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Abstract

In this paper we generalize a Theorem of Jung which shows that 1-tough graphs with�(G)� |V (G)|−42 are hamiltonian. Our
generalization shows that these graphs contain a wide variety of 2-factors. In fact, these graphs contain not only 2-factors having
just one cycle (the hamiltonian case) but 2-factors withk cycles, for anyk such that 1�k�n−16

4 .
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1. Introduction

The study of 2-factors, 2-regular spanning subgraphs, or in other words, the disjoint union of cycles that span the vertex set of
a graph, has long been fundamental in graph theory. Historically, two questions have been at the forefront of this study. Under
what conditions will a 2-factor exist? Is this 2-factor a single cycle (the hamiltonian problem)? However, harder questions about
the actual structure of 2-factors have also been considered. For example, Aigner and Brandt[1] showed that ifG has ordern
and minimum degree�(G)�2n−1

3 , thenG contains any graph of maximum degree 2. This verified a conjecture of Sauer and
Spencer[6]. In this paper, we consider the question when a 1-tough graph contains a 2-factor with exactlyk cycles. We begin
with the classic result by Dirac[3] later extended in[2].

Theorem 1 (Dirac [3]). If G is a graph of ordern�3with �(G)�n/2, thenG is hamiltonian.
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Fig. 1. Sharpness example.

Theorem 2 (Brandt et al.[2]). If G is a graph of ordern�3with �(G)�n/2, thenG contains a2-factor with exactlyk cycles,
for 1�k�n/4.

Jung[5] strengthened Theorem 1 under the conditionG is 1-tough.

Theorem 3 (Jung[5]). A 1-tough graphG ordern�11with �(G)�((n− 4)/2) is hamiltonian.

We extend Jung’s result in a manner somewhat similar to Theorem 2.

Theorem 4. If G has ordern and�(G)�((n−4)/2), then(1) if G is disconnected of ordern�8, thenG contain a2-factor with
k cycles for2�k��((n− 4)/3)�, (2) if G is connected of ordern�8, but not1-tough, thenG contains a2-factor withk cycles
for 2�k��((n − 4)/3)�, (3) if G is 1-tough of sufficiently large ordern with �(G)�((n − t)/2), (0�t�4), thenG contains a
2-factor withk cycles where1�k�n/4− t .

Thesharpnessof part (3) is demonstratedby thesamegraph that shows thesharpnessofTheorem3.Thenet is thegraphobtained
by attaching a new edge at each corner of a triangle. Now consider the graph with two sets, one consisting oft + 1 independent
vertices and the other one consisting oft independent vertices and a copy of the net. Now complete the graph by inserting all
possible edges between the two sets (seeFig. 1). This graph has ordern= 2t + 7 and minimum degreet + 1= ((n− 5)/2). It
is also 1-tough, but has no hamiltonian cycle, in fact, it has no 2-factors at all. Thus, the minimum degree condition is sharp.
The sharpness of parts (1) and (2) can be seen by first taking two copies ofKn/2 (n/2 ≡ 2mod3) and deleting a matching

from each. Now each component has the proper minimum degree and the two factors are trivial to construct for (1). For part (2)
merely join one vertex from each copy with an edge and repeat the 2-factor construction.
In order to prove Theorem 4, we will make use of the following result from[4].

Theorem 5. Let k be a positive integer and let G be a balanced bipartite graph of order2n wheren�max{51, k2/2+ 1}. If
degu+ degv�n+ 1 for everyu ∈ V1 andv ∈ V2, then G contains a2-factor with exactly k cycles.

Let N(x) and N̄(x) denote the neighbors and nonneighbors of the vertexx, respectively. IfCi is a cycle inG, then let
|V (Ci)| = ci . If V (G) is partitioned into setsS1, . . . , Sk and the graph induced by eachSi , denoted〈Si〉, contains a spanning
cycle, we say thatV (G) is partitioned into cyclesC1, . . . , Ck . For a given path (or segment of a cycle) with a given orientation,
denote the predecessor and successor of the vertexx according to this orientation asx− andx+, respectively. Moreover, we
denote thelth successor ofx by x(l)+. In other words, we definex(l)+ by x(1)+ = x+ andx(l)+ = (x(l−1)+)+ for l�2. Let
P = a0a1 . . . al be a path (or a segment of a cycle). Then the subpathaiai+1 . . . aj−1aj (i�j ) is denoted byai−→P aj . The same

subpath, traversed in the opposite direction, is denoted byaj
←−
P ai . Finally, the vertexx is insertible on a cycleC wheneverx is

adjacent to consecutive vertices ofC, thus allowingC to be extended to includex.
If a set of mutually disjointk cyclesC1, . . . , Ck and a (possibly empty) pathP coverV (G), then (C1, . . . , Ck, P ) is

called a(k,1)-partition. If C = (C1, . . . , Ck, P ) is a (k,1)-partition, and there is no(k,1)-partition (C′1, . . . , C′k, P ′) with|V (P ′)|<|V (P )|, thenC is said to be a maximum(k,1)-partition. Since we allow a path to be empty, a 2-factor withk
components forms a maximum(k,1)-partition.
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Lemma 1. LetG be a graph which has a(k,1)-partition, and let(C1, . . . , Ck, P ) be a maximum(k,1)-partition. Letx andy
be the starting vertex and the terminal vertex ofP , respectively. Then

(1) if |V (P )|�3, thendegCt x + degCt y��12 |V (Ct )|� for eacht with 1�t�k, and
(2) if |V (P )| = 2, thendegCt x + degCt y��23 |V (Ct )|� for eacht with 1�t�k.

Proof (Sketch). A standard adjacency ofx implies a nonadjacency ofy argument can be used.�

Lemma 2. Letk�2be an integer andG a graph of ordern�19with�(G)�1
2(n−4).SupposeG has amaximum(k,1)-partition

(C1, . . . , Ct , P ), then|V (P )|�1.

Proof (Sketch). Assume|V (P )|�2. LetH =〈V (P )〉 andK=〈⋃k
t=1V (Ct )〉. Letx andy be the starting vertex and the terminal

vertex ofP , respectively.
SupposeP = xy. Using Lemma 1, a direct count bounding degG x + degG y from both sides showsn�14, a contradiction.

Therefore,|V (P )|�3. Let�t = 1
2 |V (Ct )| − �12 |V (Ct )|� (1�t�k). Then, by Lemma 1

degG x + degG y�
k∑
t=1

(
1

2
|V (Ct )| − �t

)
= 1

2
|V (K)| −

k∑
t=1

�t .

AssumingH is not hamiltonian, and bounding degH x + degH y, produces a contradiction. Therefore,H is hamiltonian and a
direct count bounding degG x + degG y shows that|V (H)|�1

3n− 2
3.

LetC0 be a hamiltonian cycle ofH . For eachet ∈ E(Ct ) (1�t�k),
(C0, C1, . . . , Ct−1, Ct+1, . . . , Ck, Ct − et )

is a(k,1)-partition. Since(C1, . . . , Ck, P ) is maximum,|V (Ct )|�|V (P )| = |V (H)|. If k�3,

n�|V (H)| + |V (C1)| + |V (C2)| + |V (C3)|�4|V (H)|�4
(
n− 2

3

)
,

or n�8, a contradiction. Hencek = 2. Since|V (H)|�|V (Cj )| (j = 1,2), |V (H)|�1
3n, and we may conclude that degH x�

|V (H)| − 2 and degH y�|V (H)| − 2.
For eachv ∈ V (H), v+−→C 0v is a hamiltonian path ofH . By applying the same argument as above to this path instead ofP , we

have degH v�|V (H)|−2. Sincen�19 and|V (H)|�n−2
3 , this implies�(H)� |V (H)|+12 and henceH is hamiltonian-connected.

Now NK(u) �= ∅ for eachu ∈ V (H). Say z ∈ NC1(u), and sayz′ ∈ NC1(v) − {z}, then sinceH is hamiltonian-

connected, there exists a hamiltonian pathQ of H starting fromu and ending atv. Both (u
−→
Qvz′←−C 1zu, C2, z

′+−→C 1z
−)

and(u
−→
Qvz′−→C 1zu, C2, z

′−←−C 1z
+) are(2,1)-partitions ofG, hence|z′+−→C 1z

−|�|V (P )|�n−2
3 and|z′−←−C 1z

+|�n−2
3 .Then,

|V (C1)|�2n+2
3 and|V (C1)| + |V (C2)| + |V (H)|�n+ 3, a contradiction. Therefore,NC1(v) ⊂ {z} for eachv ∈ V (H)− {u}.

Applying the same argument toC2 and asV (H)�3,H has a vertexwwith degC1w�1 and degC2 w�1. Then degG w�|V (H)|−
1+ 2�1

3n+ 1< 1
2(n− 4) sincen�19, a contradiction, and the lemma follows.�

Proof of Theorem 4. For (1) note thatG can have only two components and each must be very dense, hence construction of
the 2-factors is easy. For (2) note that ifG is connected but not 1-tough,G contains a cut vertex, and again the two components
must be very dense.
For (3) we proceed by induction ont . Fort=0 we apply Theorem 2.Also, fork=1 the result follows fromTheorem 3. Hence,

we may assume thatt�1 andk�2. Thus inductively, we assume that for any 1-tough graph with�(G)�n−(t−1)
2 (1�t <4) the

result follows for allk in the appropriate range. Now letG be 1-tough with�(G)�n−t
2 and consider the graphG+w, for some

new vertexw. This graph is clearly 1-tough and�(G + w)�n−t
2 + 1= n+1−(t−1)

2 . This implies by the induction hypothesis

thatG+ w contains a 2-factor withk + 1 cycles where 1�k + 1�n+1
4 − (t − 1).

Thus,G containsk cycles, sayC1, C2, . . . , Ck (t�k�n/4− t) and a pathP (where|V (P )| = p) that partitionV (G). Over
all such collections ofk cycles and a path, choose one withc1+· · ·+ ck a maximum.Without loss of generality we may assume
that|V (C1)|�|V (C2)|� · · ·�|V (Ck)| and hence,n�3k + p.
By Lemma 2,p=1. Thus, we have disjoint cyclesC1, C2, . . . , Ck (k�2) andx not on any cycle, such that,V (G)=V (C1)∪
· · · ∪ V (Ck) ∪ {x}. If x is insertible on any cycle, then the desired 2-factor exists. Thus, we may assume this fails to occur.
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Since degx�n−4
2 , the adjacencies ofx must nearly alternate on each cycle, with a few possible minor exceptions. These are

that x might once be nonadjacent to four consecutive vertices of one cycle, we call this a 4-gap with respect tox, or x may
have one 3-gap and one 2-gap, orx may have three 2-gaps. LetN0 = {v ∈

⋃
V (Ci)(1�i�h)|v−, v+ ∈ N(x) andv /∈N(x)}.

Vertices ofN0 are the 1-gap vertices with respect tox.
Any w ∈ N0 ∩ V (Ci) may be replaced onCi by x, with w then replacingx in the system. Thus, we may assume thatw has

adjacency conditions analogous tox. Denote this property asw ≈ x. �

Claim 1. There are no chords between vertices ofN0 on the same cycle.

Supposea1b1 ∈ E(G) for a1, b1 ∈ N0∩V (Ci), somei i, 1�i�k. ThenCi may be extended to includex asx, a−1 , a−−1 , . . . ,

b+1 , b1, a1, a
+
1 , . . . , b

−
1 , x. This cycle, along with the remainingk − 1 cycles form the desired 2-factor, a contradiction.

Claim 2. Supposea1 ∈ V (Ci) ∩ N0 andb1 ∈ V (Cj ) ∩ N0, i �= j , and supposea1b1 ∈ E(G). Further, suppose thatCi has
only1-gaps with respect tox. Then|V (Ci)|�6.

Suppose|V (Ci)|�7. Then,|V (Ci)| is even, say|V (Ci)| = 2m�8. LetCi bea1, z1, a2, z2, . . . , am, zm, a1. Then, asx ≈ ar
m−1�degCi ar�m for eachar ∈ N0∩V (Ci) and any chord ofCi from ar is of the formarzs , wherear ∈ N0 andzs ∈ N(x).
Thus, at least one ofz1 or zm has a chord to somear . If sayz1 has such a chord, thenx, zr , . . . , zm, a1, b1, b

+
1 , . . . , b

−
1 , x and

z1, a2, a
+
2 , . . . , ar , z1 and the remainingk − 2 cycles form the desired 2-factor, a contradiction.

Thus if any vertex ofN0 with positive degree in〈N0〉 is on a 1-gap cycleCi , thenCi must be a cycle of order 4 or 6.

Claim 3. Any vertex ofN0 does not have adjacencies to bothN0 vertices on three4-cycles.

Suppose not, say somev ∈ V (C1)∩N0 is adjacent tob1, b2 ∈ V (C2)∩N0, c1, c2 ∈ V (C3)∩N0 andd1, d2 ∈ V (C4)∩N0
whereC2, C3 andC4 are 4-cycles. LetC2 bew1, b1, w2, b2, w1 and letC3 bey1, c1, y2, c2, y1 andC4 be r1, d1, r2, d2, r1.
Also letC1 bev, z1, a1, . . . , am, zm, v.
If z1 is adjacent to someaj ∈ N0 ∩ V (C1) anda+j = zj ∈ N(x)∩C1, then the cyclesz1, z+1 , . . . , aj , z1 andzj , z+j , . . . , v,

b1, w2, b2, w1, x, zj extend the 2-factor, a contradiction. Alsoz1 must have no adjacencies toC2 orC3, or we again complete
the 2-factor, a contradiction.
Now, as the degree ofz1 inG−V (C2∪C3∪C4) is at leastn−42 and there are onlyn−12 remaining vertices, we see thatz1 is

insertible in at least four places. By a counting argument similar to that of Claim 2, any cycle containing a gap of more than one
may contain at most two vertices ofN0. By examining the possible gaps in such a cycle, we find that|V (C1)|�13. Sincez1 is
not adjacent to the predecessor of anyzi ∈ N(x)∩ V (C1), an examination of the possible gaps cases shows thatz1 is insertible
in at most three places onC1. Hence it must be insertible off ofC1. Continuing in this manner we see that each ofa1, . . . , am
are insertible on other cycles or we construct a 2-factor withk cycles. If each of theai are insertible at distinct locations, we do
so. If not, we consider inserting them in segments whose ends are insertible at the same locations. In either case, we insert all
theai vertices elsewhere and then use the cyclex, zm, v, z1, x to complete the 2-factor, a contradiction completing the proof.

Claim 4. No vertexv ∈ N0 has adjacencies to all threeN0 vertices of a6-cycle.

Supposenot, sayv ∈ N0∩V (C1)wasadjacent toall threeverticesofV (C2)∩N0 in the6-cycleC2 : w1, b1, w2, b2, w3, b3, w1
and letC1 bez1, a1, . . . , am, zm, v, z1.
If z1 is adjacent tobi then we could insertbi betweenv and z1 and replacebi on C2 with x, completing the 2-factor,

a contradiction. Ifz1 is adjacent to sayw1 thenv, b1, w2, b2, w3, b3, v andzm, x,w1, z1, . . . , zm completes the 2-factor, a
contradiction. Thus, as before,z1 must be insertible on another cycle. Also as before,a1, . . . , am must all be insertible. Thus,
we can again construct a 2-factor withk cycles, a contradiction.

Claim 5. No vertex ofN0 can have two adjacencies toN0 vertices on two distinct6-cycles of the system.

If not, then under these conditions any suchv has a 3-gap on both other cycles, a contradiction.

Claim 6. If F = 〈N0〉, then�(F )�14.

This follows from the gap structure forv ∈ N0 and the earlier claims.
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Now consider the following partition ofV (G)= S ∪ L ∪ R where

S = {v ∈ V (G)|v is in anm-gap,m�2}, L=N0 ∪ {x}, and R =N(x).
Using this structure we now construct a 2-factor withk-cycles. Based on them-gap (m�2) structure there are several cases and
each is handled similarly. For this reason we present only one representative case. The other cases are similar. For convenience
let |S| = s.
Thus, suppose that there are three 2-gaps with respect tox and degx= d=n/2−2. SayS={a1, b1, a2, b2, a3, b3} and note

that now|L| = n/2− 4 and|R| = n/2− 2.
We claim that the number of vertices inT ⊂ R with degree less thann/100 toL is small, in fact, at most 15. To see this, note

by Claim 8 that the minimum number of edges fromL to R is (n − s − d)(n/2− 14). If R containsr vertices of degree less
thann/100 then the maximum number of edges fromR toL is nr/100+ (d − r)(n/2− 4). Thus,

(n− s − d)(n/2− 14)�nr/100+ (d − r)(n/2− 4).

Substituting fors andd and estimating the right hand side from above we obtain that

(n/2− 4)(n/2− 14)�nr/100+ (n/2− r)(n/2− 4)

which implies thatr�15.
To see how to do this, consider the vertices of our three 2-gaps. By definition of the 2-gaps they have all their adjacencies in

R=N(x). This creates at most three paths with both end vertices inN(x). Each of the vertices ofT has many neighbors inN(x)
and some neighbors inN0. We select one neighbor for each vertex ofT from each set. This creates at most 15 paths of order
three with one end inL and one end inR. Finally, we note that to balance the sets that remain after these paths are removed we
need to select more vertices fromN0. Note that we have presently selected at most 15 vertices fromN0 and at most 21 vertices of
N(x) as the ends of paths. In order to balance the sets that will remain we can either select another two pairs of adjacent vertices
of N0 if such pairs exists, or select four more paths of three vertices each where one vertex is fromN(x) and the other two are
fromN0 (or a combination of both). Sincen is sufficiently large and the unused vertices all have relatively high degree to the
other set, all these paths can be joined to form a cycle. This is done by linking end vertices either directly, if an edge is present,
or using a path containing a balanced number of vertices fromL andR. Also note by carefully selecting vertices inR, we may
create fewer initial paths, that is, some of the end vertices of the paths selected may coincide. However, even in the worst case,
we can complete the construction of the single cycle, leaving a dense balanced spanning bipartite subgraph in what remains.
Now apply Theorem 5 to this subgraph to complete the 2-factor with exactlyk cycles. As the other gap cases are handled

similarly, this completes the proof.
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