Pancyclicity of 3-Connected Graphs: Pairs of Forbidden Subgraphs

Ronald J. Gould,¹ Tomasz Łuczak,^{1,2} and Florian Pfender¹

¹DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE EMORY UNIVERSITY ATLANTA, GEORGIA 30322 E-mail: rg@mathcs.emory.edu E-mail: fpfende@mathcs.emory.edu ²DEPARTMENT OF DISCRETE MATHEMATICS ADAM MICKIEWICZ UNIVERSITY 60-769 POZNAŃ, POLAND E-mail: tomasz@amu.edu.pl

Received November 15, 2001; Revised June 12, 2003

Published online in Wiley InterScience(www.interscience.wiley.com). DOI 10.1002/jgt.20030

Abstract: We characterize all pairs of connected graphs $\{X, Y\}$ such that each 3-connected $\{X, Y\}$ -free graph is pancyclic. In particular, we show that if each of the graphs in such a pair $\{X, Y\}$ has at least four vertices, then one of them is the claw $K_{1,3}$, while the other is a subgraph of one of six specified graphs. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 183–202, 2004

Keywords: pancyclic graphs; claw-free graphs; forbidden subgraph

© 2004 Wiley Periodicals, Inc.

1. INTRODUCTION

A graph *G* on *n* vertices is pancyclic if for each $k, 3 \le k \le n$, a cycle of length *k* can be found in *G*. We say that *G* is $\{H_1, \ldots, H_\ell\}$ -free, if it contains no induced copies of any of the graphs H_1, \ldots, H_ℓ . For all terms not defined here, we refer the reader to [1]. The problem of characterizing all families of H_1, \ldots, H_ℓ such that each "sufficiently connected" $\{H_1, \ldots, H_\ell\}$ -free graph is pancyclic has been studied by a number of authors. In particular, the family of all pairs of graphs *X*, *Y*, such that each 2-connected $\{X, Y\}$ -free graph $G \ne C_n$ on $n \ge 10$ vertices is pancyclic, has been characterized by Faudree and Gould in [2] (we refer the reader to this paper for further references to this problem). In this paper, we characterize all graphs *X*, *Y* such that each 3-connected $\{X, Y\}$ -free graph is pancyclic.

For any graph H, let S(H) be the graph obtained from H through subdivision of every edge. Let L(H) be the line graph of H.

Let $G_0 = L(S(K_4))$. Let G_1 be the graph obtained from G_0 by contraction of the two edges $x_1x_2, x_3x_4 \in E(G_0)$, where the edges x_1x_2 and x_3x_4 are selected in a way that $N(x_i) \cap N(x_j) = \emptyset$ for $1 \le i < j \le 4$ (see Fig. 2). It is not hard to see that both G_0 and G_1 are 3-connected claw-free graphs. Furthermore, neither of them contains a cycle of length four.

Let $S_3(K_4)$ be the graph obtained from K_4 by a subdivision of each edge by three vertices of degree 2. Let H be the multigraph obtained from $S_3(K_4)$ by doubling each edge of $S_3(K_4)$ incident with a vertex of degree 3. Finally, let $G_2 = L(H)$. Alternatively, one can obtain G_2 through a replacement of each triangle of G_0 by the 9-vertex graph T pictured in Figure 1. Again, it is easy to see that G_2 is 3-connected, claw-free, and it contains no cycle of length $10 \le \ell \le 11$. Further, G_2 contains no induced cycles of length $4 \le \ell \le 9$.

By G_3 we denote the graph consisting of a K_{n-4} $(n \ge 7)$ and four extra vertices x_1, x_2, x_3, x_4 with $N(x_1) = N(x_2) = N(x_3) = N(x_4)$ and $|N(x_1)| = 3$ (see Fig. 2). Clearly, G_3 is 3-connected and not Hamiltonian (and thus not pancyclic). Finally, G_4 is the point-line incidence graph of a projective plane of order seven, that is,

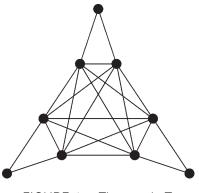


FIGURE 1. The graph T.

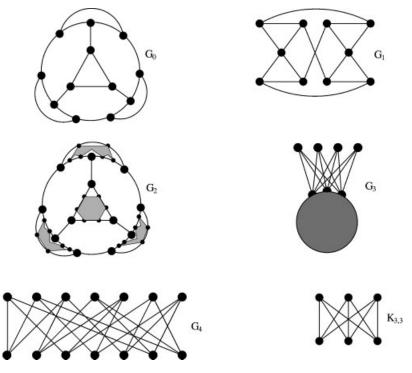


FIGURE 2. 3-Connected non-pancyclic graphs.

the vertices of G_4 correspond to the points and the lines of the plane, and two of them, v and w, are adjacent if v stands for a point and w for a line containing it. It is easy to check that G_4 is 3-connected, has girth six, and is thus not pancyclic.

Theorem 1.1. For every connected graph $X, X \notin \{K_1, K_2\}$, the following two statements are equivalent:

(1) each X-free 3-connected graph G is pancyclic;

$$(2) \quad X = P_3.$$

Proof. Any P_3 -free connected graph is complete and therefore pancyclic. Thus, it is enough to show that (i) implies (ii).

As $K_{3,3}$ and the graph G_1 are not pancyclic, an induced copy of X must be contained in both $K_{3,3}$ and G_1 . As G_1 does not contain a copy of C_4 , X cannot contain a copy of C_4 . As any induced subgraph of $K_{3,3}$ with diameter greater than two contains C_4 , we know that X is a star $K_{1,r}$. As there are no induced copies of $K_{1,r}$ with $r \ge 3$ in G_1 , we infer that $X = P_3$.

Lemma 1.1. Let X and Y be connected graphs on at least three vertices and $X, Y \neq P_3$. If each $\{X, Y\}$ -free 3-connected graph is pancyclic, then one of X, Y is $K_{1,3}$.

Proof. Suppose that $X, Y \neq K_{1,3}$. As $K_{3,3}$ is not pancyclic, one of X and Y has to be an induced subgraph of $K_{3,3}$. Without loss of generality, we may assume that X is an induced subgraph of $K_{3,3}$. As X is not $K_{1,3}$ or P_3 , X contains C_4 .

As C_4 is not a subgraph of G_4 , Y is an induced subgraph of G_4 , and thus Y has girth at least six and maximum degree at most three. Furthermore, G_3 contains no induced copies of C_4 , so Y has to be an induced subgraph of G_3 . But the only induced subgraphs of G_3 with girth larger than three and maximum degree at most three are $K_{1,3}$ and its subgraphs. This proves the lemma.

Finally, each connected graph F which appears as an induced subgraph of all of G_0 , G_1 , and G_2 , and is not contained in the claw $K_{1,3}$, is a subgraph of one of the following six subgraphs:

- P_7 , the path on seven vertices,
- *L*, the graph which consists of two vertex-disjoint copies of *K*₃ and an edge joining them;
- $N_{4,0,0}$, $N_{3,1,0}$, $N_{2,2,0}$, $N_{2,1,1}$, where $N_{i,j,k}$ is the graph which consists of K_3 and vertex disjoint paths of length i, j, k rooted at its vertices.

To see this, observe first that F has at most $|V(G_1)| = 10$ vertices, and F cannot contain an induced cycle of length greater than 3 since F needs to be contained in G_2 . If F contains at most one triangle, G_1 can be used to limit the possibilities to the graphs mentioned above. Further, if F contains more than one triangle, there are exactly two triangles, and they are at distance one from each other due to G_0 . Finally, at most one vertex in each of the two triangles can have degree greater than 2; otherwise, such a triangle in an induced copy of F in G_2 has to be located in one of the K_6 's in the center of one of the copies of T, but there is no other triangle in G_2 with distance 1 to such a triangle.

Let \mathcal{F} denote the family which consists of the above six graphs (see Fig. 3).

As we have already deduced from the properties of graphs G_0 , G_1 , and G_2 , if each 3-connected $\{K_{1,3}, Y\}$ -free graph is pancyclic, then Y is a subgraph of one of the graphs listed above. Our main result states that the inverse implication holds as well.

Theorem 1.2. Let X and Y be connected graphs on at least three vertices such that $X, Y \neq P_3$ and $Y \neq K_{1,3}$. Then the following statements are equivalent:

- (1) Every 3-connected $\{X, Y\}$ -free graph G is pancyclic.
- (2) $X = K_{1,3}$ and Y is a subgraph of one of the graphs from the family $\mathcal{F} = \{P_7, L, N_{4,0,0}, N_{3,1,0}, N_{2,2,0}, N_{2,1,1}\}.$

Since (i) implies (ii), it is enough to show that for each graph Y from \mathcal{F} and each 3-connected $\{K_{1,3}, Y\}$ -free graph G, G is pancyclic. Hence, the proof of Theorem 1.2 consists, in fact, of six statements, one for each graph from \mathcal{F} , which we show in the following sections of the paper.

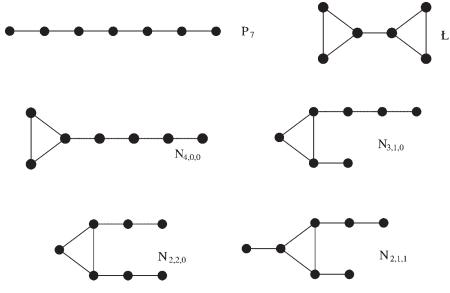


FIGURE 3. The family \mathcal{F} .

In the proofs, for a cycle *C* we always distinguish one of the two possible orientation of *C*. By v^- and v^+ , we denote the predecessor and the successor of a vertex v on such a cycle, with respect to the orientation. We write vCw for the path from $v \in V(C)$ to $w \in V(C)$, following the direction of *C*, and by vC^-w , we denote the path from v to w opposite to the direction of *C*. By $\langle x_1, \ldots, x_k \rangle$, we mean the subgraph induced in *G* by vertices x_1, \ldots, x_k .

2. FORBIDDING Ł

In this section, we make the first step towards proving Theorem 1.2: we show the fact that each 3-connected claw-free graph which contains no induced copy of L is pancyclic.

Theorem 2.1. Every 3-connected $\{K_{1,3}, L\}$ -free graph is pancyclic.

Proof. Suppose that G is a minimal counterexample to the above statement, and that G contains a cycle C of length t but no cycles of length t + 1 (the existence of triangles is obvious). Let H be a component of G - C. Note that for every vertex $x \in N(H) \cap V(C)$ and $v \in N(x) \cap V(H)$, we have that $vx^-, vx^+ \notin E$, and thus $x^-x^+ \in E$ to avoid a claw.

Claim 2.1. No vertex from H has more than two neighbors on C.

Proof. Suppose there is a vertex $v \in V(H)$ with $x, y, z \in N(v) \cap V(C)$. As $\langle v, x, y, z \rangle$ is not a claw, there is an extra edge, say $xy \in E$. As $\langle v, x, y, z, z^-, z^+ \rangle$ is not L, there is an extra edge between two of these vertices. We have $yz^+ \notin E$,

otherwise $yz^+Cy^-y^+Czvy$ is a cycle of length t + 1, a contradiction. A similar argument shows that none of the pairs yz^- , xz^- , xz^+ , is an edge of G.

Therefore, either $yz \in E$, or $xz \in E$. If $xz \notin E$, then $\langle y, x, z, y^+ \rangle$ is a claw, thus $xz \in E$. Similarly, $yz \in E$, and so, by the previous argument xy^{\pm} , $x^{\pm}y$, $x^{\pm}z$, $y^{\pm}z \notin E$. Furthermore $x^+y^+ \notin E$, since otherwise $x^+y^+CxvyC^-x^+$ is a cycle of length t + 1, contradicting the choice of *G*. Similarly, $x^-y^- \notin E$.

As $\langle x, x^-, x^+, y, y^-, y^+ \rangle$ is not *L*, either $x^+y^- \in E$, or $x^-y^+ \in E$. By symmetry, we may assume $x^+y^- \in E$. Now $x^{++}y \notin E$, since otherwise the cycle $yx^{++}Cy^-y^+$ Cx^-x^+xvy has length t + 1, while $C_{t+1} \not\subseteq G$. The edge $x^{++}v$ would lead to the cycle $vx^{++}Cx^-x^+xv$, thus $x^{++}v \notin E$. Finally, $x^{++}z \notin E$ to avoid the cycle $x^-xzvx^{++}Cz^-z^+Cx^-$.

Note that $x^{++}y^{-} \notin E$, since otherwise $\langle x^{+}, x^{++}, y^{-}, y, v, z \rangle$ is *L*. To avoid the claw $\langle x^{+}, x, x^{++}, y^{-} \rangle$, we have $xx^{++} \in E$. To avoid the claw $\langle x, x^{++}, x^{-}, v \rangle$, we have $x^{++}x^{-} \in E$. But now the cycle $x^{-}x^{++}Cy^{-}x^{+}xvyCx^{-}$ has length t + 1 (see Fig. 4), the contradiction establishing the claim.

Claim 2.2. Let $x, y \in V(C) \cap N(H)$. Then $xy \in E$ if and only if $N(x) \cap N(y) \cap V(H) \neq \emptyset$.

Proof. For one direction, suppose $z \in N(x) \cap N(y) \cap V(H)$. Let P be a shortest path from z to C in $G - \{x, y\}$. Let v be the first internal vertex on this path. By Claim 2.1, $v \notin V(C)$. If $v \in N(x) \cap N(y)$, start over with z' = v and P' = P - x. So assume that $v \notin N(x) \cap N(y)$, say $vx \notin E$. If $vy \notin E$, then $xy \in E$ to avoid a claw, and we are done. Assume that $xy \notin E$, and thus $vy \in E$. We know that $vx^-, vx^+ \notin E$, otherwise we can expand C by including vertices v and z and omitting y to get a cycle of length t + 1. Moreover, $yx^-, yx^+ \notin E$, since otherwise we can replace y^-yy^+ by y^-y^+ , and insert y and z between x and x^+ or between x^-



FIGURE 4.

and x, respectively, to increase the length of the cycle by one. But now $\langle z, y, v, x, x^-, x^+ \rangle$ is L, a contradiction.

For the other direction, let *P* be a shortest x - y path through *H* not using *xy*. By symmetry, we may assume that $y \neq x^+$. Let x_1 be the successor of *x* on *P*, let y_1 be the predecessor of *y* on *P*. If $x_1 = y_1$ we are done, so let $x_1 \neq y_1$. To avoid the claw $\langle x, x^+, x_1, y \rangle$, $x^+y \in E$. If $x_1y_1 \in E$, then we can extend *C* through $xx_1y_1yx^+$ and skip *y* and another vertex in $N(H) \cap V(C)$ to get a cycle of length t + 1. So assume $x_1y_1 \notin E$.

Let x_2 be another neighbor of x_1 not on P, and let y_2 denote another neighbor of y_1 not on P. We know that $N(x_2) \cap \{x^-, x^+\} = N(y_2) \cap \{y^-, y^+\} = \emptyset$, as otherwise a cycle of length t + 1 can be found. Now $xx_2, yy_2 \in E$ to avoid claws and E's around x_1 and y_1 . If $x_2, y_2 \in V(H)$, we get the $E = \langle x, x_1, x_2, y, y_1, y_2 \rangle$, as P is shortest. Thus, we may assume that $x_2 \in V(C)$, and $N(x_2) \cap \{y, y_1, y_2\} \neq \emptyset$. By the first part of the claim, this implies that $x_2y \in E$ or $x_2y_2 \in E$ and $y_2 \in V(C)$.

If $x_2y \in E$, then the cycle $xx_1x_2yx^+Cx_2^-x_2^+Cy^-y^+Cx$ has length t + 1 (see Fig. 5). If $x_2y_2 \in E$ and $y_2 \in V(C)$, and $x_2y_2 \notin E(C)$, then the cycle $xx_1x_2y_2yx^+Cx_2^-x_2^+Cy_2^-y_2^+Cy^-y^+Cx$ has length t + 1.

Finally, if $x_2y_2 \in E(C)$, say $y_2 = x_2^+$, then $x_2^-y_2^+ \in E$ to avoid the claw $\langle x_2, x_1, x_2^-, y_2^+ \rangle$. But now the cycle

$$xx_1x_2y_2y_x^+C(x_2)^-(y_2)^+Cy^-y^+Cx$$

has length t + 1.

Note that, as a consequence of Claim 2.2, N(H) does not include two consecutive vertices on C.

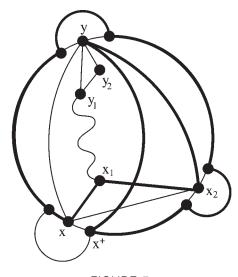


FIGURE 5.

Claim 2.3. If $x, y \in N(H) \cap V(C)$ and $xy \in E$, then $xy^-, xy^+ \notin E$.

Proof. Suppose $xy^- \in E$. By Claim 2.2, there is a vertex $z \in N(x) \cap N(y) \cap V(H)$. Now the cycle $xzyCx^-x^+Cy^-x$ has length t + 1, a contradiction. The symmetric case $xy^+ \in E$ can be treated in the same way.

Claim 2.4. If $x, y, z \in N(H) \cap V(C)$ and $xz, yz \in E$, then $xy \in E$.

Proof. Otherwise, $\langle z, z^+, x, y \rangle$ is a claw by Claim 2.3.

Claim 2.5. $\langle N(H) \cap V(C) \rangle$ is complete.

Proof. Suppose the claim is false. Then there are two vertices $x, y \in N(H) \cap V(C)$ with $xy \notin E$. Let *P* be a shortest x - y path through *H*. We may assume that *x* and *y* were chosen such that *P* is shortest. Let $P = v_0$ $(=x)v_1 \dots v_{k-1}v_k(=y)$. By Claim 2.2, $k + 1 = |V(P)| \ge 4$. Let R = R(P) be a shortest path in $G - \{v_0, v_2\}$ from v_1 to *C*. We may assume that *P* is chosen such that *R* is shortest.

Suppose that k = 3. Suppose there is a vertex $z \in N(v_1) \cap N(v_2)$. Then, one of the pairs xz, yz is not an edge, otherwise, either $z \in V(C)$ and $xy \in E$ by Claim 2.4, or $z \notin V(C)$ and $xy \in E$ by Claim 2.2. Say $xz \notin E$. By Claim 2.2, $z \notin V(C)$. But now we can find a copy of L at $\langle v_1, v_2, z, x, x^+, x^- \rangle$, a contradiction showing that $N(v_1) \cap N(v_2) = \emptyset$.

Let z_1 be the first vertex on R following v_1 and let $z_2 \in N(v_2) \setminus V(P)$. To avoid claws, $xz_1, yz_2 \in E$. If one of the pairs yz_1, xz_2 is an edge, then Claims 2.2 and 2.4 imply that $xy \in E$, a contradiction. Furthermore, $z_1z_2 \notin E$, for otherwise $P' = xz_1z_2y$ would allow a shorter R. But now $\langle z_1, v_1, x, z_2, v_2, y \rangle$ is a copy of L, a contradiction showing that k > 3.

Just like above, let z_1 be the first vertex on R following v_1 and let $z_2 \in N(v_2) \setminus V(P)$. If $z_2 \in V(C)$, then $xz_2, yz_2 \in E$ as P is shortest, implying that $xy \in E$ by Claim 2.4. Thus, $z_2 \notin V(C)$. If $v_1z_2 \in E$, then $xz_2 \in E$ to avoid a copy of L at $\langle v_1, v_2, z_2, x, x^+, x^- \rangle$. By the same argument, if $v_2z_1 \in E$, then $z_1 \notin V(C)$ and $xz_1 \in E$. But, as before, this is impossible since R is shortest. Thus, $v_2z_1 \notin E$ and $xz_1 \in E$ to avoid the claw $\langle v_1, v_2, x_2, x, z_1 \rangle$.

If $v_1z_2 \notin E$, then $v_3z_2 \in E$ to avoid the claw $\langle v_2, v_1, v_3, z_2 \rangle$. If $z_1 \in V(C)$, then $z_1z_2 \notin E$, otherwise $yz_1 \in E$ as P is shortest, and thus $xy \in E$ by Claim 2.4. If $z_1 \notin V(C)$, then $z_1z_2 \notin E$ as R is shortest. But now $\langle v_2, v_3, z_2, v_1, x, z_1 \rangle$ is a copy of L. Thus, $v_1z_2, xz_2 \in E$.

Let $z_3 \in N(v_3) \setminus V(P)$. If $xz_3 \in E$, then $z_3 \in V(C)$ as P is shortest. But then $yz_3 \in E$ as $z_3v_3v_4...v_k$ is shorter than P, and so $xy \in E$ by Claim 2.4. Thus, $xz_3 \notin E$. If $v_2z_3 \in E$, then $xz_3 \in E$ by the above argument, a contradiction. Thus, $v_2z_3 \notin E$, and therefore $v_4z_3 \in E$ to avoid the claw $\langle v_3, v_2, v_4, z_3 \rangle$. Moreover, $z_2z_3 \notin E$, since otherwise $\langle z_2, v_2, x, z_3 \rangle$ is a claw. But now, $\langle v_2, v_1, z_2, v_3, v_4, z_3 \rangle$ is a copy of L, the final contradiction establishing the claim.

Now we are ready to complete the proof of the theorem. By Claim 2.1, $|V(H)| \ge 2$. Contract H to a single vertex h in the new graph G'. As

 $\langle N(H) \cap V(C) \rangle$ is complete by Claim 2.5, *G'* is 3-connected and claw-free. Since N(h) induces a complete graph *G'* contains no copies of *L* involving *h* as one of the center vertices. If there was *L* with *h* as a corner vertex of a triangle *xyh*, there would be *L* in *G* with the triangle *xyz*, where *z* is a vertex in $N(x) \cap N(y) \cap V(H)$ whose existence is guaranteed by Claim 2.2. Consequently, *G'* is a 3-connected $\{K_{1,3}, L\}$ -free graph smaller than *G*. Thus, *G'* is pancyclic and contains a cycle *C'* of length t + 1. If $h \notin V(C')$, then *C'* is a cycle of length t + 1 contained in *G*. If *h* appears on *C'* between *x* and *y*, replace it with $z \in N(x) \cap N(y) \cap V(H)$ from Claim 2.2, again forming a cycle of length t + 1, a contradiction proving the theorem.

3. FORBIDDING N_{2,2,1}

In this section, we deal with 3-connected claw-free graphs, which contain no induced copy of the graph $N_{2,2,1}$, a common supergraph of both $N_{2,2,0}$ and $N_{2,1,1}$.

Here and below a hop is a chord of a cycle C of type vv^{++} .

Lemma 3.1. Let G be a claw-free graph with minimum degree $\delta(G) \ge 3$, and let C be a cycle of length t without hops, for some $t \ge 5$. Set

 $X = \{ v \in V(C) \mid \text{there is no chord incident to } v \},\$

and suppose for some chord xy of C we have $|X \cap V(xCy)| \le 2$. Then G contains cycles C' and C'' of lengths t - 1 and t - 2, respectively.

Proof. Let us choose a chord xy such that $|X \cap V(xCy)|$ is minimal, and among those such that |V(xCy)| is minimal. Consider the cycle $\overline{C} = xyCx$. As C has no hops, $|V(\overline{C})| \leq t-2$. A vertex $v \in V(x^+Cy^-) \setminus X$ has a neighbor $w \in V(y^+Cx^-)$ as |V(xCy)| is minimal. To avoid the claw $\langle w, w^+, w^-, v \rangle$, one of the edges vw^+ , vw^- appears in G, thus v can be inserted into \overline{C} , that is \overline{C} can be extended to the cycle $xyCwvw^+Cx$ or $xyCw^-vwCx$. This way, we can append all the vertices from $V(x^+Cy^-) \setminus X$ to \overline{C} one-by-one. The only possible problem in this process occurs if we want to insert a second vertex $v' \in V(x^+Cy^-) \setminus X$ at the same spot. But as G is claw-free and there are no chords inside x^+Cy^- , $\langle N(w) \cap V(x^+Cy^-) \rangle$ consists of at most two complete subgraphs of size at most two each, where one of them is a subset of $N(w) \cap N(w^+)$, the other one a subset of $N(w) \cap N(w^-)$. Therefore, we can insert any number of vertices in $N(w) \cap$ $V(x^+Cy^-)$ into \overline{C} . So we conclude that we can transfer any number of vertices from $V(x^+Cy^-) \setminus X$ into \overline{C} .

As $|X \cap V(xCy)| \le 2$, we can build in this way a cycle C'' of length t-2. Using this procedure, we can also construct a cycle of length t-1 unless $|X \cap V(xCy)| = 2$. But then $|X \cap V(yCx)| \ge 2$ by the minimality of $|X \cap V(xCy)|$, and we can extend C'' through a vertex $z' \in N(z) \setminus V(C)$, where $z \in X \cap V(yCx)$ (observe that one of $z'z^+, z'z^-$ is an edge to avoid a claw at z, and no vertex of V(xCy) was inserted next to z as z is not an end of a chord). **Fact 3.1.** Let G be a 3-connected claw-free graph which contains no cycles of length t, for some $4 \le t \le n$. Let C be a cycle of length t - 1 in G and $x \in V(G) \setminus V(C)$ be adjacent to vertices $v, w \in V(C)$, which are themselves adjacent in G. Then, G contains an induced copy of $N_{2,2,1}$.

Proof. Let P be a shortest path from x to C in $G - \{v, w\}$. We may assume that x was chosen from $N(v) \cap N(w) \setminus V(C)$ such that P is shortest.

To avoid claws, v^-v^+ , $w^-w^+ \in E$. Note that wv^- , $vw^- \notin E$, otherwise *C* could be extended through *x*. Let $v_2 \in V(v^+Cw)$ be the vertex closest to *v* on *C* with $vv_2 \notin E$, let $v_1 = v_2^-$. Let $w_2 \in V(w^+Cv)$ be the vertex closest to *w* on *C* with $ww_2 \notin E$, let $w_1 = w_2^-$.

First, we want to show that $\langle x, v, v_1, v_2, w, w_1, w_2 \rangle$ is an induced copy of $N_{2,2,0}$. If $xw_i \in E$ for $i \in \{1, 2\}$, then the cycle $wxw_iCw^-w^+Cw_i^-w$ has length *t*. Thus, $xw_i \notin E$ for $i \in \{1, 2\}$ and, by symmetry, $xv_i \notin E$ for $i \in \{1, 2\}$.

If $v_i w_j \in E$ for $i, j \in \{1, 2\}$, then

$$v_i w_j C v^- v^+ C v_i^- v x w w_i^- C^- w^+ w^- C^- v_i$$

is a cycle of length *t*. Thus, $v_i w_j \notin E$ for $i, j \in \{1, 2\}$, and $\langle x, v, v_1, v_2, w, w_1, w_2 \rangle$ is an induced copy of $N_{2,2,0}$.

Now consider the vertex x_1 , the unique neighbor of x on P. If $x_1v \in E$, then also $x_1w \in E$ as otherwise $\langle v, x_1, w, v^- \rangle$ is a claw (if $x_1v^- \in E$, C can be extended through x_1 to form a cycle of length t unless $x_1 \in V(C)$. But then, the cycle $v^-x_1xvCx_1^-x_1^+Cv^-$ contains t vertices). Consequently, since P is shortest, $x_1 \in V(C)$. Now one can mimic the argument we have used above to show that $\langle x_1, x_1^+, v, v_1, v_2, w, w_1, w_2 \rangle$ is an induced copy of $N_{2,2,1}$.

So assume that $x_1v, x_1w \notin E$. If $x_1v_i \in E$ for some $i \in \{1, 2\}$, then we can again extend *C* through *x* and x_1 , possibly skipping a third neighbor of $V(G) \setminus V(C)$ on the cycle to create a C_t . Thus, $x_1v_i, x_1w_i \notin E$ for $i \in \{1, 2\}$, and $\langle x, x_1, v, v_1, v_2, w, w_1, w_2 \rangle$ is an induced copy of $N_{2,2,1}$, finishing the proof.

Lemma 3.2. Let G be a 3-connected claw-free graph such that for some $6 \le t \le n$, G contains a cycle C of length t - 1 but contains no cycles of length t. Then, G contains an induced copy of $N_{2,2,1}$.

Proof. Suppose, for the sake of contradiction, that *G* contains no induced copy of $N_{2,2,1}$. Let *H* be a component of $\langle V(G) \setminus V(C) \rangle$, and let $u, v, w \in N(H) \cap V(C)$. Let $x \in V(H)$, and let P_u, P_v , and P_w be shortest paths through *H* from *x* to *u*, *v*, and *w*, respectively. Let $S = V(P_u) \cup V(P_v) \cup V(P_w)$. We may assume that *H*, *u*, *v*, *w*, and *x* are chosen in a way that |S| is minimal and that *x* has degree three in $\langle S \rangle$. To avoid a claw at *x*, there has to be an edge between two vertices $y, z \in N(x) \cap S$. By symmetry, we may assume that $y \in V(P_v)$ and $z \in V(P_w)$. By the minimality of |S|, the only other possible additional edges in $\langle S \rangle$ are the edges $\{uv, uw, vw\}$.

Furthermore, note that there are no edges between $S \setminus \{u, v, w\}$ and $V(C) \setminus \{u, v, w\}$. Otherwise, either |S| is not minimal, or G, being claw-free,

forces a situation like in Fact 3.1, guaranteeing $N_{2,2,1}$. This observation, together with the fact that for any two vertices $a, b \in V(C)$ with $ab \in E$, we have $N(a) \cap N(b) \cap V(H) = \emptyset$ (Fact 3.1), implies that $\langle N(u) \cap V(C) \rangle$, $\langle N(v) \cap V(C) \rangle$, and $\langle N(w) \cap V(C) \rangle$ are complete graphs.

Let $P_x = P_u$, $P_y = P_v - x$, and $P_z = P_w - x$. By symmetry, we may assume that $|V(P_z)| \le |V(P_y)| \le |V(P_x)|$, and that u, w, and v appear on C in this order. By Fact 3.1, $|V(P_y)| \ge 2$.

Case 1. $|V(P_z)| = 1$, that is, z = w.

Suppose first that $vw \in E$. Thus, $\langle v^-, v, v^+, w^-, w, w^+ \rangle$ is complete as $\langle N(v) \cap V(C) \rangle$ and $\langle N(w) \cap V(C) \rangle$ are complete. As $t \ge 5$, there is a vertex $a \in \{w^+, w^-, v^+, v^-\} - \{u, v, w\}$. If $|V(P_y)| \ge 4$, then $\langle \{w, a\} \cup V(P_x) \cup V(P_y) \rangle$ contains an induced $N_{2,2,1}$. Thus, $|V(P_y)| \le 3$.

Consider the cycle $C' = wyP_yvC^-w^+v^+Cw$. We have $t \le |V(C')| \le t + 1$. As $C_t \not\subseteq G$, we know that |V(C')| = t + 1. But now the cycle obtained from C' by skipping u (this is always possible as $\langle N(u) \cap V(C) \rangle$ is complete) has length t, a contradiction. Therefore, $vw \notin E$.

If $|V(P_y)| \ge 4$, then $\langle \{w, w^+\} \cup V(P_x) \cup V(P_y) \rangle$ contains an induced $N_{2,2,1}$. Thus, $|V(P_y)| \le 3$.

Now suppose that $wv^- \in E$. Then $w^-v^- \in E$ as $\langle N(w) \cap V(C) \rangle$ is complete. Consider the cycle $C' = wyP_yvCw^-v^-C^-w$. Then $t \leq |V(C')| \leq t+1$ and, since $C_t \not\subseteq G$, we have |V(C')| = t+1. But now the cycle obtained from C' by skipping *u* has length *t*, a contradiction. Therefore, $wv^- \notin E$.

Let *b* be the first vertex on wCv with $wb \notin E$. If $vb \in E$, then the cycle $C' = vbCv^-v^+Cw^-w^+Cb^-wyP_yv$ has length *t* or t + 1. We can then skip *u* if needed to create a cycle of length *t*, a contradiction. Thus, $vb \notin E$ and, by an analogous argument, $vb^- \notin E$. If $|V(P_x)| \ge 4$, then $\langle \{w, b^-, b\} \cup V(P_x) \cup V(P_y) \rangle$ contains an induced $N_{2,2,1}$. Thus, $|V(P_x)| \le 3$.

If $ub \in E$, then the cycle $C' = ubCu^-u^+Cw^-w^+Cb^-wxP_xu$ has length t or t+1. Then omitting v if necessary, one can find a cycle of length t in G, a contradiction. Thus, $ub \notin E$ and, by a similar argument $ub^- \notin E$.

Observe that $\langle \{w, b^-, b\} \cup V(P_x) \cup V(P_y) \rangle$ contains an induced $N_{2,2,1}$, unless $|V(P_x)| = |V(P_y)| = 2$. But then since $C_t \not\subseteq G$, we see that $\langle x, y, w, u, u^+, v, v^+, w^+ \rangle$ is an induced copy of $N_{2,2,1}$.

Case 2. $|V(P_z)| = 2$.

If $|V(P_y)| \ge 4$, then $\langle \{z, w\} \cup V(P_x) \cup V(P_y) \rangle$ contains an induced $N_{2,2,1}$. Thus, $|V(P_y)| \le 3$.

Suppose that $v^+w^+ \in E$. Let $C' = wzyP_yvC^-w^+v^+Cu^-u^+Cw$. Then $t \leq |V(C')| \leq t+1$, so, as $C_t \not\subseteq G$, |V(C')| = t+1. Since $C_t \not\subseteq G$, C' contains no hops. Hence, no vertex of $V(C) \setminus \{u, u^-, u^+, v, v^+, w, w^+\}$ has a neighbor in $V(G) \setminus V(C)$. Observe also that all neighbors of u, v and w on C are completely connected. Consequently, the chordless vertices of C' are contained in the set $\{z, u^-, u^+\} \cup V(P_y) \setminus \{v\}$. Thus, C' has at most five chordless vertices and one

can use Lemma 3.1 to reduce it to a cycle of length t, which contradicts the assumption that $C_t \not\subseteq G$. Therefore, $v^+w^+ \notin E$. This also implies that $vw, vw^+ \notin E$.

A similar argument shows that $uw, uw^+ \notin E$ if $|V(P_x)| \leq 3$. If $|V(P_y)| = 3$, this implies that $\langle \{z, w, w^+\} \cup V(P_x) \cup V(P_y) \rangle$ contains an induced $N_{2,2,1}$. Thus, $|V(P_y)| = 2$.

We have already seen that $v^+w^+ \notin E$, so there are no edges between $\{w, w^+\}$ and $\{v, v^+\}$. Similarly, there are no edges between u and $\{v, v^+, w, w^+\}$ if $|V(P_x)| = 2$. But now $\langle \{z, y, w, w^+, v, v^+\} \cup V(P_x) \rangle$ contains an induced $N_{2,2,1}$.

Case 3.
$$|V(P_z)| \ge 3$$
.

If $|V(P_x)| \ge 4$, then $\langle V(P_z) \cup V(P_x) \cup V(P_y) \rangle$ contains an induced $N_{2,2,1}$. Thus, $|V(P_z)| = |V(P_x)| = |V(P_y)| = 3$. Furthermore, we know that uv, uw, $vw \in E$ for the same reason. This implies that the graph $\langle (N(u) \cup N(v) \cup N(w)) \cap V(C) \rangle$ is complete. Since $|V(C)| = t - 1 \ge 5$, we know that $|(N(u) \cup N(v) \cup N(v) \cup N(w)) \cap V(C)| \ge 5$, and so $\langle (N(u) \cup N(v) \cup N(w)) \cap V(C) \cup S \rangle$ is a pancyclic graph on at least eleven vertices. Thus $t \ge 12$.

Let us assume that uCw is the longest among the paths uCw, wCv, and vCu. Since $t \ge 12$, $|V(uCw)| \ge 4$. In fact, since none of the cycles of the type

$$wP_{z}z[x]yP_{y}vC^{-}w^{+}v^{+}Cu^{-}[u][u^{+}][w^{-}]w$$

has length *t*, we have $|V(uCw)| \ge 8$.

We call a chord *ab* peripheral, if $V(aCb) \subseteq V(u^+Cw^-)$, $a^{++} \neq b$, and each other chord *cd* such that $c, d \in V(aCb)$, is a hop, that is, *c* and *d* lie at distance two on *C*. Note that since $u^+w^- \in E$, there exists at least one peripheral chord. Consider the cycle

$$C' = uP_x xzP_z wCv^- v^+ Cu^- w^- C^- u$$

of length t + 2. If the path u^+Cw^- contains two hops a^-a^+ and b^-b^+ such that aand b are non-consecutive vertices of C (and C'), then clearly we can omit a and bin C' obtaining a cycle of length t, contradicting the fact that $C_t \not\subseteq G$. Hence, we may assume that there are at most two hops on u^+Cw^- , say a^-a^+ and aa^{++} . Let bc be a peripheral chord of C. Assume first that $|V(b^+Cc^-)| \ge 4$ and consider the cycle $C'' = uP_xxyzP_zwCu^-w^-C^-u$ of length t + 4. Note that all vertices from $V(b^+Cc^-)$, except at most four contained in the set $X = \{a^-, a, a^+, a^{++}\}$, are ends of chords of C (and C'') with one end outside V(bCc). Thus, one can mimic the argument from the proof of Lemma 3.1 to show that all except four vertices of b^+Cc^- can be incorporated to bC''cb to transform it into a cycle of length t. If $|V(b^+Cc^-)| = 2$, then $uP_xxzP_zwCv^-v^+Cu^-w^-C^-cbC^-u$ is a cycle of length t. This contradiction with the assumption that $C_t \not\subseteq G$ completes the proof of Lemma 3.2. **Theorem 3.1.** Every 3-connected $\{K_{1,3}, N_{2,2,1}\}$ -free graph G on $n \ge 6$ vertices contains cycles of each length t, for $6 \le t \le n$.

Proof. By Lemma 3.2, it is enough to show that *G* contains a copy of either C_5 or C_6 . Suppose that this is not the case. Since *G* is claw-free and 3-connected, it contains a triangle *xyz*. Let $u \in V(G) \setminus \{x, y, z\}$. As *G* is 3-connected, there are three vertex-disjoint paths from *u* to $\{x, y, z\}$. Since *G* is a $N_{2,2,1}$ -free graph without C_5 and C_6 , there is a vertex *w* on one of these paths such that $\langle x, y, z, w \rangle$ is either K_4 , or K_4^- , the graph with four vertices and five edges.

Let $v \in V(G) \setminus \{x, y, z, w\}$. Consider three vertex-disjoint paths from v to $\{x, y, z, w\}$. If $\langle x, y, z, w \rangle = K_4$, the above argument guarantees a vertex w' on one of the paths with $|N(w') \cap \{x, y, z, w\}| \ge 2$, and C_5 can be found. If $\langle x, y, z, w \rangle = K_4^-$, say $xw \notin E$, then one of the three paths ends in y or z, say in y. Let w' be the predecessor of y on this path. One of the edges w'w and w'x has to be there to avoid the claw $\langle y, w, x, w' \rangle$, but this implies that $C_5 \subseteq G$, contradicting the choice of G.

4. FORBIDDING **P**₇, **N**_{4,0,0}, AND **N**_{3,1,0}

In this section, we deal with 3-connected claw-free graphs that contain no induced copy of one of the graphs P_7 , $N_{4,0,0}$, and $N_{3,1,0}$. We start with the following simple consequence of Lemma 3.1.

Lemma 4.1. Let G be a 3-connected claw-free graph on n vertices which, for some $5 \le t \le n - 1$, contains a cycle of length t with at least one chord but contains no cycles of length t - 1. Then G contains an induced copy of each of the graphs P_7 , $N_{4,0,0}$, and $N_{3,1,0}$.

Proof. Let *G* be a 3-connected claw-free graph, *C* be a cycle of length $t \ge 5$ in *G*, which contains at least one chord, and let us assume that *G* contains no cycles of length t - 1. Let *X* be the set of chordless vertices on *C*. Choose a chord *xy* in *C* for which $|V(xCy) \cap X|$ is minimal, and for no other chord x'y' such that $x' \in V(x^+Cy^-)$, $y' \in V(y^+Cx^-)$, and $|V(xCy) \cap X| = |V(x'Cy') \cap X|$, we have |V(x'Cy')| < |V(xCy)|. Since $C_{t-1} \not\subseteq G$, *C* contains no hops. Hence, by Lemma 3.1, $|V(xCy) \cap X| \ge 3$.

We first show that a chord *xy* can be chosen in such a way that $|V(xCy)| \ge 6$. Suppose that this is not the case and let *xy* be a chord which minimizes $|V(xCy) \cap X|$ and $V(x^+Cy^-) = \{x^+, x^{++}, y^-\} \subseteq X$. Let *uw* be a chord in *yCx* that minimizes $|X \cap V(uCw)|$, and assume that |V(uCw)| is minimal under this restriction. Then, again, $V(u^+Cw^-) = \{u^+, u^{++}, w^-\} \subseteq X$. If the set $\{u^+, u^{++}, w^-\}$ has more than one neighbor outside of *C*, we can extend *yCxy* through two of these neighbors and obtain a cycle of length t - 1. Thus, there is only one vertex *z* in $N(\{u^+, u^{++}, w^-\}) \setminus V(C)$, and since $\{u^+, u^{++}, w^-\} \subset X$, we have $zu^+, zu^{++}, zy^- \in E$. But *G* is 3-connected, so there has to be a path in $G - \{u, w\}$ from $\{u^+, u^{++}, w^-\}$ to x^+ . Therefore, *z* has another neighbor $z' \notin N(\{u^+, u^{++}, w^-\})$; this however leads to the claw $\langle z, z', u^+, w^- \rangle$. Thus, we may assume that $|V(xCy)| \ge 6$.

Note that, by the choice of |V(xCy)|, $xy^-, yx^+ \notin E$. To avoid the claws $\langle x, x^+, x^-, y \rangle$ and $\langle y, y^+, y^-, x \rangle$, we have $xy^+, yx^- \in E$. If $x^+y^+ \in E$, then the cycle $x^+Cyx^-C^-y^+x^+$ has length t-1, thus $x^+y^+ \notin E$. To avoid the claw $\langle x, x^+, x^-, y^+ \rangle$, we have $x^-y^+ \in E$. Moreover, since $C_{t-1} \not\subseteq G$, the pairs x^-y , x^-y^-, x^-y^-, x^-y^- are not edges of G and the choice of |V(xCy)| guarantees that $x^-y^{3-}, x^-y^{3-}, x^-y^{4-}, x^-y^{4-} \notin E$. Now $\langle x^-, x^-, y, y^-, y^{3-}, y^{4-} \rangle$ is a copy of P_7 , $\langle y^+, x^-, y, y^-, y^{3-}, y^{4-} \rangle$ is $N_{4,0,0}$, and $\langle y, x, x^-, x^+, x^{++}, x^{3+}, x^{--} \rangle$ is an induced copy of $N_{3,1,0}$.

The following result has been shown by Łuczak and Pfender [3].

Theorem 4.1. Every 3-connected $\{K_{1,3}, P_{11}\}$ -free graph G is hamiltonian.

As an immediate consequence of Lemma 4.1 and Theorem 4.1, we get the following theorem.

Theorem 4.2. Let G be a 3-connected $\{K_{1,3}, P_7\}$ -free graph on n vertices. Then G contains a cycle of length t, for each $7 \le t \le n$.

Proof. Let G be a 3-connected $\{K_{1,3}, P_7\}$ -free graph on n vertices. From Theorem 4.1, it follows that G is hamiltonian. Let C_t , $8 \le t \le n$, be a cycle of length t in G. Since G is P_7 -free, C_t must have a chord. Hence, Lemma 4.1 implies that G contains a cycle of length t - 1.

The next result states that 3-connected $\{K_{1,3}, N_{4,0,0}\}$ -free graphs contain cycles of all possible lengths, except, perhaps, four and five.

Theorem 4.3. Every 3-connected $\{K_{1,3}, N_{4,0,0}\}$ -free graph G on n vertices contains cycles of each length t, for $6 \le t \le n$.

Proof. We show first that every 3-connected $\{K_{1,3}, N_{4,0,0}\}$ -free graph is Hamiltonian. Let *G* be a 3-connected claw-free graph *G* which is not Hamiltonian. From Theorem 4.1, it follows that *G* contains an induced path $P = v_1 \cdots v_{11}$. Since *G* is 3-connected, v_6 has at least one neighbor *w* outside *P*. Furthermore, *G* is claw-free and *P* is induced, so *w* cannot have neighbors in both sets $\{v_1, v_2, v_3, v_4\}$ and $\{v_8, v_9, v_{10}, v_{11}\}$. Thus, suppose that *w* has no neighbors in $\{v_1, v_2, v_3, v_4\}$ and let i_0 denote the minimum *i* such that v_i is adjacent to *w* (i.e., i_0 is 5 or 6). Since *G* is claw-free, v_{i_0+1} is adjacent to *w*, and so the vertices $v_{i_0-4}, v_{i_0-3}, v_{i_0-2}, v_{i_0-1}v_{i_0}v_{i_0+1}w$ span an induced copy of $N_{4,0,0}$ in *G*. Hence, each 3-connected $\{K_{1,3}, N_{4,0,0}\}$ -free graph on *n* vertices contains a cycle of length *n*.

Thus, to show the assertion, it is enough to verify that if a 3-connected $\{K_{1,3}, N_{4,0,0}\}$ -free graph *G* contains a cycle $C = v_1 \cdots v_t v_1$ of length $t, 7 \le t \le n$, then it also contains a cycle of length t - 1. From Lemma 4.1, it follows that it is enough to consider the case in which *C* has no chords, that is, each vertex of *C*

has at least one neighbor outside *C*. Note that since *G* is claw-free, each $w \in N(C)$ must have at least two neighbors on *C*. But *G* is also $N_{4,0,0}$ -free which implies that for each such vertex $|N(w) \cap V(C)| \ge 3$, and one can use the fact that *G* is $\{K_{1,3}, N_{4,0,0}\}$ -free again to verify that each $w \in N(C)$ has precisely four neighbors on *C*: v_i , v_{i+1} , v_j and v_{j+1} . If $j \ge i + 6$, then *G* contains an induced copy of $N_{4,0,0}$ on vertices v_j , v_{j+1} , w, v_{i+1} , v_{i+2} , v_{i+3} , v_{i+4} . Moreover, if $j \le i + 4$, then there is a cycle of length t - 1 in *G* containing the vertex *w*. Thus, we may assume that j - i = i - j = 5, that is, t = 10 and each $w \in N(C)$ is adjacent to vertices v_i , v_{i+1} , v_{i+5} , v_{i+6} for some $i = 1, \ldots, 10$. Let *w* be adjacent to v_1, v_2, v_6, v_7 , and let *w'* be a neighbor of v_4 . Assume that $N(w') = \{v_3, v_4, v_8, v_9\}$. Then the vertices $v_1, v_2, w, v_6, v_5, v_4, w'$ span a copy of $N_{4,0,0}$; since *G* is $N_{4,0,0}$ -free, this copy is not induced; consequently, *w* and *w'* must be adjacent. But this leads to a cycle $v_3w'wv_7v_8 \cdots v_2v_3$ of length t - 1 = 9 in *G*.

We conclude this section with a result on 3-connected $\{K_{1,3}, N_{3,1,0}\}$ -free graphs.

Theorem 4.4. Every 3-connected claw-free graph G on n vertices which contains no induced copy of $N_{3,1,0}$ contains a cycle of length t for each $6 \le t \le n$.

Proof. We show first that each $\{K_{1,3}, N_{3,1,0}\}$ -free 3-connected graph is Hamiltonian. Suppose that it is not the case and let *G* be a non-Hamiltonian $\{K_{1,3}, N_{3,1,0}\}$ -free 3-connected graph with the minimum number of vertices. From Theorem 4.1, it follows that *G* contains an induced path $P = v_1 v_2 \cdots v_{11}$. Since *G* is claw-free and *P* is induced, every vertex $w \in V(G) \setminus V(P)$ adjacent to v_i , $i = 2, \ldots, 10$, must be also adjacent to either v_{i-1} , or v_{i+1} . Note, however, that since *G* contains no induced copy of $N_{3,1,0}$, we have $|N(w) \cap V(P)| \ge 3$, unless $N(w) \cap V(P)$ is either $\{v_1, v_2\}$, or $\{v_{10}, v_{11}\}$. Moreover, if $w \in V(G) \setminus V(P)$ is adjacent to three non-consecutive vertices in $\{v_2, v_3, \ldots, v_{10}\}$, then the fact that *G* is claw-free implies that $|N(w) \cap V(P)| = 4$, which, as one can easily check by a direct examination of all cases, would lead to an induced copy of $N_{3,1,0}$. Hence, each vertex $w \in V(G) \setminus V(P)$ which is adjacent to one of the vertices v_3, \ldots, v_9 , has precisely three neighbors on *P*: v_{i-1} , v_i , and v_{i+1} for some $i \in \{2, 3, \ldots, 10\}$. Hence, for $i = 3, \ldots, 9$, set

$$V_i = \{v_i\} \cup \{w \in V(G) \setminus V(P) : N(w) \cap V(P) = \{v_{i-1}, v_i, v_{i+1}\}\}$$

= $N(V_{i-1}) \cap N(V_{i+1}).$

Claim 4.1.

- (i) The path $v_1 \cdots v_{i-1} v'_i v_{i+1} \cdots v_{11}$ is induced for every $i = 3, \ldots, 9$ and $v'_i \in V_i$.
- (ii) Every two vertices of V_i , i = 3, ..., 9, are adjacent.
- (iii) All vertices of V_i and V_{i+1} , i = 3, ..., 8, are adjacent.
- (iv) $N(V_i) = V_{i-1} \cup V_{i+1}$ for $i = 4, 5, \dots, 8$.

Proof. Each $v'_i \in V_i \setminus \{v_i\}$ has only three neighbors v_{i-1}, v_i, v_{i+1} on P, so (i) follows. Let $v'_i, v''_i \in V_i$. Consider the claw $\langle v_{i+1}, v'_i, v''_i, v_{i+2} \rangle$. From (i) it follows that v_{i+2} is adjacent to neither v'_i , nor v''_i , so $v'_i v''_i \in E(G)$, showing (ii).

Now let $v'_i \in V_i$, $v'_j \in V_j \setminus \{v_j\}$, for $3 \le i < j \le 9$. Since the path $v_1 \cdots v_{i-1} v'_i v_{i+1} \cdots v_{11}$ is induced, v'_j must have on it precisely three consecutive neighbors. Hence, from the definition of V_j , we infer that v'_i and v'_j are adjacent if j = i + 1, and non-adjacent otherwise. Finally, note that if $v'_i \in V_i$, $i = 4, \ldots, 8$, has a neighbor $w \in V(G) \setminus V(P)$, then, because of the claw $\langle v'_i, w, v_{i-1}, v_{i+1} \rangle$, w must have a neighbor on P, and thus $w \in V_{i-1} \cup V_i \cup V_{i+1}$.

Let G' denote the graph obtained from G by deleting all vertices from V_6 , and connecting all vertices of V_5 with all vertices of V_7 . Then G' is 3-connected, clawfree, and contains no induced copy of $N_{3,1,0}$ (note that no induced copy of $N_{3,1,0}$ in G' contains vertices of both V_3 and V_9). Thus, since G is a smallest 3-connected $\{K_{1,3}, N_{3,1,0}\}$ -free non-Hamiltonian graph, G' is Hamiltonian. But each Hamiltonian cycle in G' can be easily modified to get a Hamiltonian cycle in G, contradicting the choice of G. Hence, each 3-connected $\{K_{1,3}, N_{3,1,0}\}$ -free graph is Hamiltonian.

Now let us assume that a 3-connected $\{K_{1,3}, N_{3,1,0}\}$ -free graph *G* contains a cycle $C = v_1 v_2 \cdots v_t v_1$ of length $t, 7 \le t \le n$. We shall show that it must also contain a cycle of length t - 1. If *C* contains at least one chord, the existence of such a cycle follows from Lemma 4.1, so assume that *C* contains no chords. If a vertex $w \in V(G) \setminus V(C)$ has a neighbor v on *C*, then, since *G* is claw-free, one of the vertices v^-, v^+ , must be adjacent to w as well. Furthermore, since *G* is $N_{3,1,0}$ -free, w cannot have only two neighbors on *P*. On the other hand, using the fact that *G* is claw-free once again, we infer that if v has three non-consecutive neighbors on *P*, then it must have precisely four of them. Furthermore, each choice of four neighbors on *P* leads either to an induced copy of $N_{3,1,0}$, or to a cycle of length t - 1. Thus, we may assume that each vertex $w \in V(G) \setminus V(C)$ adjacent to at least one vertex from *C* is, in fact, adjacent to precisely three vertices v_i, v_{i+1} , and v_{i+2} , for $i = 1, \ldots, t$, where, of course, the addition is taken modulo *t*. Let us define

$$V_i = \{v_i\} \cup \{w \in V(G) \setminus V(P) : N(w) \cap V(P) = \{v_{i-1}, v_i, v_{i+1}\}\}$$

= $N(V_{i-1}) \cap N(V_{i+1}),$

for i = 1, 2, ..., t. Then one can use an argument identical with the one used in the proof of Claim 4.1 to show that $V(G) = V_1 \cup \cdots \cup V_t$ is a partition of the set of the vertices of *G* into complete graphs, each vertex from V_i is adjacent to each vertex from V_{i+1} , and $N(V_i) = V_{i-1} \cup V_{i+1}$, for i = 1, ..., t. Note that if $|V_i| = |V_j| = 1$ for some $i \neq j$, then |j - i| = 1 since otherwise the set $V_i \cup V_j = \{v_i, v_j\}$ would be a vertex-cut, while *G* is 3-connected. Hence, for some *i*, in the sequence $V_i, V_{i+1}, ..., V_{i-1}$, each $V_j, i + 1 \leq j \leq i - 2$, has at least two elements. Clearly, it implies that *G* contains cycles of all lengths $t, 3 \leq t \leq n$; in particular, a cycle of length t - 1.

5. PROOF OF THEOREM 1.2

In this section, we conclude the proof of Theorem 1.2, showing that if a 3connected claw-free graph *G* does not contain an induced copy of one of the graphs P_7 , $N_{4,0,0}$, $N_{3,1,0}$, $N_{2,2,0}$, $N_{2,1,1}$, then it contains a cycle of length *t*, for t = 4, 5, 6.

Lemma 5.1. Let G be a 3-connected claw-free graph which contains a cycle of length seven but no cycles of length six. Then G contains an induced copy of P_7 .

Proof. Let G be a 3-connected claw-free graph without copies of C_6 and let $C = v_1 v_2 \dots v_7 v_1$ be a cycle of length seven in G. Since $C_6 \not\subseteq G$, C contains no hops. Applying Lemma 3.1, we infer that C contains no chords.

Let $x \in N(v_1) \setminus V(C)$. Then xv_2 or xv_7 is an edge to avoid a claw $\langle v_1, x, v_2, v_7 \rangle$. By symmetry, we may assume that $xv_2 \in E$. To avoid the $P_7 \langle x, v_2, v_3, \ldots, v_7 \rangle$, x must have another neighbor on C. Since $C_6 \not\subseteq G$, the only possible candidates for neighbors of x are v_3 and v_7 . Without loss of generality, we may assume that $xv_3 \in E$. Let $P = (v_2 =)y_0y_1 \ldots y_k (= v_4)$ be the shortest path from v_2 to v_4 in $G - \{v_1, v_3\}$. As $v_4v_1 \notin E$, this path contains a vertex which is not adjacent to both v_1 and v_3 ; let y_ℓ denote the first such vertex on P. To avoid the claw $\langle y_{\ell-1}, y_\ell, v_1, v_3 \rangle$, either v_1y_ℓ or v_3y_ℓ is an edge, say $v_3y_\ell \in E$. As $\langle y_\ell, v_3, v_4, \ldots, v_1 \rangle$ is not P_7 , $y_\ell v_4 \in E$. But now, if $\ell \ge 2$, then $v_1v_2v_3v_4y_\ell y_{\ell-1}v_1$ is a cycle of length six, and if $\ell = 1$, then such a cycle is spanned by the vertices $v_1, v_2, y_1, v_4, v_3, x$, contradicting the fact that $C_6 \not\subseteq G$.

Lemma 5.2. If a 3-connected claw-free graph G contains a cycle of length six but no cycles of length five, then G contains an induced copy of each of the graphs P_7 , $N_{4,0,0}$, $N_{3,1,0}$, $N_{2,2,1}$.

Proof. Let G be a 3-connected claw-free graph and let $C = v_1 v_2 \cdots v_6 v_1$ be a cycle of length six contained in C. We split the proof into several simple steps.

Claim 5.1. *G* contains no induced copy of K_4^- , that is, the graph with four vertices and five edges.

Proof. Let $X = \{v_1, v_2, v_3, v_4\} \subseteq V(G)$ be such that all pairs of vertices from X, except for $\{v_1, v_2\}$, are edges of G. Since G is 3-connected, one of the vertices $\{v_3, v_4\}$, say, v_3 , must have a neighbor $w \notin X$. Because G is claw-free, w must be adjacent to one of the vertices v_1, v_2 , say, to v_1 . But this leads to a cycle $v_1wv_3v_2v_4v_1$.

Claim 5.2. *C* has no chords. Moreover, no two non-consecutive vertices v_i , v_j of *C* are connected by a path of either of the types $v_i w v_j$, $v_i w w' v_j$, where $w, w' \notin V(C)$.

Proof. Since $C_5 \not\subseteq G$, C contains no hops. Applying Lemma 3.1, we infer that C contains no chords.

Furthermore, each path of type $v_i w v_j$ leads to either C_5 or K_4^- , so we can eliminate them using Claim 5.1. Finally, the only paths of type $v_i w w' v_j$ which do

not immediately yield C_5 are of type $v_i w w' v_i^{+++}$, but then $\langle v_i, v_i^-, v_i^+, w \rangle$ is a claw, and any edge between vertices v_i^-, v_i^+, w leads to a cycle of length five.

Claim 5.3. *G* contains a vertex *x* which lies at distance two from *C*.

Proof. Suppose that all vertices of *G* are within distance one from *C*. Then the fact that *G* is 3-connected implies that there exist two non-consecutive vertices $v_i, v_j \in V(C)$ which are joined by a path of length at most three, which contradicts Claim 5.2.

Let *x* be a vertex that lies at distance two from *C*, and let *w* denote a neighbor of *x* that lies within distance one from *C*. Claim 5.2 and the fact that *G* is clawfree imply that *w* has two consecutive neighbors on *C*, say, v_1 and v_2 . From Claim 5.2, we infer that the graph *H* induced by the vertices $V(C) \cup \{x, w\}$ has only nine edges: the six edges of *C* and three incident to *w*. Note that *H* contains induced copies of both P_7 and $N_{3,1,0}$.

Now let $w' \notin V(H)$ be a neighbor of v_3 . Note that because $C_5 \not\subseteq G$, w' is adjacent neither to x nor to w. From Claim 5.2 and the fact that G is claw-free, it follows that the only neighbor of w' in V(H), except v_3 , is in the set $\{v_2, v_4\}$. If $w'v_4 \in E$, then the vertices $x, w, v_1, v_2, v_3, w', v_6, v_5$ span an induced copy of $N_{2,2,1}$, and $\langle w, v_2, v_1, v_6, v_5, v_4, w' \rangle$ is $N_{4,0,0}$. Hence, assume that $w'v_2 \in E$. Now let x' be a neighbor of w' outside V(H) which is not adjacent to both v_2 and v_3 (the fact that G is 3-connected and Claim 5.2 guarantee that such a vertex always exists). Then, since G is claw-free and $C_5 \not\subseteq G$, x' is adjacent to none of the vertices of V(H). But now the vertices $x, w, v_1, v_2, w', x', v_6, v_5$ span an induced copy of $N_{2,2,1}$ in G.

Finally, let $w'' \in N(v_5) \setminus V(C)$. Then, either $v_4w'' \in E$, or $v_6w'' \in E$. If $v_4w'' \in E$, then $\langle w'', v_4, v_5, v_6, v_1, v_2, w' \rangle$ is $N_{4,0,0}$, if $v_6w'' \in E$, then $\langle w'', v_6, v_5, v_4, v_3, v_2, w \rangle$ is $N_{4,0,0}$, as $ww'', w'w'' \notin E$ by Claim 5.2.

For our argument, we also need the following simple observation on G_1 defined in the Introduction (see Fig. 2).

Fact 5.1. Let G be a 3-connected claw-free graph which contains no cycles of length four. Let \tilde{G}_1 be a copy of G_1 in G. Then

- (i) The copy G₁ is induced. In particular, G contains induced copies of each of the graphs P₇, Ł, N_{4,0,0}, N_{3,1,0}, N_{2,2,0}, N_{2,1,1}.
- (ii) If $G \neq G_1$, then G contains an induced copy of $N_{2,2,1}$.

Proof. It is easy to check that if we add any edge to G_1 , then either we create a copy of C_4 , or we get $K_{1,3}$ which, in turn, since G is claw-free, forces a cycle of length four. Thus, (i) follows. In order to show (ii) note that, since \tilde{G}_1 is induced, any vertex $x \in V(G) \setminus V(\tilde{G}_1)$ with a neighbor in \tilde{G}_1 must be adjacent to precisely two vertices of \tilde{G}_1 , which are connected by an edge which belongs to none of the four triangles contained in \tilde{G}_1 . Now it is easy to check that a subgraph spanned in G by $\{x\} \cup V(\tilde{G}_1)$ contains an induced copy of $N_{2,2,1}$ in which x has degree one and is adjacent to a vertex of degree three.

Lemma 5.3. Let G be a 3-connected claw-free graph which contains a cycle of length five but no cycles of length four. Then G contains an induced copy of each of the graphs P_7 , $N_{4,0,0}$, $N_{3,1,0}$, $N_{2,2,0}$, $N_{2,1,1}$. Furthermore, if $G \neq G_1$, then G contains an induced copy of $N_{2,2,1}$.

Proof. Let $C = v_1 v_2 v_3 v_4 v_5 v_1$ be a cycle of length five in a 3-connected clawfree graph *G*, which contains no cycles of length four. Clearly, *C* contains no chords. Let S = N(V(C)). Since $C_4 \not\subseteq G$ and *G* is claw-free, each vertex $w \in S$ is adjacent to precisely two consecutive vertices of *C*, for each two vertices $w', w'' \in S$ we have $N(w') \cap V(C) \neq N(w'') \cap V(C)$, and *S* is independent. A vertex *w* from *S*, we call w_i , if *w* is adjacent to v_i and v_{i+1} . Observe also that, since *S* is independent and *G* is claw-free, any vertex $x \notin V(C) \cup S$ has in *S* at most two neighbors; consequently, *G* must contain an edge with both ends in $V(G) \setminus (V(C) \cup S)$.

Now let us assume that there exists an edge xy, such that $x, y \notin V(C) \cup S$ and each of the vertices x and y has two neighbors in S, denoted x_1, x_2 and y_1, y_2 , respectively. Because of the claw $\langle x, x_1, x_2, y \rangle$, we may assume that $x_1 = y_1 = w_1$. Furthermore, to avoid C_4 , x and y must be adjacent to different vertices from the set $\{w_3, w_4\}$. But now the graph H induced in G by the set $V(C) \cup \{x, y, w_1, w_3, w_4\}$ contains a copy of the graph G_1 and the assertion follows from Fact 5.1.

Thus, we may assume that each edge contained in $V(G)\setminus (V(C)\cup S)$ has at least one end which is adjacent to at most one vertex from *S*. Note also that if a vertex $x \in V(G)\setminus (V(C)\cup S)$ has just one neighbor in *S*, then it must have at least two neighbors x', x'' in $V(G)\setminus (V(C)\cup S)$, and all three vertices x, x', x'' cannot share the same neighbor in *S* because $C_4 \not\subseteq G$. Consequently, as *G* is claw-free, we may assume that *G* contains vertices *x* and *y* such that *x* is adjacent to *y*, *y* is adjacent to w_1 , *x* has at most one neighbor in *S*, and it is different than w_1 , and *y* has at most one more neighbor in *S* (then it must be either w_3 or w_4). Let *F* be the graph spanned in *G* by $V(C) \cup \{x, y, w_1\}$. It contains precisely nine edges: five edges of *C*, three edges incident to w_1 , and *xy*.

Clearly, $xyw_1v_2v_3v_4v_5$ is an induced copy of P_7 in $F \subseteq G$. In order to find in G induced copies of $N_{4,0,0}$ and $N_{3,1,0}$, consider the neighbor of v_4 in S: without loss of generality, we may assume that it is w_3 . If w_3 is not adjacent to y, then G contains an induced copy of $N_{4,0,0}$ (on the vertices $y, w_1, v_1, v_5, v_4, v_3, w_3$) as well as an induced copy of $N_{3,1,0}$ (with the vertex set $\{y, w, v_2, v_3, w_3, v_4, v_5\}$). Thus, assume that w_3 is the only neighbor other than w_1 of y in S. Because of the claw $\langle y, x, w_1, w_3 \rangle$, w_3 is also the only neighbor of x in S. But then the vertices $v_2, v_1, v_5, v_4, w_3, x, y$ span in G an induced copy of $N_{4,0,0}$, while the vertices $w_1, v_1, v_5, v_4, v_3, w_3, x$ span an induced copy of $N_{3,1,0}$.

Finally, we shall show that G contains an induced copy of $N_{2,2,1}$. Thus, let x, y be defined as above and let w_3 be a neighbor of v_4 . Consider now two possible

choices for a neighbor of v_5 . Assume first, that there is a vertex w_4 adjacent to both v_4 and v_5 . Then vertices y, w_1 , v_1 , v_2 , v_3 , w_3 , v_5 , and w_4 span a copy of $N_{2,2,1}$. It is induced unless y is adjacent to one of the vertices w_3 , w_4 , say w_3 . Then, because of the claw $\langle y, x, w_1, w_3 \rangle$, x is also adjacent to w_3 , and none of the vertices x, y, is adjacent to w_4 . But then the vertices x, y, w_1 , v_1 , v_2 , v_3 , v_5 , and w_4 span an induced copy of $N_{2,2,1}$.

Thus, suppose that *G* contains a vertex w_5 , adjacent to both v_5 and v_1 . Note that the vertices x, y, w_1 , v_1 , v_2 , v_3 , v_4 , and w_5 span an induced copy of $N_{2,2,1}$, unless $w_5x \in E$. But if $w_5x \in E$, then w_3 is adjacent to neither x nor y, and so there is an induced copy of $N_{2,2,1}$ on the vertices y, x, w_5 , v_1 , v_2 , v_5 , v_4 , w_3 .

As an immediate consequence of Theorem 3.1; and Lemmas 5.2 and 5.3, we get the following result.

Theorem 5.1. Each 3-connected $\{K_{1,3}, N_{2,2,1}\}$ -free graph is either isomorphic to G_1 , or pancyclic.

Finally we can complete the proof of the main result of the paper.

Proof of Theorem 1.2. We have already seen that (i) implies (ii). Since the graphs $N_{2,2,0}$ and $N_{2,1,1}$ are induced subgraphs of $N_{2,2,1}$, the fact that (i) follows from (ii) is an immediate consequence of Theorems 2.1, 4.2–4.4, Lemmas 5.1–5.3, and Theorem 5.1

We conclude the paper with a remark that for Theorem 1.2, the graphs G_0 and G_1 we introduced at the beginning of the paper are, in a way, extremal. It follows that the smallest 3-connected claw-free graph G, which is not pancyclic, has ten vertices. Indeed, by Theorem 1.2, we may assume that G contains an induced path P on seven vertices. The minimal degree of G is at least three, so there are at least nine edges incident to V(P), which do not belong to P. But G is claw-free, so no vertex from $V(G) \setminus V(P)$ is adjacent to more than four vertices from P. Consequently, $|V(G) \setminus V(P)| \ge 3$. In fact, one can examine the proof of Lemma 5.3 to verify that the graph G_1 is the only 3-connected claw-free graph G on ten vertices, which is not pancyclic. In a similar manner, one can also deduce from Theorem 4.1 and the proof of Lemma 5.2 that the graph G_0 (Fig. 2) is the unique smallest 3-connected claw-free graph on at least five vertices, which does not contain a cycle of length five.

REFERENCES

- [1] B. Bollobás, Modern Graph Theory, Springer Verlag, New York, 1998.
- [2] R. J. Faudree and R. J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math 173 (1997), 45–60.
- [3] T. Łuczak and F. Pfender, Claw-free 3-connected P_{11} -free graphs are Hamiltonian, J Graph Theory (to appear).