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Abstract

In this paper we generalize a Theorem of Jung which shows that 1-tough graph&@jﬂa%‘ are hamiltonian. Our
generalization shows that these graphs contain a wide variety of 2-factors. In fact, these graphs contain not only 2-factors having
just one cycle (the hamiltonian case) but 2-factors wittycles, for any such that i< ”%}6.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The study of 2-factors, 2-regular spanning subgraphs, or in other words, the disjoint union of cycles that span the vertex set of
a graph, has long been fundamental in graph theory. Historically, two questions have been at the forefront of this study. Under
what conditions will a 2-factor exist? Is this 2-factor a single cycle (the hamiltonian problem)? However, harder questions about
the actual structure of 2-factors have also been considered. For example, Aigner andBrahdived that ifG has orden
and minimum degreé(G)}zﬁ’z_rl, thenG contains any graph of maximum degree 2. This verified a conjecture of Sauer and
Spencei6]. In this paper, we consider the question when a 1-tough graph contains a 2-factor with exacilys. We begin
with the classic result by Dird@] later extended ifi2].

Theorem 1 (Dirac[3]). If G is a graph of ordern >3 with 6(G)>n/2, thenG is hamiltonian
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Fig. 1. Sharpness example.

Theorem 2 (Brandt et al[2]). If G is a graph of orden >3 with 6(G)>n/2,thenG contains a2-factor with exactly cycles
for 1<k<n/4.

Jung[5] strengthened Theorem 1 under the conditibis 1-tough.
Theorem 3 (Jung[5]). A 1-tough graphG ordern>11with 5(G)>((n — 4)/2) is hamiltonian
We extend Jung’s result in a manner somewhat similar to Theorem 2.

Theorem 4. If G has ordem anddé(G)>((n — 4)/2), then(1) if G is disconnected of order>8, thenG contain a2-factor with
k cycles for2<k<[((n — 4)/3)1, (2)if G is connected of ordetr>8, but notl-tough thenG contains a2-factor withk cycles
for 2<k<[((n — 4)/3)7, (3) if G is 1-tough of sufficiently large order with 6(G)>((n — t)/2), (0<t<4), thenG contains a
2-factor withk cycles wherd <k<n/4 —t.

The sharpness of part (3) is demonstrated by the same graph that shows the sharpness of Theorem 3. The netis the graph obtaine
by attaching a new edge at each corner of a triangle. Now consider the graph with two sets, one consistihghaependent
vertices and the other one consisting afidependent vertices and a copy of the net. Now complete the graph by inserting all
possible edges between the two sets {&gel). This graph has order= 2r 4+ 7 and minimum degree+ 1= ((n — 5)/2). It
is also 1-tough, but has no hamiltonian cycle, in fact, it has no 2-factors at all. Thus, the minimum degree condition is sharp.
The sharpness of parts (1) and (2) can be seen by first taking two copiggnfrn/2 = 2mod 3 and deleting a matching
from each. Now each component has the proper minimum degree and the two factors are trivial to construct for (1). For part (2)
merely join one vertex from each copy with an edge and repeat the 2-factor construction.
In order to prove Theorem 4, we will make use of the following result ffémn

Theorem 5. Let k be a positive integer and let G be a balanced bipartite graph of d®dexheren> max51, k2/2 + 1. If
degu + degv>n + 1for everyu € V1 andv € Vo, then G contains 2-factor with exactly k cycles

Let N(x) and N(x) denote the neighbors and nonneighbors of the vertenespectively. IfC; is a cycle inG, then let
[V(C))| = c¢;. If V(G) is partitioned into setS1, ..., S; and the graph induced by eaSh denoted(S;), contains a spanning
cycle, we say thaV (G) is partitioned into cycle€’s, . .., Cy. For a given path (or segment of a cycle) with a given orientation,
denote the predecessor and successor of the veraexording to this orientation as- andx™, respectively. Moreover, we
denote thdth successor af by x(OF. In other words, we define®+ by xW+ = x+ andx O+ = x=D+)* for 1>2. Let
P =apay ...a; be apath (or a segment of a cycle). Then the subgath 1 ...a;_1a; (i<j) is denoted byz,-T}aj. The same
subpath, traversed in the opposite direction, is denoter @ai. Finally, the vertex is insertible on a cycl€ whenever is
adjacent to consecutive vertices®f thus allowingC to be extended to include

If a set of mutually disjointk cyclesCyq, ..., C; and a (possibly empty) patR cover V(G), then(Cq,...,Cy, P) is
called a(k, 1)-partition. If € = (Cq, ..., Ck, P) is a(k, 1)-partition, and there is n¢k, 1)-partition (Ci, e C,’(, P’) with
|[V(P")|<|V(P)|, then€ is said to be a maximun, 1)-partition. Since we allow a path to be empty, a 2-factor with
components forms a maximugh, 1)-partition.
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Lemma 1. Let G be a graph which has &, 1)-partition, and let(Cq, ..., Ci, P) be a maximungk, 1)-partition. Letx andy
be the starting vertex and the terminal vertexfgfrespectivelyThen

(1) if [V(P)|>3,thendeq, x + deg, y<L%|V(Ct)|J for eachr with 1<t <k, and
(2) if [V(P)| = 2,thendeg., x + deg, y<L%|V(Ct)|J for eachr with 1<r<k.

Proof (Sketch) A standard adjacency afimplies a nonadjacency ofargument can be used[]

Lemma 2. Letk>2be aninteger and; a graph of orden>19with §(G)> % (n—4). Suppose& has a maximunk, 1)-partition
(Cq,...,Cs, P), then|V(P)|<1.

Proof (Sketch) AssumgV (P)|>2.LetH =(V(P)) andK = (Uf:1V(Cf)). Letx andy be the starting vertex and the terminal
vertex of P, respectively.

SupposeP = xy. Using Lemma 1, a direct count bounding deg+ deg; y from both sides shows<14, a contradiction.
Therefore|V (P)|>3. Lete; = 3|V (C)| — L3IV (CHIJ (1<r<k). Then, by Lemma 1

k
deg; x + deg; y< Z ( Vol - a,) SV =)
t=1

AssumingH is not hamiltonian, and bounding dgg + degy y, produces a contradiction. Thereforg,is hamiltonian and a
direct count bounding degx + deg; y shows thatV(H)|>%n - %
Let Cg be a hamiltonian cycle off. For eacke; € E(C;) (1<t<k),

(Co,C1,...,Cr1,Crq1, ..., Cr, Cr —ep)

is a(k, 1)-partition. SincgCq, ..., Ci, P) is maximum,|V (Cy)|=|V (P)| = |V (H)|. If k>3,
n—2
nz|V(H)| + |[V(CD| + [V(C2)| + [V(C3)|=4|V (H)| =4 (T)

or n<8, a contradiction. Hence = 2. Since|V (H)|<|V(C;)|(j = 1,2), |V(H)|<%n, and we may conclude that dgg >
|V(H)| — 2 and deg; y=|V (H)| — 2

Foreachy € V(H), v+?0v is a hamiltonian path aoff . By applying the same argument as above to this path insteoved
have deg; v=|V(H)|—2. Sincen>19 and|V(H)|>” 2 this |mpI|es§(H)>&12M and hencé is hamiltonian-connected.

Now Nk (u) # @ for eachu € V(H). Sayz € Ncl(u) and sayz’ € Nc¢,(v) — {z}, then sinceH is hamiltonian-
connected, there exists a hamiltonian pathof H starting fromu and ending at. Both (u@vz’? zu, Co, 2 +flz )
and(u G vz' C 1zu, Co, 7/~ C 127) are(2, 1)-partitions of G, hencelz’+ C 12~ |Z|V(P)|>"5= and|z/_% +|>” .Then,
|V(C1)|>2”Jr2 and|V(Cy)| + |V(C2)| + |V (H)|=n + 3, a contradiction. Thereford/c, (v) C {z} for eachv € V(H) — {u}.
Applying the same argument& and asv (H)>3, H has a vertex with deg-, w<1 and deg,, w<1. Then deg w<|V (H)| -
1+ Zgén +1< %(n — 4) sincen>19, a contradiction, and the lemma follows.]

Proof of Theorem 4. For (1) note thatG can have only two components and each must be very dense, hence construction of
the 2-factors is easy. For (2) note thadifis connected but not 1-tougl, contains a cut vertex, and again the two components
must be very dense.

For (3) we proceed by induction enFors =0 we apply Theorem 2. Also, fdr=1 the result follows from Theorem 3. Hence,
we may assume that1 andk>2. Thus inductively, we assume that for any 1-tough graph ﬁ(l(h))ﬂé;l) (1<t < 4) the
result follows for allk in the appropriate range. Now létbe 1-tough withy(G)>"=* ! and consider the grapi + w, for some
new vertexw. This graph is clearly 1-tough andG + w)>"2’ +1= % This implies by the induction hypothesis
thatG + w contains a 2-factor with + 1 cycles where £k + 1<”%[1 —(t—=1).

Thus,G containsk cycles, sayC1, Co, ..., C (t<k<n/4 —t) and a pathP (where|V (P)| = p) that partitionV (G). Over
all such collections of cycles and a path, choose one wight-- - - + ¢ @ maximum. Without loss of generality we may assume
that|V(C1)[=|V(C2)|= - - - 2|V (Cy)| and hencey >3k + p.

By Lemma 2,p = 1. Thus, we have disjoint cycl€3,, Cop, ..., C; (k>2) andx not on any cycle, such that,(G) =V (Cp) U

--UV(Cp) U {x}. If x isinsertible on any cycle, then the desired 2-factor exists. Thus, we may assume this fails to occur.
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Since deg;c}%‘, the adjacencies of must nearly alternate on each cycle, with a few possible minor exceptions. These are
that x might once be nonadjacent to four consecutive vertices of one cycle, we call this a 4-gap with respectianay
have one 3-gap and one 2-gap,xanay have three 2-gaps. L& = {v € |J V(C;))(1<i<h)|v™, v € N(x) andv ¢ N (x)}.
Vertices of Ng are the 1-gap vertices with respectxto

Any w € Ng N V(C;) may be replaced o@; by x, with w then replacing in the system. Thus, we may assume thdtas
adjacency conditions analogousxitoDenote this property as ~ x. [

Claim 1. There are no chords between verticesVigfon the same cycle

Suppose by € E(G)foray, by € NoNV(C;),someé i, 1<i<k.ThenC; may be extended toincludeasx, a; ,a; ...,
bf, b1, ay, af, ..., by, x. This cycle, along with the remainirig— 1 cycles form the desired 2-factor, a contradiction.

Claim 2. Suppose:; € V(C;) N Ngandby € V(C;) N No, i # j, and suppose1b1 € E(G). Further, suppose thaC; has
only 1-gaps with respect te. Then|V (C;)|<6.

SupposaV (C;)|=7. Then,|V(C;)| is even, sayV (C;)| =2m>8. LetC; beas, z1, a2, 22, - . ., am, Zm, a1. Then, asx ~ a,
m— 1<de%i ar<m for eacha, € NgNV(C;) and any chord of’; froma, is of the forma, z5, wherea, € Ngandzs € N (x).
Thus, at least one af; or z;; has a chord to some.. If sayz41 has such a chord, thenz,, ..., zm, a1, b1, bf, ...,by,xand
71, az, a{, ..., ar, z1 and the remaining — 2 cycles form the desired 2-factor, a contradiction.

Thus if any vertex ofVg with positive degree ifiNg) is on a 1-gap cycl€;, thenC; must be a cycle of order 4 or 6.

Claim 3. Any vertex ofVg does not have adjacencies to b vertices on thred-cycles

Suppose not, say somes V(C1) N Ng is adjacent td1, bo € V(C2) N No, c1, c2 € V(C3) N Nganddy, do € V(Cq) N Ng
whereC», C3 andCy4 are 4-cycles. LeCy bewq, b1, wo, bp, w1 and letC3 be y1, ¢1, y2, ¢2, y1 andCyg bery, dq, rp, d2, r1.
Also letCy bev, z1,a1, ..., am, Zm, v.

If z1 is adjacent to some; € NoN V(Cy) andaj+ =z; € N(x)NCq, thenthe cyclesy, 27, ..., a;, z1 andz;, z;.r, L,
b1, wp, bp, w1, x, z; extend the 2-factor, a contradiction. Alsp must have no adjacencies@@® or C3, or we again complete
the 2-factor, a contradiction.

Now, as the degree af in G — V(C2UC3UCy) is at Ieast%1 and there are only — 12 remaining vertices, we see thais
insertible in at least four places. By a counting argument similar to that of Claim 2, any cycle containing a gap of more than one
may contain at most two vertices 8f. By examining the possible gaps in such a cycle, we find|#at'1)|<13. Sincezq is
not adjacent to the predecessor of ang N (x) N V(C1), an examination of the possible gaps cases shows thainsertible
in at most three places ary . Hence it must be insertible off @1. Continuing in this manner we see that eaclaqf. .., a;,
are insertible on other cycles or we construct a 2-factor witkicles. If each of the; are insertible at distinct locations, we do
so. If not, we consider inserting them in segments whose ends are insertible at the same locations. In either case, we insert all
thea; vertices elsewhere and then use the cyclg,, v, z1, x to complete the 2-factor, a contradiction completing the proof.

Claim 4. No vertexv € Ng has adjacencies to all thre¥g vertices of e&-cycle

Suppose not, saye NoNV (C1) was adjacentto all three verticesiofC2) NNy inthe 6-cycleCo : w1, b1, wo, b2, ws, b3, w1
and letCq bez1,a1,....am, zm. v, 21

If z1 is adjacent tab; then we could inserb; betweenv andzj and replaceb; on Co with x, completing the 2-factor,
a contradiction. Ifz1 is adjacent to saw; thenv, by, wo, b2, w3, b3, v andzy,, x, wy, z1. . . . , zm completes the 2-factor, a
contradiction. Thus, as beforg, must be insertible on another cycle. Also as befaie, .., a;, must all be insertible. Thus,
we can again construct a 2-factor witltycles, a contradiction.
Claim 5. No vertex ofNg can have two adjacencies Iy vertices on two distind-cycles of the system

If not, then under these conditions any sudhas a 3-gap on both other cycles, a contradiction.

Claim 6. If F = (Ng), thenA(F)<14.

This follows from the gap structure fere Ng and the earlier claims.
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Now consider the following partition of (G) = S U L U R where
S={veV(G)visinanm-gapm=>2}, L=NgU{x}, and R=N(x).

Using this structure we now construct a 2-factor witbycles. Based on the-gap @ >2) structure there are several cases and
each is handled similarly. For this reason we present only one representative case. The other cases are similar. For convenienc
let|S| = s.
Thus, suppose that there are three 2-gaps with respeetrtd degx =d =n/2 — 2. SayS ={a1, b1, a2, b, a3, b3} and note
that now|L| =n/2 — 4 and|R| = n/2 — 2.
We claim that the number of verticesThC R with degree less thar/100 toL is small, in fact, at most 15. To see this, note
by Claim 8 that the minimum number of edges frdmo R is (n — s — d)(n/2 — 14). If R containsr vertices of degree less
thann /100 then the maximum number of edges fr@o L is nr/100+ (d — r)(n/2 — 4). Thus,

(n—s—d)(n/2—-14<nr/100+4 (d — r)(n/2 — 4).
Substituting fors andd and estimating the right hand side from above we obtain that
(n/2—4)(n/2 —14<nr/100+ (n/2 —r)(n/2 — 4)

which implies that<15.
To see how to do this, consider the vertices of our three 2-gaps. By definition of the 2-gaps they have all their adjacencies in
R = N(x). This creates at most three paths with both end verticagin. Each of the vertices df has many neighbors iN (x)
and some neighbors iNg. We select one neighbor for each vertexfofrom each set. This creates at most 15 paths of order
three with one end i and one end irR. Finally, we note that to balance the sets that remain after these paths are removed we
need to select more vertices fravp. Note that we have presently selected at most 15 verticesXigend at most 21 vertices of
N(x) as the ends of paths. In order to balance the sets that will remain we can either select another two pairs of adjacent vertices
of Ng if such pairs exists, or select four more paths of three vertices each where one vertexA§(frpend the other two are
from Ng (or a combination of both). Sinoeis sufficiently large and the unused vertices all have relatively high degree to the
other set, all these paths can be joined to form a cycle. This is done by linking end vertices either directly, if an edge is present,
or using a path containing a balanced number of vertices ftand R. Also note by carefully selecting vertices Ry we may
create fewer initial paths, that is, some of the end vertices of the paths selected may coincide. However, even in the worst case,
we can complete the construction of the single cycle, leaving a dense balanced spanning bipartite subgraph in what remains.
Now apply Theorem 5 to this subgraph to complete the 2-factor with exkaatjcles. As the other gap cases are handled
similarly, this completes the proof.
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