}\right)\right| \geq 4$ and consider the cycle $C^{\prime \prime}=u P_{x} x y z P_{z} w C u^{-} w^{-} C^{-} u$ of length $t+4$. Note that all vertices from $V\left(b^{+} C c^{-}\right)$, except at most four contained in the set $X=\left\{a^{-}, a, a^{+}, a^{++}\right\}$, are ends of chords of C (and $C^{\prime \prime}$) with one end outside $V(b C c)$. Thus, one can mimic the argument from the proof of Lemma 3.1 to show that all except four vertices of $b^{+} C c^{-}$can be incorporated to $b C^{\prime \prime} c b$ to transform it into a cycle of length t. If $\left|V\left(b^{+} C c^{-}\right)\right|=2$, then $u P_{x} x z P_{z} w C v^{-} v^{+} C u^{-} w^{-} C^{-} c b C^{-} u$ is a cycle of length t. If $\left|V\left(b^{+} C c^{-}\right)\right|=3$, then $u P_{x} x z P_{z} w C u^{-} w^{-} C^{-} c b C^{-} u$ is a cycle of length t. This contradiction with the assumption that $C_{t} \nsubseteq G$ completes the proof of Lemma 3.2.

Theorem 3.1. Every 3-connected $\left\{K_{1,3}, N_{2,2,1}\right\}$-free graph G on $n \geq 6$ vertices contains cycles of each length t, for $6 \leq t \leq n$.

Proof. By Lemma 3.2, it is enough to show that G contains a copy of either C_{5} or C_{6}. Suppose that this is not the case. Since G is claw-free and 3-connected, it contains a triangle $x y z$. Let $u \in V(G) \backslash\{x, y, z\}$. As G is 3-connected, there are three vertex-disjoint paths from u to $\{x, y, z\}$. Since G is a $N_{2,2,1}$-free graph without C_{5} and C_{6}, there is a vertex w on one of these paths such that $\langle x, y, z, w\rangle$ is either K_{4}, or K_{4}^{-}, the graph with four vertices and five edges.

Let $v \in V(G) \backslash\{x, y, z, w\}$. Consider three vertex-disjoint paths from v to $\{x, y, z, w\}$. If $\langle x, y, z, w\rangle=K_{4}$, the above argument guarantees a vertex w^{\prime} on one of the paths with $\left|N\left(w^{\prime}\right) \cap\{x, y, z, w\}\right| \geq 2$, and C_{5} can be found. If $\langle x, y, z, w\rangle=K_{4}^{-}$, say $x w \notin E$, then one of the three paths ends in y or z, say in y. Let w^{\prime} be the predecessor of y on this path. One of the edges $w^{\prime} w$ and $w^{\prime} x$ has to be there to avoid the claw $\left\langle y, w, x, w^{\prime}\right\rangle$, but this implies that $C_{5} \subseteq G$, contradicting the choice of G.

4. FORBIDDING $\boldsymbol{P}_{\mathbf{7}}, \boldsymbol{N}_{\mathbf{4}, \mathbf{0}, 0}$, AND $\boldsymbol{N}_{\mathbf{3}, 1,0}$

In this section, we deal with 3 -connected claw-free graphs that contain no induced copy of one of the graphs $P_{7}, N_{4,0,0}$, and $N_{3,1,0}$. We start with the following simple consequence of Lemma 3.1.
Lemma 4.1. Let G be a 3-connected claw-free graph on n vertices which, for some $5 \leq t \leq n-1$, contains a cycle of length t with at least one chord but contains no cycles of length $t-1$. Then G contains an induced copy of each of the graphs $P_{7}, N_{4,0,0}$, and $N_{3,1,0}$.

Proof. Let G be a 3-connected claw-free graph, C be a cycle of length $t \geq 5$ in G, which contains at least one chord, and let us assume that G contains no cycles of length $t-1$. Let X be the set of chordless vertices on C. Choose a chord $x y$ in C for which $|V(x C y) \cap X|$ is minimal, and for no other chord $x^{\prime} y^{\prime}$ such that $x^{\prime} \in V\left(x^{+} C y^{-}\right), \quad y^{\prime} \in V\left(y^{+} C x^{-}\right)$, and $|V(x C y) \cap X|=\left|V\left(x^{\prime} C y^{\prime}\right) \cap X\right|$, we have $\left|V\left(x^{\prime} C y^{\prime}\right)\right|<|V(x C y)|$. Since $C_{t-1} \nsubseteq G, C$ contains no hops. Hence, by Lemma 3.1, $|V(x C y) \cap X| \geq 3$.

We first show that a chord $x y$ can be chosen in such a way that $|V(x C y)| \geq 6$. Suppose that this is not the case and let $x y$ be a chord which minimizes $|V(x C y) \cap X|$ and $V\left(x^{+} C y^{-}\right)=\left\{x^{+}, x^{++}, y^{-}\right\} \subseteq X$. Let $u w$ be a chord in $y C x$ that minimizes $|X \cap V(u C w)|$, and assume that $|V(u C w)|$ is minimal under this restriction. Then, again, $V\left(u^{+} C w^{-}\right)=\left\{u^{+}, u^{++}, w^{-}\right\} \subseteq X$. If the set $\left\{u^{+}, u^{++}, w^{-}\right\}$has more than one neighbor outside of C, we can extend $y C x y$ through two of these neighbors and obtain a cycle of length $t-1$. Thus, there is only one vertex z in $N\left(\left\{u^{+}, u^{++}, w^{-}\right\}\right) \backslash V(C)$, and since $\left\{u^{+}, u^{++}, w^{-}\right\} \subset X$, we have $z u^{+}, z u^{++}, z y^{-} \in E$. But G is 3-connected, so there has to be a path in $G-\{u, w\}$ from $\left\{u^{+}, u^{++}, w^{-}\right\}$to x^{+}. Therefore, z has another neighbor
$z^{\prime} \notin N\left(\left\{u^{+}, u^{++}, w^{-}\right\}\right)$; this however leads to the claw $\left\langle z, z^{\prime}, u^{+}, w^{-}\right\rangle$. Thus, we may assume that $|V(x C y)| \geq 6$.

Note that, by the choice of $|V(x C y)|, x y^{-}, y x^{+} \notin E$. To avoid the claws $\left\langle x, x^{+}, x^{-}, y\right\rangle$ and $\left\langle y, y^{+}, y^{-}, x\right\rangle$, we have $x y^{+}, y x^{-} \in E$. If $x^{+} y^{+} \in E$, then the cycle $x^{+} C y x^{-} C^{-} y^{+} x^{+}$has length $t-1$, thus $x^{+} y^{+} \notin E$. To avoid the claw $\left\langle x, x^{+}, x^{-}, y^{+}\right\rangle$, we have $x^{-} y^{+} \in E$. Moreover, since $C_{t-1} \nsubseteq G$, the pairs $x^{--} y$, $x^{--} y^{-}, x^{-} y^{-}, x^{--} y^{--}, x^{-} y^{--}$are not edges of G and the choice of $|V(x C y)|$ guarantees that $x^{--} y^{3-}, x^{-} y^{3-}, x^{--} y^{4-}, x^{-} y^{4-} \notin E$. Now $\left\langle x^{--}, x^{-}, y, y^{-}\right.$, $\left.y^{--}, y^{3-}, y^{4-}\right\rangle$ is a copy of $P_{7},\left\langle y^{+}, x^{-}, y, y^{-}, y^{--}, y^{3-}, y^{4-}\right\rangle$ is $N_{4,0,0}$, and $\left\langle y, x, x^{-}, x^{+}, x^{++}, x^{3+}, x^{--}\right\rangle$is an induced copy of $N_{3,1,0}$.

The following result has been shown by Łuczak and Pfender [3].
Theorem 4.1. Every 3-connected $\left\{K_{1,3}, P_{11}\right\}$-free graph G is hamiltonian.
As an immediate consequence of Lemma 4.1 and Theorem 4.1, we get the following theorem.
Theorem 4.2. Let G be a 3-connected $\left\{K_{1,3}, P_{7}\right\}$-free graph on n vertices. Then G contains a cycle of length t, for each $7 \leq t \leq n$.

Proof. Let G be a 3-connected $\left\{K_{1,3}, P_{7}\right\}$-free graph on n vertices. From Theorem 4.1, it follows that G is hamiltonian. Let $C_{t}, 8 \leq t \leq n$, be a cycle of length t in G. Since G is P_{7}-free, C_{t} must have a chord. Hence, Lemma 4.1 implies that G contains a cycle of length $t-1$.

The next result states that 3-connected $\left\{K_{1,3}, N_{4,0,0}\right\}$-free graphs contain cycles of all possible lengths, except, perhaps, four and five.
Theorem 4.3. Every 3 -connected $\left\{K_{1,3}, N_{4,0,0}\right\}$-free graph G on n vertices contains cycles of each length t, for $6 \leq t \leq n$.

Proof. We show first that every 3-connected $\left\{K_{1,3}, N_{4,0,0}\right\}$-free graph is Hamiltonian. Let G be a 3-connected claw-free graph G which is not Hamiltonian. From Theorem 4.1, it follows that G contains an induced path $P=v_{1} \cdots v_{11}$. Since G is 3-connected, v_{6} has at least one neighbor w outside P. Furthermore, G is claw-free and P is induced, so w cannot have neighbors in both sets $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $\left\{v_{8}, v_{9}, v_{10}, v_{11}\right\}$. Thus, suppose that w has no neighbors in $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and let i_{0} denote the minimum i such that v_{i} is adjacent to w (i.e., i_{0} is 5 or 6). Since G is claw-free, $v_{i_{0}+1}$ is adjacent to w, and so the vertices $v_{i_{0}-4}, v_{i_{0}-3}, v_{i_{0}-2}, v_{i_{0}-1} v_{i_{0}} v_{i_{0}+1} w$ span an induced copy of $N_{4,0,0}$ in G. Hence, each 3-connected $\left\{K_{1,3}, N_{4,0,0}\right\}$-free graph on n vertices contains a cycle of length n.

Thus, to show the assertion, it is enough to verify that if a 3-connected $\left\{K_{1,3}, N_{4,0,0}\right\}$-free graph G contains a cycle $C=v_{1} \cdots v_{t} v_{1}$ of length $t, 7 \leq t \leq n$, then it also contains a cycle of length $t-1$. From Lemma 4.1, it follows that it is enough to consider the case in which C has no chords, that is, each vertex of C
has at least one neighbor outside C. Note that since G is claw-free, each $w \in N(C)$ must have at least two neighbors on C. But G is also $N_{4,0,0}$-free which implies that for each such vertex $|N(w) \cap V(C)| \geq 3$, and one can use the fact that G is $\left\{K_{1,3}, N_{4,0,0}\right\}$-free again to verify that each $w \in N(C)$ has precisely four neighbors on $C: v_{i}, v_{i+1}, v_{j}$ and v_{j+1}. If $j \geq i+6$, then G contains an induced copy of $N_{4,0,0}$ on vertices $v_{j}, v_{j+1}, w, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$. Moreover, if $j \leq i+4$, then there is a cycle of length $t-1$ in G containing the vertex w. Thus, we may assume that $j-i=i-j=5$, that is, $t=10$ and each $w \in N(C)$ is adjacent to vertices $v_{i}, v_{i+1}, v_{i+5}, v_{i+6}$ for some $i=1, \ldots, 10$. Let w be adjacent to $v_{1}, v_{2}, v_{6}, v_{7}$, and let w^{\prime} be a neighbor of v_{4}. Assume that $N\left(w^{\prime}\right)=\left\{v_{3}, v_{4}, v_{8}, v_{9}\right\}$. Then the vertices $v_{1}, v_{2}, w, v_{6}, v_{5}, v_{4}, w^{\prime}$ span a copy of $N_{4,0,0}$; since G is $N_{4,0,0^{-}}$ free, this copy is not induced; consequently, w and w^{\prime} must be adjacent. But this leads to a cycle $v_{3} w^{\prime} w v_{7} v_{8} \cdots v_{2} v_{3}$ of length $t-1=9$ in G.

We conclude this section with a result on 3-connected $\left\{K_{1,3}, N_{3,1,0}\right\}$-free graphs.
Theorem 4.4. Every 3-connected claw-free graph G on n vertices which contains no induced copy of $N_{3,1,0}$ contains a cycle of length t for each $6 \leq$ $t \leq n$.

Proof. We show first that each $\left\{K_{1,3}, N_{3,1,0}\right\}$-free 3-connected graph is Hamiltonian. Suppose that it is not the case and let G be a non-Hamiltonian $\left\{K_{1,3}, N_{3,1,0}\right\}$-free 3-connected graph with the minimum number of vertices. From Theorem 4.1, it follows that G contains an induced path $P=v_{1} v_{2} \cdots v_{11}$. Since G is claw-free and P is induced, every vertex $w \in V(G) \backslash V(P)$ adjacent to v_{i}, $i=2, \ldots, 10$, must be also adjacent to either v_{i-1}, or v_{i+1}. Note, however, that since G contains no induced copy of $N_{3,1,0}$, we have $|N(w) \cap V(P)| \geq 3$, unless $N(w) \cap V(P)$ is either $\left\{v_{1}, v_{2}\right\}$, or $\left\{v_{10}, v_{11}\right\}$. Moreover, if $w \in V(G) \backslash V(P)$ is adjacent to three non-consecutive vertices in $\left\{v_{2}, v_{3}, \ldots, v_{10}\right\}$, then the fact that G is claw-free implies that $|N(w) \cap V(P)|=4$, which, as one can easily check by a direct examination of all cases, would lead to an induced copy of $N_{3,1,0}$. Hence, each vertex $w \in V(G) \backslash V(P)$ which is adjacent to one of the vertices v_{3}, \ldots, v_{9}, has precisely three neighbors on $P: v_{i-1}, v_{i}$, and v_{i+1} for some $i \in\{2,3, \ldots, 10\}$. Hence, for $i=3, \ldots, 9$, set

$$
\begin{aligned}
V_{i} & =\left\{v_{i}\right\} \cup\left\{w \in V(G) \backslash V(P): N(w) \cap V(P)=\left\{v_{i-1}, v_{i}, v_{i+1}\right\}\right\} \\
& =N\left(V_{i-1}\right) \cap N\left(V_{i+1}\right) .
\end{aligned}
$$

Claim 4.1.

(i) The path $v_{1} \cdots v_{i-1} v_{i}^{\prime} v_{i+1} \cdots v_{11}$ is induced for every $i=3, \ldots, 9$ and $v_{i}^{\prime} \in V_{i}$.
(ii) Every two vertices of $V_{i}, i=3, \ldots, 9$, are adjacent.
(iii) All vertices of V_{i} and $V_{i+1}, i=3, \ldots, 8$, are adjacent.
(iv) $N\left(V_{i}\right)=V_{i-1} \cup V_{i+1}$ for $i=4,5, \ldots, 8$.

Proof. Each $v_{i}^{\prime} \in V_{i} \backslash\left\{v_{i}\right\}$ has only three neighbors v_{i-1}, v_{i}, v_{i+1} on P, so (i) follows. Let $v_{i}^{\prime}, v_{i}^{\prime \prime} \in V_{i}$. Consider the claw $\left\langle v_{i+1}, v_{i}^{\prime}, v_{i}^{\prime \prime}, v_{i+2}\right\rangle$. From (i) it follows that v_{i+2} is adjacent to neither v_{i}^{\prime}, nor $v_{i}^{\prime \prime}$, so $v_{i}^{\prime} v_{i}^{\prime \prime} \in E(G)$, showing (ii).

Now let $v_{i}^{\prime} \in V_{i}, \quad v_{j}^{\prime} \in V_{j} \backslash\left\{v_{j}\right\}$, for $3 \leq i<j \leq 9$. Since the path $v_{1} \cdots v_{i-1} v_{i}^{\prime} v_{i+1} \cdots v_{11}$ is induced, v_{j}^{\prime} must have on it precisely three consecutive neighbors. Hence, from the definition of V_{j}, we infer that v_{i}^{\prime} and v_{j}^{\prime} are adjacent if $j=i+1$, and non-adjacent otherwise. Finally, note that if $v_{i}^{\prime} \in V_{i}, i=4, \ldots, 8$, has a neighbor $w \in V(G) \backslash V(P)$, then, because of the claw $\left\langle v_{i}^{\prime}, w, v_{i-1}, v_{i+1}\right\rangle, w$ must have a neighbor on P, and thus $w \in V_{i-1} \cup V_{i} \cup V_{i+1}$.

Let G^{\prime} denote the graph obtained from G by deleting all vertices from V_{6}, and connecting all vertices of V_{5} with all vertices of V_{7}. Then G^{\prime} is 3-connected, clawfree, and contains no induced copy of $N_{3,1,0}$ (note that no induced copy of $N_{3,1,0}$ in G^{\prime} contains vertices of both V_{3} and V_{9}). Thus, since G is a smallest 3-connected $\left\{K_{1,3}, N_{3,1,0}\right\}$-free non-Hamiltonian graph, G^{\prime} is Hamiltonian. But each Hamiltonian cycle in G^{\prime} can be easily modified to get a Hamiltonian cycle in G, contradicting the choice of G. Hence, each 3-connected $\left\{K_{1,3}, N_{3,1,0}\right\}$-free graph is Hamiltonian.

Now let us assume that a 3 -connected $\left\{K_{1,3}, N_{3,1,0}\right\}$-free graph G contains a cycle $C=v_{1} v_{2} \cdots v_{t} v_{1}$ of length $t, 7 \leq t \leq n$. We shall show that it must also contain a cycle of length $t-1$. If C contains at least one chord, the existence of such a cycle follows from Lemma 4.1, so assume that C contains no chords. If a vertex $w \in V(G) \backslash V(C)$ has a neighbor v on C, then, since G is claw-free, one of the vertices v^{-}, v^{+}, must be adjacent to w as well. Furthermore, since G is $N_{3,1,0^{-}}$ free, w cannot have only two neighbors on P. On the other hand, using the fact that G is claw-free once again, we infer that if v has three non-consecutive neighbors on P, then it must have precisely four of them. Furthermore, each choice of four neighbors on P leads either to an induced copy of $N_{3,1,0}$, or to a cycle of length $t-1$. Thus, we may assume that each vertex $w \in V(G) \backslash V(C)$ adjacent to at least one vertex from C is, in fact, adjacent to precisely three vertices v_{i}, v_{i+1}, and v_{i+2}, for $i=1, \ldots, t$, where, of course, the addition is taken modulo t. Let us define

$$
\begin{aligned}
V_{i} & =\left\{v_{i}\right\} \cup\left\{w \in V(G) \backslash V(P): N(w) \cap V(P)=\left\{v_{i-1}, v_{i}, v_{i+1}\right\}\right\} \\
& =N\left(V_{i-1}\right) \cap N\left(V_{i+1}\right)
\end{aligned}
$$

for $i=1,2, \ldots, t$. Then one can use an argument identical with the one used in the proof of Claim 4.1 to show that $V(G)=V_{1} \cup \cdots \cup V_{t}$ is a partition of the set of the vertices of G into complete graphs, each vertex from V_{i} is adjacent to each vertex from V_{i+1}, and $N\left(V_{i}\right)=V_{i-1} \cup V_{i+1}$, for $i=1, \ldots, t$. Note that if $\left|V_{i}\right|=\left|V_{j}\right|=1$ for some $i \neq j$, then $|j-i|=1$ since otherwise the set $V_{i} \cup V_{j}=\left\{v_{i}, v_{j}\right\}$ would be a vertex-cut, while G is 3-connected. Hence, for some i, in the sequence $V_{i}, V_{i+1}, \ldots, V_{i-1}$, each $V_{j}, i+1 \leq j \leq i-2$, has at least two elements. Clearly, it implies that G contains cycles of all lengths $t, 3 \leq t \leq n$; in particular, a cycle of length $t-1$.

5. PROOF OF THEOREM 1.2

In this section, we conclude the proof of Theorem 1.2, showing that if a 3connected claw-free graph G does not contain an induced copy of one of the graphs $P_{7}, N_{4,0,0}, N_{3,1,0}, N_{2,2,0}, N_{2,1,1}$, then it contains a cycle of length t, for $t=4,5,6$.
Lemma 5.1. Let G be a 3-connected claw-free graph which contains a cycle of length seven but no cycles of length six. Then G contains an induced copy of P_{7}.

Proof. Let G be a 3-connected claw-free graph without copies of C_{6} and let $C=v_{1} v_{2} \ldots v_{7} v_{1}$ be a cycle of length seven in G. Since $C_{6} \nsubseteq G, C$ contains no hops. Applying Lemma 3.1, we infer that C contains no chords.

Let $x \in N\left(v_{1}\right) \backslash V(C)$. Then $x v_{2}$ or $x v_{7}$ is an edge to avoid a claw $\left\langle v_{1}, x, v_{2}, v_{7}\right\rangle$. By symmetry, we may assume that $x v_{2} \in E$. To avoid the $P_{7}\left\langle x, v_{2}, v_{3}, \ldots, v_{7}\right\rangle, x$ must have another neighbor on C. Since $C_{6} \nsubseteq G$, the only possible candidates for neighbors of x are v_{3} and v_{7}. Without loss of generality, we may assume that $x v_{3} \in E$. Let $P=\left(v_{2}=\right) y_{0} y_{1} \ldots y_{k}\left(=v_{4}\right)$ be the shortest path from v_{2} to v_{4} in $G-\left\{v_{1}, v_{3}\right\}$. As $v_{4} v_{1} \notin E$, this path contains a vertex which is not adjacent to both v_{1} and v_{3}; let y_{ℓ} denote the first such vertex on P. To avoid the claw $\left\langle y_{\ell-1}, y_{\ell}, v_{1}, v_{3}\right\rangle$, either $v_{1} y_{\ell}$ or $v_{3} y_{\ell}$ is an edge, say $v_{3} y_{\ell} \in E$. As $\left\langle y_{\ell}, v_{3}, v_{4}, \ldots, v_{1}\right\rangle$ is not $P_{7}, y_{\ell} v_{4} \in E$. But now, if $\ell \geq 2$, then $v_{1} v_{2} v_{3} v_{4} y_{\ell} y_{\ell-1} v_{1}$ is a cycle of length six, and if $\ell=1$, then such a cycle is spanned by the vertices $v_{1}, v_{2}, y_{1}, v_{4}, v_{3}, x$, contradicting the fact that $C_{6} \nsubseteq G$.

Lemma 5.2. If a 3-connected claw-free graph G contains a cycle of length six but no cycles of length five, then G contains an induced copy of each of the graphs $P_{7}, N_{4,0,0}, N_{3,1,0}, N_{2,2,1}$.

Proof. Let G be a 3-connected claw-free graph and let $C=v_{1} v_{2} \cdots v_{6} v_{1}$ be a cycle of length six contained in C. We split the proof into several simple steps.
Claim 5.1. G contains no induced copy of K_{4}^{-}, that is, the graph with four vertices and five edges.

Proof. Let $X=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq V(G)$ be such that all pairs of vertices from X, except for $\left\{v_{1}, v_{2}\right\}$, are edges of G. Since G is 3-connected, one of the vertices $\left\{v_{3}, v_{4}\right\}$, say, v_{3}, must have a neighbor $w \notin X$. Because G is claw-free, w must be adjacent to one of the vertices v_{1}, v_{2}, say, to v_{1}. But this leads to a cycle $v_{1} w v_{3} v_{2} v_{4} v_{1}$.

Claim 5.2. C has no chords. Moreover, no two non-consecutive vertices v_{i}, v_{j} of C are connected by a path of either of the types $v_{i} w v_{j}, v_{i} w w^{\prime} v_{j}$, where $w, w^{\prime} \notin V(C)$.

Proof. Since $C_{5} \nsubseteq G, C$ contains no hops. Applying Lemma 3.1, we infer that C contains no chords.

Furthermore, each path of type $v_{i} w v_{j}$ leads to either C_{5} or K_{4}^{-}, so we can eliminate them using Claim 5.1. Finally, the only paths of type $v_{i} w w^{\prime} v_{j}$ which do
not immediately yield C_{5} are of type $v_{i} w w^{\prime} v_{i}^{+++}$, but then $\left\langle v_{i}, v_{i}^{-}, v_{i}^{+}, w\right\rangle$ is a claw, and any edge between vertices v_{i}^{-}, v_{i}^{+}, w leads to a cycle of length five.

Claim 5.3. G contains a vertex x which lies at distance two from C.
Proof. Suppose that all vertices of G are within distance one from C. Then the fact that G is 3 -connected implies that there exist two non-consecutive vertices $v_{i}, v_{j} \in V(C)$ which are joined by a path of length at most three, which contradicts Claim 5.2.

Let x be a vertex that lies at distance two from C, and let w denote a neighbor of x that lies within distance one from C. Claim 5.2 and the fact that G is clawfree imply that w has two consecutive neighbors on C, say, v_{1} and v_{2}. From Claim 5.2, we infer that the graph H induced by the vertices $V(C) \cup\{x, w\}$ has only nine edges: the six edges of C and three incident to w. Note that H contains induced copies of both P_{7} and $N_{3,1,0}$.

Now let $w^{\prime} \notin V(H)$ be a neighbor of v_{3}. Note that because $C_{5} \nsubseteq G, w^{\prime}$ is adjacent neither to x nor to w. From Claim 5.2 and the fact that G is claw-free, it follows that the only neighbor of w^{\prime} in $V(H)$, except v_{3}, is in the set $\left\{v_{2}, v_{4}\right\}$. If $w^{\prime} v_{4} \in E$, then the vertices $x, w, v_{1}, v_{2}, v_{3}, w^{\prime}, v_{6}, v_{5}$ span an induced copy of $N_{2,2,1}$, and $\left\langle w, v_{2}, v_{1}, v_{6}, v_{5}, v_{4}, w^{\prime}\right\rangle$ is $N_{4,0,0}$. Hence, assume that $w^{\prime} v_{2} \in E$. Now let x^{\prime} be a neighbor of w^{\prime} outside $V(H)$ which is not adjacent to both v_{2} and v_{3} (the fact that G is 3 -connected and Claim 5.2 guarantee that such a vertex always exists). Then, since G is claw-free and $C_{5} \nsubseteq G, x^{\prime}$ is adjacent to none of the vertices of $V(H)$. But now the vertices $x, w, v_{1}, v_{2}, w^{\prime}, x^{\prime}, v_{6}, v_{5}$ span an induced copy of $N_{2,2,1}$ in G.

Finally, let $w^{\prime \prime} \in N\left(v_{5}\right) \backslash V(C)$. Then, either $v_{4} w^{\prime \prime} \in E$, or $v_{6} w^{\prime \prime} \in E$. If $v_{4} w^{\prime \prime} \in E$, then $\left\langle w^{\prime \prime}, v_{4}, v_{5}, v_{6}, v_{1}, v_{2}, w^{\prime}\right\rangle$ is $N_{4,0,0}$, if $v_{6} w^{\prime \prime} \in E$, then $\left\langle w^{\prime \prime}, v_{6}, v_{5}\right.$, $\left.v_{4}, v_{3}, v_{2}, w\right\rangle$ is $N_{4,0,0}$, as $w w^{\prime \prime}, w^{\prime} w^{\prime \prime} \notin E$ by Claim 5.2.

For our argument, we also need the following simple observation on G_{1} defined in the Introduction (see Fig. 2).

Fact 5.1. Let G be a 3-connected claw-free graph which contains no cycles of length four. Let \tilde{G}_{1} be a copy of G_{1} in G. Then
(i) The copy \tilde{G}_{1} is induced. In particular, G contains induced copies of each of the graphs $P_{7}, \notin, N_{4,0,0}, N_{3,1,0}, N_{2,2,0}, N_{2,1,1}$.
(ii) If $G \neq \tilde{G}_{1}$, then G contains an induced copy of $N_{2,2,1}$.

Proof. It is easy to check that if we add any edge to G_{1}, then either we create a copy of C_{4}, or we get $K_{1,3}$ which, in turn, since G is claw-free, forces a cycle of length four. Thus, (i) follows. In order to show (ii) note that, since G_{1} is induced, any vertex $x \in \underset{\sim}{V}(G) \backslash V\left(\tilde{G}_{1}\right)$ with a neighbor in \tilde{G}_{1} must be adjacent to precisely two vertices of \tilde{G}_{1}, which are connected by an edge which belongs to none of the
four triangles contained in \tilde{G}_{1}. Now it is easy to check that a subgraph spanned in G by $\{x\} \cup V\left(\tilde{G}_{1}\right)$ contains an induced copy of $N_{2,2,1}$ in which x has degree one and is adjacent to a vertex of degree three.

Lemma 5.3. Let G be a 3-connected claw-free graph which contains a cycle of length five but no cycles of length four. Then G contains an induced copy of each of the graphs $P_{7}, N_{4,0,0}, N_{3,1,0}, N_{2,2,0}, N_{2,1,1}$. Furthermore, if $G \neq G_{1}$, then G contains an induced copy of $N_{2,2,1}$.

Proof. Let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ be a cycle of length five in a 3-connected clawfree graph G, which contains no cycles of length four. Clearly, C contains no chords. Let $S=N(V(C))$. Since $C_{4} \nsubseteq G$ and G is claw-free, each vertex $w \in S$ is adjacent to precisely two consecutive vertices of C, for each two vertices $w^{\prime}, w^{\prime \prime} \in S$ we have $N\left(w^{\prime}\right) \cap V(C) \neq N\left(w^{\prime \prime}\right) \cap V(C)$, and S is independent. A vertex w from S, we call w_{i}, if w is adjacent to v_{i} and v_{i+1}. Observe also that, since S is independent and G is claw-free, any vertex $x \notin V(C) \cup S$ has in S at most two neighbors; consequently, G must contain an edge with both ends in $V(G) \backslash(V(C) \cup S)$.

Now let us assume that there exists an edge $x y$, such that $x, y \notin V(C) \cup S$ and each of the vertices x and y has two neighbors in S, denoted x_{1}, x_{2} and y_{1}, y_{2}, respectively. Because of the claw $\left\langle x, x_{1}, x_{2}, y\right\rangle$, we may assume that $x_{1}=y_{1}=w_{1}$. Furthermore, to avoid C_{4}, x and y must be adjacent to different vertices from the set $\left\{w_{3}, w_{4}\right\}$. But now the graph H induced in G by the set $V(C) \cup\left\{x, y, w_{1}\right.$, $\left.w_{3}, w_{4}\right\}$ contains a copy of the graph G_{1} and the assertion follows from Fact 5.1.

Thus, we may assume that each edge contained in $V(G) \backslash(V(C) \cup S)$ has at least one end which is adjacent to at most one vertex from S. Note also that if a vertex $x \in V(G) \backslash(V(C) \cup S)$ has just one neighbor in S, then it must have at least two neighbors $x^{\prime}, x^{\prime \prime}$ in $V(G) \backslash(V(C) \cup S)$, and all three vertices $x, x^{\prime}, x^{\prime \prime}$ cannot share the same neighbor in S because $C_{4} \nsubseteq G$. Consequently, as G is claw-free, we may assume that G contains vertices x and y such that x is adjacent to y, y is adjacent to w_{1}, x has at most one neighbor in S, and it is different than w_{1}, and y has at most one more neighbor in S (then it must be either w_{3} or w_{4}). Let F be the graph spanned in G by $V(C) \cup\left\{x, y, w_{1}\right\}$. It contains precisely nine edges: five edges of C, three edges incident to w_{1}, and $x y$.

Clearly, $x y w_{1} v_{2} v_{3} v_{4} v_{5}$ is an induced copy of P_{7} in $F \subseteq G$. In order to find in G induced copies of $N_{4,0,0}$ and $N_{3,1,0}$, consider the neighbor of v_{4} in S : without loss of generality, we may assume that it is w_{3}. If w_{3} is not adjacent to y, then G contains an induced copy of $N_{4,0,0}$ (on the vertices $y, w_{1}, v_{1}, v_{5}, v_{4}, v_{3}, w_{3}$) as well as an induced copy of $N_{3,1,0}$ (with the vertex set $\left\{y, w, v_{2}, v_{3}, w_{3}, v_{4}, v_{5}\right\}$). Thus, assume that w_{3} is the only neighbor other than w_{1} of y in S. Because of the claw $\left\langle y, x, w_{1}, w_{3}\right\rangle, w_{3}$ is also the only neighbor of x in S. But then the vertices $v_{2}, v_{1}, v_{5}, v_{4}, w_{3}, x, y$ span in G an induced copy of $N_{4,0,0}$, while the vertices $w_{1}, v_{1}, v_{5}, v_{4}, v_{3}, w_{3}, x$ span an induced copy of $N_{3,1,0}$.

Finally, we shall show that G contains an induced copy of $N_{2,2,1}$. Thus, let x, y be defined as above and let w_{3} be a neighbor of v_{4}. Consider now two possible
choices for a neighbor of v_{5}. Assume first, that there is a vertex w_{4} adjacent to both v_{4} and v_{5}. Then vertices $y, w_{1}, v_{1}, v_{2}, v_{3}, w_{3}, v_{5}$, and w_{4} span a copy of $N_{2,2,1}$. It is induced unless y is adjacent to one of the vertices w_{3}, w_{4}, say w_{3}. Then, because of the claw $\left\langle y, x, w_{1}, w_{3}\right\rangle, x$ is also adjacent to w_{3}, and none of the vertices x, y, is adjacent to w_{4}. But then the vertices $x, y, w_{1}, v_{1}, v_{2}, v_{3}, v_{5}$, and w_{4} span an induced copy of $N_{2,2,1}$.

Thus, suppose that G contains a vertex w_{5}, adjacent to both v_{5} and v_{1}. Note that the vertices $x, y, w_{1}, v_{1}, v_{2}, v_{3}, v_{4}$, and w_{5} span an induced copy of $N_{2,2,1}$, unless $w_{5} x \in E$. But if $w_{5} x \in E$, then w_{3} is adjacent to neither x nor y, and so there is an induced copy of $N_{2,2,1}$ on the vertices $y, x, w_{5}, v_{1}, v_{2}, v_{5}, v_{4}, w_{3}$.

As an immediate consequence of Theorem 3.1; and Lemmas 5.2 and 5.3, we get the following result.

Theorem 5.1. Each 3-connected $\left\{K_{1,3}, N_{2,2,1}\right\}$-free graph is either isomorphic to G_{1}, or pancyclic.

Finally we can complete the proof of the main result of the paper.
Proof of Theorem 1.2. We have already seen that (i) implies (ii). Since the graphs $N_{2,2,0}$ and $N_{2,1,1}$ are induced subgraphs of $N_{2,2,1}$, the fact that (i) follows from (ii) is an immediate consequence of Theorems 2.1, 4.2-4.4, Lemmas 5.15.3, and Theorem 5.1

We conclude the paper with a remark that for Theorem 1.2, the graphs G_{0} and G_{1} we introduced at the beginning of the paper are, in a way, extremal. It follows that the smallest 3-connected claw-free graph G, which is not pancyclic, has ten vertices. Indeed, by Theorem 1.2, we may assume that G contains an induced path P on seven vertices. The minimal degree of G is at least three, so there are at least nine edges incident to $V(P)$, which do not belong to P. But G is claw-free, so no vertex from $V(G) \backslash V(P)$ is adjacent to more than four vertices from P. Consequently, $|V(G) \backslash V(P)| \geq 3$. In fact, one can examine the proof of Lemma 5.3 to verify that the graph G_{1} is the only 3-connected claw-free graph G on ten vertices, which is not pancyclic. In a similar manner, one can also deduce from Theorem 4.1 and the proof of Lemma 5.2 that the graph G_{0} (Fig. 2) is the unique smallest 3-connected claw-free graph on at least five vertices, which does not contain a cycle of length five.

REFERENCES

[1] B. Bollobás, Modern Graph Theory, Springer Verlag, New York, 1998.
[2] R. J. Faudree and R. J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math 173 (1997), 45-60.
[3] T. Łuczak and F. Pfender, Claw-free 3-connected P_{11}-free graphs are Hamiltonian, J Graph Theory (to appear).

[^0]: © 2004 Wiley Periodicals, Inc.

