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1. INTRODUCTION

A graph G on n vertices is pancyclic if for each k, 3 � k � n, a cycle of length k

can be found in G. We say that G is fH1; . . . ;H‘g-free, if it contains no induced

copies of any of the graphs H1; . . . ;H‘. For all terms not defined here, we refer

the reader to [1]. The problem of characterizing all families of H1; . . . ;H‘ such

that each ‘‘sufficiently connected’’ fH1; . . . ;H‘g-free graph is pancyclic has been

studied by a number of authors. In particular, the family of all pairs of graphs

X;Y , such that each 2-connected fX;Yg-free graph G 6¼ Cn on n � 10 vertices is

pancyclic, has been characterized by Faudree and Gould in [2] (we refer the

reader to this paper for further references to this problem). In this paper, we

characterize all graphs X;Y such that each 3-connected fX; Yg-free graph is

pancyclic.

For any graph H, let SðHÞ be the graph obtained from H through subdivision of

every edge. Let LðHÞ be the line graph of H.

Let G0 ¼ LðSðK4ÞÞ. Let G1 be the graph obtained from G0 by contraction of

the two edges x1x2; x3x4 2 EðG0Þ, where the edges x1x2 and x3x4 are selected in a

way that NðxiÞ \ NðxjÞ ¼ ; for 1 � i < j � 4 (see Fig. 2). It is not hard to see that

both G0 and G1 are 3-connected claw-free graphs. Furthermore, neither of them

contains a cycle of length four.

Let S3ðK4Þ be the graph obtained from K4 by a subdivision of each edge by

three vertices of degree 2. Let H be the multigraph obtained from S3ðK4Þ by

doubling each edge of S3ðK4Þ incident with a vertex of degree 3. Finally, let

G2 ¼ LðHÞ. Alternatively, one can obtain G2 through a replacement of each

triangle of G0 by the 9-vertex graph T pictured in Figure 1. Again, it is easy to see

that G2 is 3-connected, claw-free, and it contains no cycle of length 10 � ‘ � 11.

Further, G2 contains no induced cycles of length 4 � ‘ � 9.

By G3 we denote the graph consisting of a Kn�4 (n � 7) and four extra vertices

x1; x2; x3; x4 with Nðx1Þ ¼ Nðx2Þ ¼ Nðx3Þ ¼ Nðx4Þ and jNðx1Þj ¼ 3 (see Fig. 2).

Clearly, G3 is 3-connected and not Hamiltonian (and thus not pancyclic). Finally,

G4 is the point-line incidence graph of a projective plane of order seven, that is,

FIGURE 1. The graph T.
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the vertices of G4 correspond to the points and the lines of the plane, and two

of them, v and w, are adjacent if v stands for a point and w for a line containing

it. It is easy to check that G4 is 3-connected, has girth six, and is thus not

pancyclic.

Theorem 1.1. For every connected graph X, X 62 fK1;K2g, the following two

statements are equivalent:

(1) each X-free 3-connected graph G is pancyclic;

(2) X ¼ P3.

Proof. Any P3-free connected graph is complete and therefore pancyclic.

Thus, it is enough to show that (i) implies (ii).

As K3;3 and the graph G1 are not pancyclic, an induced copy of X must be

contained in both K3;3 and G1. As G1 does not contain a copy of C4, X cannot

contain a copy of C4. As any induced subgraph of K3;3 with diameter greater than

two contains C4, we know that X is a star K1;r. As there are no induced copies of

K1;r with r � 3 in G1, we infer that X ¼ P3. &

Lemma 1.1. Let X and Y be connected graphs on at least three vertices and

X; Y 6¼ P3. If each fX;Yg-free 3-connected graph is pancyclic, then one of X, Y is

K1;3.

FIGURE 2. 3-Connected non-pancyclic graphs.
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Proof. Suppose that X; Y 6¼ K1;3. As K3;3 is not pancyclic, one of X and Y has

to be an induced subgraph of K3;3. Without loss of generality, we may assume that

X is an induced subgraph of K3;3. As X is not K1;3 or P3, X contains C4.

As C4 is not a subgraph of G4, Y is an induced subgraph of G4, and thus Y has

girth at least six and maximum degree at most three. Furthermore, G3 contains no

induced copies of C4, so Y has to be an induced subgraph of G3. But the only

induced subgraphs of G3 with girth larger than three and maximum degree at

most three are K1;3 and its subgraphs. This proves the lemma. &

Finally, each connected graph F which appears as an induced subgraph of all

of G0, G1, and G2, and is not contained in the claw K1;3, is a subgraph of one of

the following six subgraphs:

* P7, the path on seven vertices,
* Ł, the graph which consists of two vertex-disjoint copies of K3 and an edge

joining them;
* N4;0;0, N3;1;0, N2;2;0, N2;1;1, where Ni;j;k is the graph which consists of K3 and

vertex disjoint paths of length i, j, k rooted at its vertices.

To see this, observe first that F has at most jVðG1Þj ¼ 10 vertices, and F cannot

contain an induced cycle of length greater than 3 since F needs to be contained in

G2. If F contains at most one triangle, G1 can be used to limit the possibilities to

the graphs mentioned above. Further, if F contains more than one triangle, there

are exactly two triangles, and they are at distance one from each other due to G0.

Finally, at most one vertex in each of the two triangles can have degree greater

than 2; otherwise, such a triangle in an induced copy of F in G2 has to be located

in one of the K6’s in the center of one of the copies of T , but there is no other

triangle in G2 with distance 1 to such a triangle.

Let F denote the family which consists of the above six graphs (see Fig. 3).

As we have already deduced from the properties of graphs G0, G1, and G2, if

each 3-connected fK1;3;Yg-free graph is pancyclic, then Y is a subgraph of one of

the graphs listed above. Our main result states that the inverse implication holds

as well.

Theorem 1.2. Let X and Y be connected graphs on at least three vertices such

that X;Y 6¼ P3 and Y 6¼ K1;3. Then the following statements are equivalent:

(1) Every 3-connected fX;Yg-free graph G is pancyclic.

(2) X ¼ K1;3 and Y is a subgraph of one of the graphs from the family

F ¼ fP7, Ł, N4;0;0, N3;1;0, N2;2;0, N2;1;1g.

Since (i) implies (ii), it is enough to show that for each graph Y from F and

each 3-connected fK1;3; Yg-free graph G, G is pancyclic. Hence, the proof of

Theorem 1.2 consists, in fact, of six statements, one for each graph from F ,

which we show in the following sections of the paper.
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In the proofs, for a cycle C we always distinguish one of the two possible

orientation of C. By v� and vþ, we denote the predecessor and the successor of a

vertex v on such a cycle, with respect to the orientation. We write vCw for the

path from v 2 VðCÞ to w 2 VðCÞ, following the direction of C, and by vC�w,

we denote the path from v to w opposite to the direction of C. By hx1; . . . ; xki, we

mean the subgraph induced in G by vertices x1; . . . ; xk.

2. FORBIDDING Ł

In this section, we make the first step towards proving Theorem 1.2: we show the

fact that each 3-connected claw-free graph which contains no induced copy of Ł

is pancyclic.

Theorem 2.1. Every 3-connected fK1;3; Łg-free graph is pancyclic.

Proof. Suppose that G is a minimal counterexample to the above statement,

and that G contains a cycle C of length t but no cycles of length t þ 1 (the

existence of triangles is obvious). Let H be a component of G � C. Note that for

every vertex x 2 NðHÞ \ VðCÞ and v 2 NðxÞ \ VðHÞ, we have that vx�; vxþ 62 E,

and thus x�xþ 2 E to avoid a claw.

Claim 2.1. No vertex from H has more than two neighbors on C.

Proof. Suppose there is a vertex v 2 VðHÞ with x; y; z 2 NðvÞ \ VðCÞ. As

hv; x; y; zi is not a claw, there is an extra edge, say xy 2 E. As hv; x; y; z; z�; zþi is

not Ł, there is an extra edge between two of these vertices. We have yzþ 62 E,

FIGURE 3. The family F .
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otherwise yzþCy�yþCzvy is a cycle of length t þ 1, a contradiction. A similar

argument shows that none of the pairs yz�, xz�, xzþ, is an edge of G.

Therefore, either yz 2 E, or xz 2 E. If xz 62 E, then hy; x; z; yþi is a claw, thus

xz 2 E. Similarly, yz 2 E, and so, by the previous argument xy�, x�y, x�z,

y� z =2 E. Furthermore xþyþ 62 E, since otherwise xþyþCxvyC�xþ is a cycle of

length t þ 1, contradicting the choice of G. Similarly, x�y� 62 E.

As hx; x�; xþ; y; y�; yþi is not Ł, either xþy� 2 E, or x�yþ 2 E. By symmetry,

we may assume xþy� 2 E. Now xþþy 62 E, since otherwise the cycle yxþþCy�yþ

Cx�xþxvy has length t þ 1, while Ctþ1 6� G. The edge xþþv would lead to the

cycle vxþþCx�xþxv, thus xþþv 62 E. Finally, xþþz 62 E to avoid the cycle

x�xzvxþþCz�zþCx�.

Note that xþþy� 62 E, since otherwise hxþ; xþþ; y�; y; v; zi is Ł. To avoid the

claw hxþ; x; xþþ; y�i, we have xxþþ 2 E. To avoid the claw hx; xþþ; x�; vi, we

have xþþx� 2 E. But now the cycle x�xþþCy�xþxvyCx� has length t þ 1

(see Fig. 4), the contradiction establishing the claim. &

Claim 2.2. Let x; y 2 VðCÞ \ NðHÞ. Then xy 2 E if and only if NðxÞ \ NðyÞ \
VðHÞ 6¼ ;.

Proof. For one direction, suppose z 2 NðxÞ \ NðyÞ \ VðHÞ. Let P be a

shortest path from z to C in G � fx; yg. Let v be the first internal vertex on this

path. By Claim 2.1, v 62 VðCÞ. If v 2 NðxÞ \ NðyÞ, start over with z0 ¼ v and

P0 ¼ P � x. So assume that v 62 NðxÞ \ NðyÞ, say vx 62 E. If vy 62 E, then xy 2 E

to avoid a claw, and we are done. Assume that xy 62 E, and thus vy 2 E. We know

that vx�; vxþ 62 E, otherwise we can expand C by including vertices v and z and

omitting y to get a cycle of length t þ 1. Moreover, yx�; yxþ 62 E, since otherwise

we can replace y�yyþ by y�yþ, and insert y and z between x and xþ or between x�

FIGURE 4.
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and x, respectively, to increase the length of the cycle by one. But now

hz; y; v; x; x�; xþi is Ł, a contradiction.

For the other direction, let P be a shortest x� y path through H not using xy.

By symmetry, we may assume that y 6¼ xþ. Let x1 be the successor of x on P, let y1

be the predecessor of y on P. If x1 ¼ y1 we are done, so let x1 6¼ y1. To avoid the

claw hx; xþ; x1; yi, xþy 2 E. If x1y1 2 E, then we can extend C through xx1y1yxþ

and skip y and another vertex in NðHÞ \ VðCÞ to get a cycle of length t þ 1. So

assume x1y1 62 E.

Let x2 be another neighbor of x1 not on P, and let y2 denote another neighbor of

y1 not on P. We know that Nðx2Þ \ fx�; xþg ¼ Nðy2Þ \ fy�; yþg ¼ ;, as other-

wise a cycle of length t þ 1 can be found. Now xx2; yy2 2 E to avoid claws and

Ł’s around x1 and y1. If x2; y2 2 VðHÞ, we get the Ł ¼ hx; x1; x2; y; y1; y2i, as P is

shortest. Thus, we may assume that x2 2 VðCÞ, and Nðx2Þ \ fy; y1; y2g 6¼ ;. By

the first part of the claim, this implies that x2y 2 E or x2y2 2 E and y2 2 VðCÞ.
If x2y 2 E, then the cycle xx1x2yxþCx�2 xþ2 Cy�yþCx has length t þ 1 (see Fig. 5).

If x2y2 2 E and y2 2 VðCÞ, and x2y2 62 EðCÞ, then the cycle xx1x2y2yxþCx�2 xþ2
Cy�2 yþ2 Cy�yþCx has length t þ 1.

Finally, if x2y2 2 EðCÞ, say y2 ¼ xþ2 , then x�2 yþ2 2 E to avoid the claw

hx2; x1; x
�
2 ; y

þ
2 i. But now the cycle

xx1x2y2yxþCðx2Þ�ðy2ÞþCy�yþCx

has length t þ 1. &

Note that, as a consequence of Claim 2.2, NðHÞ does not include two

consecutive vertices on C.

FIGURE 5.
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Claim 2.3. If x; y 2 NðHÞ \ VðCÞ and xy 2 E, then xy�; xyþ 62 E.

Proof. Suppose xy� 2 E. By Claim 2.2, there is a vertex z 2 NðxÞ \
NðyÞ \ VðHÞ. Now the cycle xzyCx�xþCy�x has length t þ 1, a contradiction.

The symmetric case xyþ 2 E can be treated in the same way.

Claim 2.4. If x; y; z 2 NðHÞ \ VðCÞ and xz; yz 2 E, then xy 2 E.

Proof. Otherwise, hz; zþ; x; yi is a claw by Claim 2.3. &

Claim 2.5. hNðHÞ \ VðCÞi is complete.

Proof. Suppose the claim is false. Then there are two vertices x; y 2
NðHÞ \ VðCÞ with xy 62 E. Let P be a shortest x � y path through H. We may

assume that x and y were chosen such that P is shortest. Let P ¼ v0

ð¼ xÞv1 . . . vk�1vkð¼ yÞ. By Claim 2.2, k þ 1 ¼ jVðPÞj � 4. Let R ¼ RðPÞ be a

shortest path in G � fv0; v2g from v1 to C. We may assume that P is chosen such

that R is shortest.

Suppose that k ¼ 3. Suppose there is a vertex z 2 Nðv1Þ \ Nðv2Þ. Then, one of

the pairs xz; yz is not an edge, otherwise, either z 2 VðCÞ and xy 2 E by Claim 2.4,

or z 62 VðCÞ and xy 2 E by Claim 2.2. Say xz 62 E. By Claim 2.2, z 62 VðCÞ. But

now we can find a copy of Ł at hv1; v2; z; x; x
þ; x�i, a contradiction showing that

Nðv1Þ \ Nðv2Þ ¼ ;.

Let z1 be the first vertex on R following v1 and let z2 2 Nðv2ÞnVðPÞ. To avoid

claws, xz1; yz2 2 E. If one of the pairs yz1; xz2 is an edge, then Claims 2.2 and 2.4

imply that xy 2 E, a contradiction. Furthermore, z1z2 62 E, for otherwise

P0 ¼ xz1z2y would allow a shorter R. But now hz1; v1; x; z2; v2; yi is a copy of Ł,

a contradiction showing that k > 3.

Just like above, let z1 be the first vertex on R following v1 and let

z2 2 Nðv2ÞnVðPÞ. If z2 2 VðCÞ, then xz2; yz2 2 E as P is shortest, implying that

xy 2 E by Claim 2.4. Thus, z2 62 VðCÞ. If v1z2 2 E, then xz2 2 E to avoid a copy

of Ł at hv1; v2; z2; x; x
þ; x�i. By the same argument, if v2z1 2 E, then z1 62 VðCÞ

and xz1 2 E. But, as before, this is impossible since R is shortest. Thus, v2z1 62 E

and xz1 2 E to avoid the claw hv1; v2; x; z1i.
If v1z2 62 E, then v3z2 2 E to avoid the claw hv2; v1; v3; z2i. If z1 2 VðCÞ, then

z1z2 62 E, otherwise yz1 2 E as P is shortest, and thus xy 2 E by Claim 2.4. If

z1 62 VðCÞ, then z1z2 62 E as R is shortest. But now hv2; v3; z2; v1; x; z1i is a copy

of Ł. Thus, v1z2; xz2 2 E.

Let z3 2 Nðv3ÞnVðPÞ. If xz3 2 E, then z3 2 VðCÞ as P is shortest. But then

yz3 2 E as z3v3v4 . . . vk is shorter than P, and so xy 2 E by Claim 2.4. Thus,

xz3 62 E. If v2z3 2 E, then xz3 2 E by the above argument, a contradiction. Thus,

v2z3 62 E, and therefore v4z3 2 E to avoid the claw hv3; v2; v4; z3i. Moreover,

z2z3 62 E, since otherwise hz2; v2; x; z3i is a claw. But now, hv2; v1; z2; v3; v4; z3i is

a copy of Ł, the final contradiction establishing the claim. &

Now we are ready to complete the proof of the theorem. By Claim 2.1,

jVðHÞj � 2. Contract H to a single vertex h in the new graph G0. As
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hNðHÞ \ VðCÞi is complete by Claim 2.5, G0 is 3-connected and claw-free. Since

NðhÞ induces a complete graph G0 contains no copies of Ł involving h as one of

the center vertices. If there was Ł with h as a corner vertex of a triangle xyh, there

would be Ł in G with the triangle xyz, where z is a vertex in NðxÞ \ NðyÞ \ VðHÞ
whose existence is guaranteed by Claim 2.2. Consequently, G0 is a 3-connected

fK1;3; Łg -free graph smaller than G. Thus, G0 is pancyclic and contains a cycle C0

of length t þ 1. If h 62 VðC0Þ, then C0 is a cycle of length t þ 1 contained in G.

If h appears on C0 between x and y, replace it with z 2 NðxÞ \ NðyÞ \ VðHÞ from

Claim 2.2, again forming a cycle of length t þ 1, a contradiction proving the

theorem. &

3. FORBIDDING N2,2,1

In this section, we deal with 3-connected claw-free graphs, which contain no

induced copy of the graph N2;2;1, a common supergraph of both N2;2;0 and N2;1;1.

Here and below a hop is a chord of a cycle C of type vvþþ.

Lemma 3.1. Let G be a claw-free graph with minimum degree �ðGÞ � 3, and

let C be a cycle of length t without hops, for some t � 5. Set

X ¼ fv 2 VðCÞ j there is no chord incident to vg;

and suppose for some chord xy of C we have jX \ VðxCyÞj � 2. Then G contains

cycles C0 and C00 of lengths t � 1 and t � 2, respectively.

Proof. Let us choose a chord xy such that jX \ VðxCyÞj is minimal, and

among those such that jVðxCyÞj is minimal. Consider the cycle �CC ¼ xyCx. As C

has no hops, jVð�CCÞj � t � 2. A vertex v 2 VðxþCy�ÞnX has a neighbor

w 2 VðyþCx�Þ as jVðxCyÞj is minimal. To avoid the claw hw;wþ;w�; vi, one

of the edges vwþ; vw� appears in G, thus v can be inserted into �CC, that is �CC can be

extended to the cycle xyCwvwþCx or xyCw�vwCx. This way, we can append all

the vertices from VðxþCy�ÞnX to �CC one-by-one. The only possible problem in

this process occurs if we want to insert a second vertex v0 2 VðxþCy�ÞnX at the

same spot. But as G is claw-free and there are no chords inside xþCy�,

hNðwÞ \ VðxþCy�Þi consists of at most two complete subgraphs of size at most

two each, where one of them is a subset of NðwÞ \ NðwþÞ, the other one a subset

of NðwÞ \ Nðw�Þ. Therefore, we can insert any number of vertices in NðwÞ \
VðxþCy�Þ into �CC. So we conclude that we can transfer any number of vertices

from VðxþCy�ÞnX into �CC.

As jX \ VðxCyÞj � 2, we can build in this way a cycle C00 of length t � 2.

Using this procedure, we can also construct a cycle of length t � 1 unless

jX \ VðxCyÞj ¼ 2. But then jX \ VðyCxÞj � 2 by the minimality of jX \ VðxCyÞj,
and we can extend C00 through a vertex z0 2 NðzÞnVðCÞ, where z 2 X \ VðyCxÞ
(observe that one of z0zþ; z0z� is an edge to avoid a claw at z, and no vertex of

VðxCyÞ was inserted next to z as z is not an end of a chord). &
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Fact 3.1. Let G be a 3-connected claw-free graph which contains no cycles of

length t, for some 4 � t � n. Let C be a cycle of length t � 1 in G and

x 2 VðGÞ n VðCÞ be adjacent to vertices v;w 2 VðCÞ, which are themselves

adjacent in G. Then, G contains an induced copy of N2;2;1.

Proof. Let P be a shortest path from x to C in G � fv;wg. We may assume

that x was chosen from NðvÞ \ NðwÞnVðCÞ such that P is shortest.

To avoid claws, v�vþ;w�wþ 2 E. Note that wv�; vw� 62 E, otherwise C could

be extended through x. Let v2 2 VðvþCwÞ be the vertex closest to v on C with

vv2 62 E, let v1 ¼ v�2 . Let w2 2 VðwþCvÞ be the vertex closest to w on C with

ww2 62 E, let w1 ¼ w�
2 .

First, we want to show that hx; v; v1; v2;w;w1;w2i is an induced copy of N2;2;0.

If xwi 2 E for i 2 f1; 2g, then the cycle wxwiCw�wþCw�
i w has length t. Thus,

xwi 62 E for i 2 f1; 2g and, by symmetry, xvi 62 E for i 2 f1; 2g.

If viwj 2 E for i; j 2 f1; 2g, then

viwjCv�vþCv�i vxww�
j C�wþw�C�vi

is a cycle of length t. Thus, viwj 62 E for i; j 2 f1; 2g, and hx, v, v1, v2, w, w1, w2i
is an induced copy of N2;2;0.

Now consider the vertex x1, the unique neighbor of x on P. If x1v 2 E, then

also x1w 2 E as otherwise hv; x1;w; v�i is a claw (if x1v
� 2 E, C can be extended

through x1 to form a cycle of length t unless x1 2 VðCÞ. But then, the cycle

v�x1xvCx�1 xþ1 Cv� contains t vertices). Consequently, since P is shortest, x1 2
VðCÞ. Now one can mimic the argument we have used above to show that

hx1; x
þ
1 ; v; v1; v2;w;w1;w2i is an induced copy of N2;2;1.

So assume that x1v; x1w 62 E. If x1vi 2 E for some i 2 f1; 2g, then we can

again extend C through x and x1, possibly skipping a third neighbor of

VðGÞnVðCÞ on the cycle to create a Ct. Thus, x1vi; x1wi 62 E for i 2 f1; 2g, and

hx; x1; v; v1; v2;w;w1;w2i is an induced copy of N2;2;1, finishing the proof. &

Lemma 3.2. Let G be a 3-connected claw-free graph such that for some

6 � t � n, G contains a cycle C of length t � 1 but contains no cycles of length t.

Then, G contains an induced copy of N2;2;1.

Proof. Suppose, for the sake of contradiction, that G contains no induced

copy of N2;2;1. Let H be a component of hVðGÞnVðCÞi, and let u; v;w 2
NðHÞ \ VðCÞ. Let x 2 VðHÞ, and let Pu, Pv, and Pw be shortest paths through H

from x to u, v, and w, respectively. Let S ¼ VðPuÞ [ VðPvÞ [ VðPwÞ. We may

assume that H, u, v, w, and x are chosen in a way that jSj is minimal and that x has

degree three in hSi. To avoid a claw at x, there has to be an edge between two

vertices y; z 2 NðxÞ \ S. By symmetry, we may assume that y 2 VðPvÞ and

z 2 VðPwÞ. By the minimality of jSj, the only other possible additional edges in

hSi are the edges fuv; uw; vwg.

Furthermore, note that there are no edges between Snfu; v;wg and

VðCÞnfu; v;wg. Otherwise, either jSj is not minimal, or G, being claw-free,
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forces a situation like in Fact 3.1, guaranteeing N2;2;1. This observation, together

with the fact that for any two vertices a; b 2 VðCÞ with ab 2 E, we have

NðaÞ \ NðbÞ \ VðHÞ ¼ ; (Fact 3.1), implies that hNðuÞ \ VðCÞi, hNðvÞ \ VðCÞi;
and hNðwÞ \ VðCÞi are complete graphs.

Let Px ¼ Pu, Py ¼ Pv � x, and Pz ¼ Pw � x. By symmetry, we may assume

that jVðPzÞj � jVðPyÞj � jVðPxÞj, and that u, w, and v appear on C in this order.

By Fact 3.1, jVðPyÞj � 2.

Case 1. jVðPzÞj ¼ 1, that is, z ¼ w.

Suppose first that vw 2 E. Thus, hv�; v; vþ;w�;w;wþi is complete as

hNðvÞ \ VðCÞi and hNðwÞ \ VðCÞi are complete. As t � 5, there is a vertex

a 2 fwþ;w�; vþ; v�g � fu; v;wg. If jVðPyÞj � 4, then hfw; ag [ VðPxÞ [ VðPyÞi
contains an induced N2;2;1. Thus, jVðPyÞj � 3.

Consider the cycle C0 ¼ wyPyvC�wþvþCw. We have t � jVðC0Þj � t þ 1. As

Ct 6� G, we know that jVðC0Þj ¼ t þ 1. But now the cycle obtained from C0 by

skipping u (this is always possible as hNðuÞ \ VðCÞi is complete) has length t, a

contradiction. Therefore, vw 62 E.

If jVðPyÞj � 4, then hfw;wþg [ VðPxÞ [ VðPyÞi contains an induced N2;2;1.

Thus, jVðPyÞj � 3.

Now suppose that wv� 2 E. Then w�v� 2 E as hNðwÞ \ VðCÞi is complete.

Consider the cycle C0 ¼ wyPyvCw�v�C�w. Then t � jVðC0Þj � t þ 1 and, since

Ct 6� G, we have jVðC0Þj ¼ t þ 1. But now the cycle obtained from C0 by

skipping u has length t, a contradiction. Therefore, wv� 62 E.

Let b be the first vertex on wCv with wb 62 E. If vb 2 E, then the cycle

C0 ¼ vbCv�vþCw�wþCb�wyPyv has length t or t þ 1. We can then skip u if

needed to create a cycle of length t, a contradiction. Thus, vb 62 E and, by an

analogous argument, vb� 62 E. If jVðPxÞj � 4, then hfw; b�; bg [ VðPxÞ [ VðPyÞi
contains an induced N2;2;1. Thus, jVðPxÞj � 3.

If ub 2 E, then the cycle C0 ¼ ubCu�uþCw�wþCb�wxPxu has length t or

t þ 1. Then omitting v if necessary, one can find a cycle of length t in G, a

contradiction. Thus, ub 62 E and, by a similar argument ub� 62 E.

Observe that hfw; b�; bg [ VðPxÞ [ VðPyÞi contains an induced N2;2;1, unless

jVðPxÞj ¼ jVðPyÞj ¼ 2. But then since Ct 6� G, we see that hx; y;w; u; uþ; v;
vþ;wþi is an induced copy of N2;2;1.

Case 2. jVðPzÞj ¼ 2.

If jVðPyÞj � 4, then hfz;wg [ VðPxÞ [ VðPyÞi contains an induced N2;2;1.

Thus, jVðPyÞj � 3.

Suppose that vþwþ 2 E. Let C0 ¼ wzyPyvC�wþvþCu�uþCw. Then

t � jVðC0Þj � t þ 1, so, as Ct 6� G, jVðC0Þj ¼ t þ 1. Since Ct 6� G, C0 contains

no hops. Hence, no vertex of VðCÞnfu; u�; uþ; v; vþ;w;wþg has a neighbor in

VðGÞ n VðCÞ. Observe also that all neighbors of u, v and w on C are completely

connected. Consequently, the chordless vertices of C0 are contained in the set

fz; u�; uþg [ VðPyÞnfvg. Thus, C0 has at most five chordless vertices and one
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can use Lemma 3.1 to reduce it to a cycle of length t, which contradicts the

assumption that Ct 6� G. Therefore, vþwþ 62 E. This also implies that vw; vwþ

62 E.

A similar argument shows that uw; uwþ 62 E if jVðPxÞj � 3. If jVðPyÞj ¼ 3, this

implies that hfz;w;wþg [ VðPxÞ [ VðPyÞi contains an induced N2;2;1. Thus,

jVðPyÞj ¼ 2.

We have already seen that vþwþ 62 E, so there are no edges between fw;wþg
and fv; vþg. Similarly, there are no edges between u and fv; vþ;w;wþg if

jVðPxÞj ¼ 2. But now hfz; y;w;wþ; v; vþg [ VðPxÞi contains an induced N2;2;1.

Case 3. jVðPzÞj � 3.

If jVðPxÞj � 4, then hVðPzÞ [ VðPxÞ [ VðPyÞi contains an induced N2;2;1.

Thus, jVðPzÞj ¼ jVðPxÞj ¼ jVðPyÞj ¼ 3. Furthermore, we know that uv; uw;
vw 2 E for the same reason. This implies that the graph hðNðuÞ [ NðvÞ [ NðwÞÞ\
VðCÞi is complete. Since jVðCÞj ¼ t � 1 � 5, we know that jðNðuÞ [ NðvÞ [
NðwÞÞ \ VðCÞj � 5, and so hðNðuÞ [ NðvÞ [ NðwÞÞ \ VðCÞ [ Si is a pancyclic

graph on at least eleven vertices. Thus t � 12.

Let us assume that uCw is the longest among the paths uCw, wCv, and vCu.

Since t � 12, jVðuCwÞj � 4. In fact, since none of the cycles of the type

wPzz½x�yPyvC�wþvþCu�½u�½uþ�½w��w

has length t, we have jVðuCwÞj � 8.

We call a chord ab peripheral, if VðaCbÞ � VðuþCw�Þ, aþþ 6¼ b, and each

other chord cd such that c; d 2 VðaCbÞ, is a hop, that is, c and d lie at distance

two on C. Note that since uþw� 2 E, there exists at least one peripheral chord.

Consider the cycle

C0 ¼ uPxxzPzwCv�vþCu�w�C�u

of length t þ 2. If the path uþCw� contains two hops a�aþ and b�bþ such that a

and b are non-consecutive vertices of C (and C0), then clearly we can omit a and b

in C0 obtaining a cycle of length t, contradicting the fact that Ct 6� G. Hence, we

may assume that there are at most two hops on uþCw�, say a�aþ and aaþþ. Let

bc be a peripheral chord of C. Assume first that jVðbþCc�Þj � 4 and consider the

cycle C00 ¼ uPxxyzPzwCu�w�C�u of length t þ 4. Note that all vertices from

VðbþCc�Þ, except at most four contained in the set X ¼ fa�; a; aþ; aþþg, are

ends of chords of C (and C00) with one end outside VðbCcÞ. Thus, one can mimic

the argument from the proof of Lemma 3.1 to show that all except four vertices of

bþCc� can be incorporated to bC00cb to transform it into a cycle of length t.

If jVðbþCc�Þj ¼ 2, then uPxxzPzwCv�vþCu�w�C�cbC�u is a cycle of length t.

If jVðbþCc�Þj ¼ 3, then uPxxzPzwCu�w�C�cbC�u is a cycle of length t.

This contradiction with the assumption that Ct 6� G completes the proof of

Lemma 3.2.
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Theorem 3.1. Every 3-connected fK1;3;N2;2;1g-free graph G on n � 6 vertices

contains cycles of each length t, for 6 � t � n.

Proof. By Lemma 3.2, it is enough to show that G contains a copy of either

C5 or C6. Suppose that this is not the case. Since G is claw-free and 3-connected,

it contains a triangle xyz. Let u 2 VðGÞnfx; y; zg. As G is 3-connected, there are

three vertex-disjoint paths from u to fx; y; zg. Since G is a N2;2;1-free graph

without C5 and C6, there is a vertex w on one of these paths such that hx; y; z;wi is

either K4, or K�
4 , the graph with four vertices and five edges.

Let v 2 VðGÞnfx; y; z;wg. Consider three vertex-disjoint paths from v to

fx; y; z;wg. If hx; y; z;wi ¼ K4, the above argument guarantees a vertex w0 on one

of the paths with jNðw0Þ \ fx; y; z;wgj � 2, and C5 can be found. If

hx; y; z;wi ¼ K�
4 , say xw 62 E, then one of the three paths ends in y or z, say in

y. Let w0 be the predecessor of y on this path. One of the edges w0w and w0x has to

be there to avoid the claw hy;w; x;w0i, but this implies that C5 � G, contradicting

the choice of G. &

4. FORBIDDING P7, N4;0;0, AND N3;1;0

In this section, we deal with 3-connected claw-free graphs that contain no

induced copy of one of the graphs P7, N4;0;0, and N3;1;0. We start with the

following simple consequence of Lemma 3.1.

Lemma 4.1. Let G be a 3-connected claw-free graph on n vertices which, for

some 5 � t � n � 1, contains a cycle of length t with at least one chord but

contains no cycles of length t � 1. Then G contains an induced copy of each of

the graphs P7, N4;0;0, and N3;1;0.

Proof. Let G be a 3-connected claw-free graph, C be a cycle of length t � 5

in G, which contains at least one chord, and let us assume that G contains no

cycles of length t � 1. Let X be the set of chordless vertices on C. Choose a chord

xy in C for which jVðxCyÞ \ Xj is minimal, and for no other chord x0y0 such

that x0 2 VðxþCy�Þ, y0 2 VðyþCx�Þ, and jVðxCyÞ \ Xj ¼ jVðx0Cy0Þ \ Xj, we

have jVðx0Cy0Þj < jVðxCyÞj. Since Ct�1 6� G, C contains no hops. Hence, by

Lemma 3.1, jVðxCyÞ \ Xj � 3.

We first show that a chord xy can be chosen in such a way that jVðxCyÞj � 6.

Suppose that this is not the case and let xy be a chord which minimizes

jVðxCyÞ \ Xj and VðxþCy�Þ ¼ fxþ; xþþ; y�g � X. Let uw be a chord in yCx that

minimizes jX \ VðuCwÞj, and assume that jVðuCwÞj is minimal under this

restriction. Then, again, VðuþCw�Þ ¼ fuþ; uþþ;w�g � X. If the set

fuþ; uþþ;w�g has more than one neighbor outside of C, we can extend yCxy

through two of these neighbors and obtain a cycle of length t � 1. Thus, there is

only one vertex z in Nðfuþ; uþþ;w�gÞ n VðCÞ, and since fuþ; uþþ;w�g � X, we

have zuþ; zuþþ; zy� 2 E. But G is 3-connected, so there has to be a path in

G � fu;wg from fuþ; uþþ;w�g to xþ. Therefore, z has another neighbor
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z0 62 Nðfuþ; uþþ;w�gÞ; this however leads to the claw hz; z0; uþ;w�i. Thus, we

may assume that jVðxCyÞj � 6.

Note that, by the choice of jVðxCyÞj, xy�; yxþ 62 E. To avoid the claws

hx; xþ; x�; yi and hy; yþ; y�; xi, we have xyþ; yx� 2 E. If xþyþ 2 E, then the cycle

xþCyx�C�yþxþ has length t � 1, thus xþyþ 62 E. To avoid the claw

hx; xþ; x�; yþi, we have x�yþ 2 E. Moreover, since Ct�1 6� G, the pairs x��y,

x��y�, x�y�, x��y��, x�y�� are not edges of G and the choice of jVðxCyÞj
guarantees that x��y3�, x�y3�, x��y4�, x�y4� 62 E. Now hx��; x�; y; y�;
y��; y3�; y4�i is a copy of P7, hyþ; x�; y; y�; y��; y3�; y4�i is N4;0;0, and

hy; x; x�; xþ; xþþ; x3þ; x��i is an induced copy of N3;1;0. &

The following result has been shown by Łuczak and Pfender [3].

Theorem 4.1. Every 3-connected fK1;3;P11g-free graph G is hamiltonian.

As an immediate consequence of Lemma 4.1 and Theorem 4.1, we get the

following theorem.

Theorem 4.2. Let G be a 3-connected fK1;3;P7g-free graph on n vertices. Then

G contains a cycle of length t, for each 7 � t � n.

Proof. Let G be a 3-connected fK1;3;P7g-free graph on n vertices. From

Theorem 4.1, it follows that G is hamiltonian. Let Ct, 8 � t � n, be a cycle of

length t in G. Since G is P7-free, Ct must have a chord. Hence, Lemma 4.1

implies that G contains a cycle of length t � 1. &

The next result states that 3-connected fK1;3;N4;0;0g-free graphs contain cycles

of all possible lengths, except, perhaps, four and five.

Theorem 4.3. Every 3-connected fK1;3;N4;0;0g-free graph G on n vertices

contains cycles of each length t, for 6 � t � n.

Proof. We show first that every 3-connected fK1;3;N4;0;0g-free graph is

Hamiltonian. Let G be a 3-connected claw-free graph G which is not

Hamiltonian. From Theorem 4.1, it follows that G contains an induced path

P ¼ v1 � � � v11. Since G is 3-connected, v6 has at least one neighbor w outside

P. Furthermore, G is claw-free and P is induced, so w cannot have neighbors in

both sets fv1; v2; v3; v4g and fv8; v9; v10; v11g. Thus, suppose that w has no

neighbors in fv1; v2; v3; v4g and let i0 denote the minimum i such that vi is

adjacent to w (i.e., i0 is 5 or 6). Since G is claw-free, vi0þ1 is adjacent to w, and so

the vertices vi0�4; vi0�3; vi0�2; vi0�1vi0vi0þ1w span an induced copy of N4;0;0 in G.

Hence, each 3-connected fK1;3;N4;0;0g-free graph on n vertices contains a cycle

of length n.

Thus, to show the assertion, it is enough to verify that if a 3-connected

fK1;3;N4;0;0g-free graph G contains a cycle C ¼ v1 � � � vtv1 of length t, 7 � t � n,

then it also contains a cycle of length t � 1. From Lemma 4.1, it follows that it is

enough to consider the case in which C has no chords, that is, each vertex of C
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has at least one neighbor outside C. Note that since G is claw-free, each

w 2 NðCÞ must have at least two neighbors on C. But G is also N4;0;0-free which

implies that for each such vertex jNðwÞ \ VðCÞj � 3, and one can use the fact

that G is fK1;3;N4;0;0g-free again to verify that each w 2 NðCÞ has precisely four

neighbors on C: vi, viþ1, vj and vjþ1. If j � i þ 6, then G contains an induced

copy of N4;0;0 on vertices vj, vjþ1, w, viþ1, viþ2, viþ3, viþ4. Moreover, if j � i þ 4,

then there is a cycle of length t � 1 in G containing the vertex w. Thus, we may

assume that j � i ¼ i � j ¼ 5, that is, t ¼ 10 and each w 2 NðCÞ is adjacent to

vertices vi, viþ1, viþ5, viþ6 for some i ¼ 1; . . . ; 10. Let w be adjacent to

v1; v2; v6; v7, and let w0 be a neighbor of v4. Assume that Nðw0Þ ¼ fv3; v4; v8; v9g.

Then the vertices v1; v2;w; v6; v5; v4;w
0 span a copy of N4;0;0; since G is N4;0;0-

free, this copy is not induced; consequently, w and w0 must be adjacent. But this

leads to a cycle v3w0wv7v8 � � � v2v3 of length t � 1 ¼ 9 in G. &

We conclude this section with a result on 3-connected fK1;3;N3;1;0g-free graphs.

Theorem 4.4. Every 3-connected claw-free graph G on n vertices which

contains no induced copy of N3;1;0 contains a cycle of length t for each 6 �
t � n.

Proof. We show first that each fK1;3;N3;1;0g-free 3-connected graph is

Hamiltonian. Suppose that it is not the case and let G be a non-Hamiltonian

fK1;3;N3;1;0g-free 3-connected graph with the minimum number of vertices. From

Theorem 4.1, it follows that G contains an induced path P ¼ v1v2 � � � v11. Since G

is claw-free and P is induced, every vertex w 2 VðGÞnVðPÞ adjacent to vi,

i ¼ 2; . . . ; 10, must be also adjacent to either vi�1, or viþ1. Note, however, that

since G contains no induced copy of N3;1;0, we have jNðwÞ \ VðPÞj � 3, unless

NðwÞ \ VðPÞ is either fv1; v2g, or fv10; v11g. Moreover, if w 2 VðGÞnVðPÞ is

adjacent to three non-consecutive vertices in fv2; v3; . . . ; v10g, then the fact that G

is claw-free implies that jNðwÞ \ VðPÞj ¼ 4, which, as one can easily check by a

direct examination of all cases, would lead to an induced copy of N3;1;0. Hence,

each vertex w 2 VðGÞnVðPÞ which is adjacent to one of the vertices v3; . . . ; v9,

has precisely three neighbors on P: vi�1, vi, and viþ1 for some i 2 f2; 3; . . . ; 10g.

Hence, for i ¼ 3; . . . ; 9, set

Vi ¼ fvig [ fw 2 VðGÞnVðPÞ : NðwÞ \ VðPÞ ¼ fvi�1; vi; viþ1gg
¼ NðVi�1Þ \ NðViþ1Þ:

Claim 4.1.

(i) The path v1 � � � vi�1v
0
iviþ1 � � � v11 is induced for every i ¼ 3; . . . ; 9 and

v0i 2 Vi.

(ii) Every two vertices of Vi, i ¼ 3; . . . ; 9, are adjacent.

(iii) All vertices of Vi and Viþ1, i ¼ 3; . . . ; 8, are adjacent.

(iv) NðViÞ ¼ Vi�1 [ Viþ1 for i ¼ 4; 5; . . . ; 8.
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Proof. Each v0i 2 Vinfvig has only three neighbors vi�1; vi; viþ1 on P, so (i)

follows. Let v0i; v
00
i 2 Vi. Consider the claw hviþ1; v

0
i; v

00
i ; viþ2i. From (i) it follows

that viþ2 is adjacent to neither v0i, nor v00i , so v0iv
00
i 2 EðGÞ, showing (ii).

Now let v0i 2 Vi, v0j 2 Vjnfvjg, for 3 � i < j � 9. Since the path

v1 � � � vi�1v
0
iviþ1 � � � v11 is induced, v0j must have on it precisely three consecutive

neighbors. Hence, from the definition of Vj, we infer that v0i and v0j are adjacent if

j ¼ i þ 1, and non-adjacent otherwise. Finally, note that if v0i 2 Vi, i ¼ 4; . . . ; 8,

has a neighbor w 2 VðGÞnVðPÞ, then, because of the claw hv0i;w; vi�1; viþ1i, w

must have a neighbor on P, and thus w 2 Vi�1 [ Vi [ Viþ1. &

Let G0 denote the graph obtained from G by deleting all vertices from V6, and

connecting all vertices of V5 with all vertices of V7. Then G0 is 3-connected, claw-

free, and contains no induced copy of N3;1;0 (note that no induced copy of N3;1;0 in

G0 contains vertices of both V3 and V9). Thus, since G is a smallest 3-connected

fK1;3;N3;1;0g-free non-Hamiltonian graph, G0 is Hamiltonian. But each

Hamiltonian cycle in G0 can be easily modified to get a Hamiltonian cycle in

G, contradicting the choice of G. Hence, each 3-connected fK1;3;N3;1;0g-free

graph is Hamiltonian.

Now let us assume that a 3-connected fK1;3;N3;1;0g-free graph G contains a

cycle C ¼ v1v2 � � � vtv1 of length t, 7 � t � n. We shall show that it must also

contain a cycle of length t � 1. If C contains at least one chord, the existence of

such a cycle follows from Lemma 4.1, so assume that C contains no chords. If a

vertex w 2 VðGÞnVðCÞ has a neighbor v on C, then, since G is claw-free, one of

the vertices v�; vþ, must be adjacent to w as well. Furthermore, since G is N3;1;0-

free, w cannot have only two neighbors on P. On the other hand, using the fact

that G is claw-free once again, we infer that if v has three non-consecutive

neighbors on P, then it must have precisely four of them. Furthermore, each

choice of four neighbors on P leads either to an induced copy of N3;1;0, or to a

cycle of length t � 1. Thus, we may assume that each vertex w 2 VðGÞnVðCÞ
adjacent to at least one vertex from C is, in fact, adjacent to precisely three

vertices vi; viþ1, and viþ2, for i ¼ 1; . . . ; t, where, of course, the addition is taken

modulo t. Let us define

Vi ¼ fvig [ fw 2 VðGÞnVðPÞ : NðwÞ \ VðPÞ ¼ fvi�1; vi; viþ1gg
¼ NðVi�1Þ \ NðViþ1Þ;

for i ¼ 1; 2; . . . ; t. Then one can use an argument identical with the one used in

the proof of Claim 4.1 to show that VðGÞ ¼ V1 [ � � � [ Vt is a partition of the set

of the vertices of G into complete graphs, each vertex from Vi is adjacent to each

vertex from Viþ1, and NðViÞ ¼ Vi�1 [ Viþ1, for i ¼ 1; . . . ; t. Note that if

jVij ¼ jVjj ¼ 1 for some i 6¼ j, then jj � ij ¼ 1 since otherwise the set

Vi [ Vj ¼ fvi; vjg would be a vertex-cut, while G is 3-connected. Hence, for

some i, in the sequence Vi;Viþ1; . . . ;Vi�1, each Vj, i þ 1 � j � i � 2, has at least

two elements. Clearly, it implies that G contains cycles of all lengths t, 3 � t � n;

in particular, a cycle of length t � 1. &
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5. PROOF OF THEOREM 1.2

In this section, we conclude the proof of Theorem 1.2, showing that if a 3-

connected claw-free graph G does not contain an induced copy of one of the graphs

P7, N4;0;0, N3;1;0, N2;2;0, N2;1;1, then it contains a cycle of length t, for t ¼ 4; 5; 6.

Lemma 5.1. Let G be a 3-connected claw-free graph which contains a cycle of

length seven but no cycles of length six. Then G contains an induced copy of P7.

Proof. Let G be a 3-connected claw-free graph without copies of C6 and let

C ¼ v1v2 . . . v7v1 be a cycle of length seven in G. Since C6 6� G, C contains no

hops. Applying Lemma 3.1, we infer that C contains no chords.

Let x 2 Nðv1ÞnVðCÞ. Then xv2 or xv7 is an edge to avoid a claw hv1; x; v2; v7i.
By symmetry, we may assume that xv2 2 E. To avoid the P7 hx; v2; v3; . . . ; v7i, x

must have another neighbor on C. Since C6 6� G, the only possible candidates for

neighbors of x are v3 and v7. Without loss of generality, we may assume that

xv3 2 E. Let P ¼ ðv2 ¼Þy0y1 . . . ykð¼ v4Þ be the shortest path from v2 to v4 in

G � fv1; v3g. As v4v1 62 E, this path contains a vertex which is not adjacent

to both v1 and v3; let y‘ denote the first such vertex on P. To avoid the

claw hy‘�1; y‘; v1; v3i, either v1y‘ or v3y‘ is an edge, say v3y‘ 2 E. As

hy‘; v3; v4; . . . ; v1i is not P7, y‘v4 2 E. But now, if ‘ � 2, then v1v2v3v4y‘y‘�1v1

is a cycle of length six, and if ‘ ¼ 1, then such a cycle is spanned by the vertices

v1; v2; y1; v4; v3; x, contradicting the fact that C6 6� G. &

Lemma 5.2. If a 3-connected claw-free graph G contains a cycle of length six

but no cycles of length five, then G contains an induced copy of each of the graphs

P7, N4;0;0, N3;1;0, N2;2;1.

Proof. Let G be a 3-connected claw-free graph and let C ¼ v1v2 � � � v6v1 be a

cycle of length six contained in C. We split the proof into several simple steps.

Claim 5.1. G contains no induced copy of K�
4 , that is, the graph with four

vertices and five edges.

Proof. Let X ¼ fv1; v2; v3; v4g � VðGÞ be such that all pairs of vertices from

X, except for fv1; v2g, are edges of G. Since G is 3-connected, one of the vertices

fv3; v4g, say, v3, must have a neighbor w =2X. Because G is claw-free, w must be

adjacent to one of the vertices v1, v2, say, to v1. But this leads to a cycle

v1wv3v2v4v1. &

Claim 5.2. C has no chords. Moreover, no two non-consecutive vertices vi, vj

of C are connected by a path of either of the types viwvj, viww0vj, where

w;w0 =2 VðCÞ.
Proof. Since C5 6� G, C contains no hops. Applying Lemma 3.1, we infer

that C contains no chords.

Furthermore, each path of type viwvj leads to either C5 or K�
4 , so we can

eliminate them using Claim 5.1. Finally, the only paths of type viww0vj which do
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not immediately yield C5 are of type viww0vþþþ
i , but then hvi; v

�
i ; v

þ
i ;wi is a claw,

and any edge between vertices v�i ; v
þ
i ;w leads to a cycle of length five. &

Claim 5.3. G contains a vertex x which lies at distance two from C.

Proof. Suppose that all vertices of G are within distance one from C. Then

the fact that G is 3-connected implies that there exist two non-consecutive

vertices vi, vj 2 VðCÞ which are joined by a path of length at most three, which

contradicts Claim 5.2. &

Let x be a vertex that lies at distance two from C, and let w denote a neighbor

of x that lies within distance one from C. Claim 5.2 and the fact that G is claw-

free imply that w has two consecutive neighbors on C, say, v1 and v2. From

Claim 5.2, we infer that the graph H induced by the vertices VðCÞ [ fx;wg has

only nine edges: the six edges of C and three incident to w. Note that H contains

induced copies of both P7 and N3;1;0.

Now let w0 =2 VðHÞ be a neighbor of v3. Note that because C5 6� G, w0 is

adjacent neither to x nor to w. From Claim 5.2 and the fact that G is claw-free, it

follows that the only neighbor of w0 in VðHÞ, except v3, is in the set fv2; v4g. If

w0v4 2 E, then the vertices x;w; v1; v2; v3;w
0; v6; v5 span an induced copy of

N2;2;1, and hw; v2; v1; v6; v5; v4;w0i is N4;0;0. Hence, assume that w0v2 2 E. Now

let x0 be a neighbor of w0 outside VðHÞ which is not adjacent to both v2 and v3

(the fact that G is 3-connected and Claim 5.2 guarantee that such a vertex always

exists). Then, since G is claw-free and C5 6� G, x0 is adjacent to none of the

vertices of VðHÞ. But now the vertices x;w; v1; v2;w0; x0; v6; v5 span an induced

copy of N2;2;1 in G.

Finally, let w00 2 Nðv5ÞnVðCÞ. Then, either v4w00 2 E, or v6w00 2 E. If

v4w00 2 E, then hw00; v4; v5; v6; v1; v2;w
0i is N4;0;0, if v6w00 2 E, then hw00; v6; v5;

v4; v3; v2;wi is N4;0;0, as ww00;w0w00 62 E by Claim 5.2. &

For our argument, we also need the following simple observation on G1

defined in the Introduction (see Fig. 2).

Fact 5.1. Let G be a 3-connected claw-free graph which contains no cycles of

length four. Let ~GG1 be a copy of G1 in G. Then

(i) The copy ~GG1 is induced. In particular, G contains induced copies of each

of the graphs P7, Ł, N4;0;0, N3;1;0, N2;2;0, N2;1;1.

(ii) If G 6¼ ~GG1, then G contains an induced copy of N2;2;1.

Proof. It is easy to check that if we add any edge to G1, then either we create

a copy of C4, or we get K1;3 which, in turn, since G is claw-free, forces a cycle of

length four. Thus, (i) follows. In order to show (ii) note that, since ~GG1 is induced,

any vertex x 2 VðGÞnVð~GG1Þ with a neighbor in ~GG1 must be adjacent to precisely

two vertices of ~GG1, which are connected by an edge which belongs to none of the

200 JOURNAL OF GRAPH THEORY



four triangles contained in ~GG1. Now it is easy to check that a subgraph spanned in

G by fxg [ Vð~GG1Þ contains an induced copy of N2;2;1 in which x has degree one

and is adjacent to a vertex of degree three.

Lemma 5.3. Let G be a 3-connected claw-free graph which contains a cycle of

length five but no cycles of length four. Then G contains an induced copy of each

of the graphs P7, N4;0;0, N3;1;0, N2;2;0, N2;1;1. Furthermore, if G 6¼ G1, then G

contains an induced copy of N2;2;1.

Proof. Let C ¼ v1v2v3v4v5v1 be a cycle of length five in a 3-connected claw-

free graph G, which contains no cycles of length four. Clearly, C contains no

chords. Let S ¼ NðVðCÞÞ. Since C4 6� G and G is claw-free, each vertex w 2 S is

adjacent to precisely two consecutive vertices of C, for each two vertices

w0;w00 2 S we have Nðw0Þ \ VðCÞ 6¼ Nðw00Þ \ VðCÞ, and S is independent. A

vertex w from S, we call wi, if w is adjacent to vi and viþ1. Observe also that, since

S is independent and G is claw-free, any vertex x =2VðCÞ [ S has in S at most

two neighbors; consequently, G must contain an edge with both ends in

VðGÞnðVðCÞ [ SÞ.
Now let us assume that there exists an edge xy, such that x; y =2 VðCÞ [ S and

each of the vertices x and y has two neighbors in S, denoted x1; x2 and y1; y2,

respectively. Because of the claw hx; x1; x2; yi, we may assume that x1 ¼ y1 ¼ w1.

Furthermore, to avoid C4, x and y must be adjacent to different vertices from the

set fw3;w4g. But now the graph H induced in G by the set VðCÞ [ fx; y;w1;
w3;w4g contains a copy of the graph G1 and the assertion follows from Fact 5.1.

Thus, we may assume that each edge contained in VðGÞnðVðCÞ [ SÞ has at

least one end which is adjacent to at most one vertex from S. Note also that if a

vertex x 2 VðGÞnðVðCÞ [ SÞ has just one neighbor in S, then it must have at least

two neighbors x0; x00 in VðGÞnðVðCÞ [ SÞ, and all three vertices x; x0; x00 cannot

share the same neighbor in S because C4 6� G. Consequently, as G is claw-free,

we may assume that G contains vertices x and y such that x is adjacent to y, y is

adjacent to w1, x has at most one neighbor in S, and it is different than w1, and y

has at most one more neighbor in S (then it must be either w3 or w4). Let F be the

graph spanned in G by VðCÞ [ fx; y;w1g. It contains precisely nine edges: five

edges of C, three edges incident to w1, and xy.

Clearly, xyw1v2v3v4v5 is an induced copy of P7 in F � G. In order to find in G

induced copies of N4;0;0 and N3;1;0, consider the neighbor of v4 in S: without loss

of generality, we may assume that it is w3. If w3 is not adjacent to y, then G

contains an induced copy of N4;0;0 (on the vertices y;w1; v1; v5; v4; v3;w3) as well

as an induced copy of N3;1;0 (with the vertex set fy;w; v2; v3;w3; v4; v5g). Thus,

assume that w3 is the only neighbor other than w1 of y in S. Because of the claw

hy; x;w1;w3i, w3 is also the only neighbor of x in S. But then the vertices

v2; v1; v5; v4;w3; x; y span in G an induced copy of N4;0;0, while the vertices

w1; v1; v5; v4; v3;w3; x span an induced copy of N3;1;0.

Finally, we shall show that G contains an induced copy of N2;2;1. Thus, let x; y
be defined as above and let w3 be a neighbor of v4. Consider now two possible
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choices for a neighbor of v5. Assume first, that there is a vertex w4 adjacent to

both v4 and v5. Then vertices y, w1, v1, v2, v3, w3, v5, and w4 span a copy of N2;2;1.

It is induced unless y is adjacent to one of the vertices w3, w4, say w3. Then,

because of the claw hy; x;w1;w3i, x is also adjacent to w3, and none of the vertices

x, y, is adjacent to w4. But then the vertices x, y, w1, v1, v2, v3, v5, and w4 span an

induced copy of N2;2;1.

Thus, suppose that G contains a vertex w5, adjacent to both v5 and v1. Note that

the vertices x, y, w1, v1, v2, v3, v4, and w5 span an induced copy of N2;2;1, unless

w5x 2 E. But if w5x 2 E, then w3 is adjacent to neither x nor y, and so there is an

induced copy of N2;2;1 on the vertices y, x, w5, v1, v2, v5, v4, w3. &

As an immediate consequence of Theorem 3.1; and Lemmas 5.2 and 5.3, we

get the following result.

Theorem 5.1. Each 3-connected fK1;3;N2;2;1g-free graph is either isomorphic

to G1, or pancyclic.

Finally we can complete the proof of the main result of the paper.

Proof of Theorem 1.2. We have already seen that (i) implies (ii). Since the

graphs N2;2;0 and N2;1;1 are induced subgraphs of N2;2;1, the fact that (i) follows

from (ii) is an immediate consequence of Theorems 2.1, 4.2–4.4, Lemmas 5.1–

5.3, and Theorem 5.1 &

We conclude the paper with a remark that for Theorem 1.2, the graphs G0 and

G1 we introduced at the beginning of the paper are, in a way, extremal. It follows

that the smallest 3-connected claw-free graph G, which is not pancyclic, has ten

vertices. Indeed, by Theorem 1.2, we may assume that G contains an induced

path P on seven vertices. The minimal degree of G is at least three, so there are at

least nine edges incident to VðPÞ, which do not belong to P. But G is claw-free,

so no vertex from VðGÞnVðPÞ is adjacent to more than four vertices from

P. Consequently, jVðGÞnVðPÞj � 3. In fact, one can examine the proof of

Lemma 5.3 to verify that the graph G1 is the only 3-connected claw-free graph G

on ten vertices, which is not pancyclic. In a similar manner, one can also deduce

from Theorem 4.1 and the proof of Lemma 5.2 that the graph G0 (Fig. 2) is the

unique smallest 3-connected claw-free graph on at least five vertices, which does

not contain a cycle of length five.
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