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Abstract. Given positive integers k � m � n, a graph G of order n is ðk;mÞ-pancyclic
if for any set of k vertices of G and any integer r with m � r � n, there is a cycle of
length r containing the k vertices. Minimum degree conditions and minimum sum
of degree conditions of nonadjacent vertices that imply a graph is ðk;mÞ-pancylic
are proved. If the additional property that the k vertices must appear on the cycle in
a specified order is required, then the graph is said to be ðk;mÞ-pancyclic ordered.
Minimum degree conditions and minimum sum of degree conditions for nonad-
jacent vertices that imply a graph is ðk;mÞ-pancylic ordered are also proved.
Examples showing that these constraints are best possible are provided.

1. Introduction

In this paper we will deal only with finite graphs without loops or multiple edges.
Notation will be standard, and we will generally follow the notation of Chartrand
and Lesniak in [CL96]. Given a vertex x on a cycle C with an orientation, then the
successor of x on C will be denoted by xþ and the predecessor by x�. For a graph
G we will use G to represent the vertex set V ðGÞ and the edge set EðGÞ when the
meaning is clear. Given a subset (or subgraph) H of a graph G and a vertex v, let
dH ðvÞ denote the degree of v relative to H . Given a subset H of vertices of a graph
G, the subgraph induced by H will also be denoted by H when it does not lead to
confusion. Thus, for example, G� H will denote a set of vertices as well as a
subgraph, depending on the context.

Various degree conditions have been investigated which imply that a graph has
hamiltonian type properties. The most common degree condition is the minimum
degree of a graph G, which will be denoted by dðGÞ. Another common degree
condition studied is the sum of degrees of nonadjacent vertices. For a graph G, let
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r2ðGÞ � s mean that dðuÞ þ dðvÞ � s for each pair of nonadjacent vertices in G. A
graph G is called pancyclic whenever G of order n contains a cycle of each length r
for 3 � r � n. A stronger related property is vertex pancyclic which requires for
any specified vertex v of G there are cycles of length 3 through n containing v. The
following definition generalized these ideas:

Definition 1. Let 0 � k � m be fixed integers and G be a graph of order n. The
graph G is ðk;mÞ-pancyclic if n � m and for any set Sk of k vertices there is a cycle
Cr of G containing Sk for each m � r � n.

Note, ð0; 3Þ-pancyclic and ð1; 3Þ-pancyclic graphs are pancyclic and vertex
pancyclic graphs respectively.

The following was introduced by Gary Chartrand [private communication]
but first used by Ng and Schultz [7]. A graph G is k-ordered (hamiltonian) if given
any ordered set S of k vertices, there is a (hamiltonian) cycle that contains S and
the vertices of S are encountered on the cycle in the specified order. Results on
dðGÞ and r2ðGÞ that imply a graph G is k-ordered or k-ordered hamiltonian can be
found in [6] and [4]. Here, we investigate a generalization of both k-ordered and
pancyclic graphs given in the following:

Definition 2. Let 0 � k � m be fixed integers and G be a graph of order n. The
graph G is ðk;mÞ-pancyclic ordered if n � m and for any ordered set Sk of k vertices
there is a cycle Cr containing Sk and encountering the vertices of Sk in the specified
order for each m � r � n.

Dirac [3] proved that any graph G of order n with dðGÞ � n=2 is hamiltonian,
and Ore in [O60] proved that if r2ðGÞ � n the graph is also hamiltonian. Bondy [1]
proved that if r2ðGÞ � nþ 1, then G is pancyclic. Kierstead, Sárk}ozy, and Selkow
proved the following result on minimum degree conditions for a graph to be
k-ordered hamiltonian.

Theorem 1 [6]. Let k � 2and G a graph of order n � 11k � 3. If

dðGÞ � dn=2e þ bk=2c � 1;

then G is k -ordered hamiltonian.
The graph F1 in Fig. 1, which is K2bk=2c�1 þ ðKdðn�2bk=2cþ1Þ=2e [ Kbðn�2bk=2cþ1Þ=2cÞ,

verifies that Theorem 1 is sharp. The graph F1 is not k-ordered and
dðGÞ � dn=2e þ bk=2c � 2. By having consecutive vertices of the set
S ¼ fx1; x2; � � � ; xkg in alternate components of F1 � A, then a cycle encountering S
in the appropriate order cannot exist.

Theorem 2 [4]. Let k be an integer with 3 � k � n=2. If

r2ðGÞ � nþ ð3k � 9Þ=2;

then G is k-ordered hamiltonian.
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The graph F2 in Fig. 2, which was given by Ng and Schultz [7] verifies that the
degree condition in Theorem 2 cannot be reduced. The graph F2 is obtained by
first considering the graph Kk�1 þ ðKn�2kþ1 þ ðKk � EðCkÞÞÞ, and then removing
all edges between odd labeled vertices on the cycle Ck and the complete graph
Kn�2kþ1. There is no cycle containing the vertices S ¼ fx1; x2; � � � ; xkg of F2 in the
correct order, since the vertices in the subgraph Kk�1 separates the odd indexed
vertices of S from the remainder of the graph, except for edges in Kk � Ck which
canot be used. Also, r2ðF2Þ � nþ ð3k � 10Þ=2 when k is even.

In Section 2 conditions on dðGÞ and r2ðGÞ for a graph to be ðk;mÞ-pancyclic
will be given. Examples to show that the conditions are optimal are also provided.
The same will be done in Section 3 for ðk;mÞ-pancyclic ordered graphs.

2. Pancyclic Graphs

For 1 � k � m � n the following result provides the sharpest r2ðGÞ conditions
which imply that a graph G of order n is ðk;mÞ-pancyclic.

Fig. 1. F1

Fig. 2. F2
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Theorem 3. Let 1 � k � m � n be integers, and Gbe a graph of order n. The graph
Gis ðk;mÞ-pancyclic if r2ðGÞ satisfies any of the following conditions:

(i) r2ðGÞ � n when m ¼ n,
(ii) r2ðGÞ � bð4n� 1Þ=3c when k ¼ 1 and m ¼ 3,
(iii) r2ðGÞ � 2n� 3 when k ¼ 2 or 3 and m ¼ 3,
(iv) r2ðGÞ � 2n� m when k ¼ 3 and m ¼ 4 or 5,
(v) r2ðGÞ � 2n� 2dðm� 1Þ=2e � 1 when 4 � k � m < 2k, n > m,
(vi) r2ðGÞ � 2bn=2c þ 1 when k � 2, m � 2k, and n > m.

Also, all of the conditions on r2ðGÞare sharp.
Before proving this Theorem we will provide several results that will be used in

the proof.

Lemma 1. Let k � 2 be a fixed integer, Sk � V ðGÞ a set of k vertices, and G a graph
of order n with r2ðGÞ � n.

(i) If Sk is hamiltonian or an edge, then there is a cycle of length either k þ 1 or
k þ 2 in G containing Sk.

(ii) Otherwise, if p is the minimum integer ð1 � p � kÞ such that Sk has a spanning
linear forest with k � p edges, then there is a cycle of order k þ p in G con-
taining Sk.

Proof. Case (i). Let C be a hamiltonian cycle of Sk or C ¼ Sk is an edge,
H ¼ G� C, and assume there is no cycle Ckþ1 containing Sk. Let y 2 H with
adjacency x 2 C. Then, y xþ 62 EðGÞ. Moreover, if y z 2 EðGÞ for z 2 C, then
xþzþ 62 EðGÞ, since this would result in a Ckþ1. Hence, dCðxþÞ þ dCðyÞ � k, and so
dH ðyÞ þ dH ðxþÞ � n� k. This implies there is a y0 2 H that is commonly adjacent
to y and xþ, since y and xþ are not adjacent, which results in a Ckþ2. This
completes the proof of Case (i).

Case (ii). First select a spanning linear forest in Sk with k � p edges, where p is
minimum. Then there are p paths (including paths with just one vertex) in the
system. Denote the endpoints of these p paths by fx1; y1g; fx2; y2g; � � � ; fxp; ypg
respectively, with, of course, xi ¼ yi when the ith path has just one vertex.
Because of the minimality of p, the only possible edges between vertices in the
set fx1; y1; � � � ; xp; ypg are xiyi for 1 � i � p. Therefore, for each i, the indepen-
dent vertices yi and xiþ1 (taken modulo p) are part of an independent set with p
vertices in Sk. Also, if xiþ1 is adjacent to any vertex in one of the paths in this
spanning linear forest, then yi is not adjacent to the predecessor. Thus, the sum
of the degrees of xiþ1 and yi in Sk is at most k � p. Let H ¼ G� Sk. Then there
are p vertices in H commonly adjacent to yi and xiþ1. Hence, there exist p
vertices fz1; z2; � � � ; zpg in H such that ðyi; zi; xiþ1Þ is a path with three vertices.
This gives a cycle with k þ p vertices containing Sk, and completes the proof of
Case (ii) and Lemma 1. (
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Lemma 2. Let k � 0 be a fixed integer, G a graph of order n,and Sk a subset of
V ðGÞ of order k. If r2ðGÞ � 2bn=2c þ 1, and Cris any cycle of G containing Sk with
k < r < n, then there is a Crþ1in G containing Sk.

Proof. Let Cr ¼ ðu1; u2; � � � ; ur; u1Þ be a cycle of length r in G containing S ¼ Sk.
Assume there is no cycle of length r þ 1 containing S. By a result of Hendry [5] the
subgraph C induced by the vertices of Cr is either complete or a regular complete
bipartite graph. Since G must be connected, there are edges between C and
G� C ¼ H .

First suppose that C is complete. Select a vertex u in C, also in S if possible,
having an adjacency v in H . By assumption, NCðvÞ ¼ fug. Let u0 be a vertex in
C � fug, also in S if possible. By the choice of u and u0, there is a vertex w in
C � ðS [ fu; u0gÞ. The degree condition implies that the nonadjacent vertices u0

and v have two common adjacencies. Hence, they have a common adjacency v0 in
H . The required cycle Crþ1 is obtained by adjoining v and v0 to C and deleting w.
This gives a contradiction.

Now assume that C is a regular complete bipartite graph with parts A and B.
Note that jAj ¼ jBj ¼ t; t � 2. If there is a vertex z 2 NðAÞ \ NðBÞ, then the
required cycle results. Therefore NðAÞ \ NðBÞ ¼ ;. With no loss of generality we
can assume that jNðAÞj � jNðBÞj, and so jNðBÞj � bðn� 2tÞ=2c. But this implies
for x; y 2 B that

dðxÞ þ dðyÞ � 2t þ 2bðn� 2tÞ=2c ¼ 2bn=2c;

which contradicts the hypothesis. This completes the proof of Lemma 2. (

Theorem 4. Let k � 0 be a fixed integer, and G a graph of order n � maxf4; 2kg. If
r2ðGÞ � 2bn=2c þ 1, then G is ð0; 3Þ-pancyclic when k ¼ 0 and G is ðk;maxf4; 2kgÞ-
pancyclic when k � 1.

Proof. When k ¼ 0 it is straightforward to prove that G contains a cycle of length
3. When k ¼ 1 it is also easy to show that each vertex of G is on a cycle of length 3
or 4. If k � 2, then for any set Sk of k vertices there is a cycle Cr of G containing Sk

with k < r � 2k by Lemma 1. Theorem 4 follows from Lemma 2. (

The proof of Theorem 4 implies the existence of additional cycles depending
on the structure of the set Sk of k vertices. There is additional strength as described
in the following corollary.

Corollary 1. Let k � 0 be a fixed integer, G a graph of order n � maxf4; 2kg,and Sk

a fixed set of k vertices of G. Let p ¼ pðSkÞ be the integer described in Lemma 1(ii)
and if Sk is hamiltonian, let p ¼ 2. If r2ðGÞ � 2bn=2c þ 1, then G has cycles con-
taining Sk of each length from k þ p to n.

Theorem 5. For and n > m, let G be a graph of order n. If r2ðGÞ � 2n� m when m
is odd and r2ðGÞ � 2n� m� 1 when m is even, then G is a ðk;mÞ-pancyclic graph.
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Proof. Let S ¼ Sk be a fixed set of k vertices of G. Given an integer t with
m � t � n, select an induced subgraph T with t vertices and S � T . Since each pair
of nonadjacent vertices of G has a most m nonadjacencies including the pair,
r2ðT Þ � 2t � m if m is odd and r2ðT Þ � 2t � m� 1 if m is even. Since 2t � m � t
and 2t � m� 1 � t except when t ¼ m, the graph T is hamiltonian by [O60]. Also,
even in the remaining case when jT j ¼ m and r2ðT Þ � m� 1 with m even, we have
that T is hamiltonian by the argument of Ore in [8]. Thus, there is a cycle of each
order m � t � n containing the set S. This completes the proof of Theorem 5. (

The next result can be found in [9], but the proof is very short, so to make the
paper more self contained, we include it.

Theorem 6. If G is a graph of order n � 3, and r2ðGÞ � bð4n� 1Þ=3c, then G is a
ð1; 3Þ-pancyclic graph.

Proof. Since bð4n� 1Þ=3c � nþ 1, we have from Theorem 4 that G is ð1; 4Þ-
pancyclic. Hence, we must show that each vertex of G is in a triangle. Since
r2ðGÞ � bð4n� 1Þ=3c, dðGÞ � n=3þ 1. If there is a vertex of G with no edge in its
neighborhood, then there are two nonadjacent vertices each with degrees at most
n� ðn=3þ 1Þ, and so r2ðGÞ � 2n� 2ðn=3þ 1Þ < bð4n� 1Þ=3c. This gives a con-
tradiction that completes the proof of Theorem 6. (

Before proving Theorem 3, we will state a corollary that follows with just a few
additional observations that will be made in the proof of Theorem 3.

Corollary 2. Let ð1 � k � m � nÞ be positive integers, and let G be a graph of order
n. The graph G is ðk;mÞ-pancyclic if dðGÞ satisfies any of the following conditions:

(i) dðGÞ � n=2 when m ¼ n,
(ii) dðGÞ � ðnþ 1Þ=2 when k ¼ 1 and m ¼ 3,
(iii) dðGÞ � n� 1 when k ¼ 2 or 3 and m ¼ 3,
(iv) dðGÞ � n� 2 when k ¼ 3 and m ¼ 4 or 5,
(v) dðGÞ � n� ðm=2Þ when 4 � k � m < 2k, n > m,
(vi) dðGÞ � bðnþ 2Þ=2c when k � 2, m � 2k, and n > m.

Also, all of the conditions on dðGÞ are sharp.

Proof. (of Theorem 3 and Corollary 2). The proof will be broken into 6 cases.

Case (i). Let m ¼ n. Then all that is required is a hamiltonian cycle. By a classic
result of Ore [8] (Dirac [3]), a graph G of order n is hamiltonian if r2ðGÞ � n
(dðGÞ � n=2). Also, the unbalanced complete bipartite graph G ¼ Kðnþ1Þ=2;ðn�1Þ=2 is
not hamiltonian for odd n and r2ðGÞ ¼ n� 1 and dðGÞ ¼ ðn� 1Þ=2. (

Case (ii). Observe that the complete bipartite graph G ¼ Kn=2;n=2 is not ð1; 3Þ-
pancyclic and dðGÞ ¼ n=2, however if dðGÞ � ðnþ 1Þ=2 in any graph G of order n,
then each vertex of G is in a triangle and G is vertex pancyclic (see [1]). Consider
the graph G of order n obtained from the graph Kn�1 � EðKbðnþ1Þ=3cÞ by adding a
vertex v that is adjacent to the set of bðnþ 1Þ=3c independent vertices. Then,
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r2ðGÞ ¼ bð4n� 2Þ=3c, but the graph G is not ð1; 3Þ-pancyclic, since there is no
triangle containing the vertex v. This, along with Theorem 6, completes the proof
of Case (ii). (

Case (iii). The graph must be complete for each pair or triple of vertices of a
graph G to be contained in a triangle. Thus, r2ðGÞ � 2n� 3 and dðGÞ � n� 1 is
required and nothing less is sufficient. (

Case (iv). The graph G ¼ Kn � P3 has r2ðGÞ ¼ 2n� 5 and dðGÞ ¼ n� 3, and there
is no cycle of length 4 containing the 3 vertices of the missing P3. It is also easily seen
that if r2ðGÞ � 2n� 4 or dðGÞ � n� 2, then G is just a matching and so G is ð3; 4Þ-
pancyclic. The graph G ¼ Kn � EðK3Þ has r2ðGÞ ¼ 2n� 6 and dðGÞ ¼ n� 3, and
there is no cycle of length 5 containing the 3 vertices of themissingK3. It is also easily
seen that if r2ðGÞ � 2n� 5 (or if dðGÞ � n� 2), then G is at most a disjoint union of
P3’s, and so G is ð3; 5Þ-pancyclic. These observations verify Case (iv). (

Case (v). For integers 4 � k � m < 2k with n > m, consider the graph
G ¼ Kn � EðKdðmþ1Þ=2eÞ. Let S be a set of k vertices that contains the independent
set of dðmþ 1Þ=2e vertices of G. Any cycle of G that contains the independent set
of dðmþ 1Þ=2e vertices would necessarily have at least 2dðmþ 1Þ=2e vertices.
Thus, we have a graph G with r2ðGÞ ¼ 2n� 2dðmþ 1Þ=2e and dðGÞ ¼
n� dðmþ 1Þ=2e such that G is not a ðk;mÞ-pancyclic graph when m is odd and is
not a ðk;mÞ-pancyclic or a ðk;mþ 1Þ-pancyclic graph when m is even. This, along
with Theorem 5, completes the proof of Case (v). (

Case (vi). This most interesting case deals with m � 2k � 4. The complete
bipartite graph G ¼ Kn=2;n=2 for n even has no odd cycles, but r2ðGÞ ¼ n
ðdðGÞ ¼ n=2Þ, and so the condition r2ðGÞ � 2bn=2c þ 1 or the condition
dðGÞ � bðnþ 2Þ=2c is needed to imply a graph of order n > m is ðk;mÞ-pancyclic
for m � 2k. For odd n the complete bipartite graph Kðn�1Þ=2;ðnþ1Þ=2 plays the same
role. Also, the condition m � 2k is necessary as a lower bound on the cycle
lengths, since if the set Sk is independent, then the smallest cycle containing Sk will
contain at least 2k vertices. The graph G ¼ Kn � EðKkÞ for n > m � 2k has an
independent set with k vertices and satisfies the corresponding sum of degree and
minimum degree conditions for both n odd and even. This along with Theorem 4,
completes the proof of Case (vi). (

This completes the proof of Theorem 3 and also Corollary 2. (

3. Pancyclic Ordered Graphs

For k ¼ 1; 2 or 3 a graph that is ðk;mÞ-pancyclic is also ðk;mÞ-pancyclic ordered,
since a proper orientation and starting point on a cycle will give any order of a set
of 3 vertices. Thus, Theorem 3 from the previous section immediately implies the
following.
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Theorem 7. Let 1 � k � 3 � m � n be positive integers, and let G be a graph of
order n. The graph G is ðk;mÞ-pancyclic ordered if r2ðGÞ satisfies any of the fol-
lowing conditions:

(i) r2ðGÞ � bð4nþ 1Þ=3c when k ¼ 1 and m ¼ 3,
(ii) r2ðGÞ � 2n� m when k ¼ 2 and m ¼ 3 or k ¼ 3 and m ¼ 3; 4; 5,
(iii) r2ðGÞ � 2bn=2c þ 1 when k ¼ 1; 2; 3 and m � maxf4; 2kg, and n > m,
(iv) r2ðGÞ � n when m ¼ n.

Also, all of the conditions on r2ðGÞare sharp.

The r2ðGÞ conditions of Theorem 7 can be replaced by dðGÞ ¼ r2ðGÞ=2
yielding a sharp result. We are left with only the cases k � 4. We will first prove
the following theorem, which deals with the cases when m < 2k.

Theorem 8. Let 4 � k � m � n be positive integers, and let G be a graph of order n.
The graph G is ðk;mÞ-pancyclic ordered if r2ðGÞ satisfies any of the following
conditions:

(i) r2ðGÞ � 2n� 3 when k � m < b3k=2c,
(ii) r2ðGÞ � 2n� 4 when b3k=2c � m < dð5k � 2Þ=3e,
(iii) r2ðGÞ � 2n� 5 when dð5k � 2Þ=3e � m < 2k,

Also, all of the conditions on r2ðGÞ are sharp.

Proof. Case (i). The graph G ¼ Kn � Eðbn=2cK2Þ has r2ðGÞ ¼ 2n� 4. If a set S of
k vertices are ordered such that bk=2c of the consecutive pairs in the set are not
adjacent, then the smallest cycle containing S in the appropriate order is b3k=2c.
Thus G is not ðk;mÞ-pancyclic ordered if m < b3k=2c. On the other hand, if
r2ðGÞ � 2n� 3 for a graph G of order n, then G ¼ Kn and so is ðk;mÞ-pancyclic
ordered for all m � k. This completes the proof of Case (i).

Case (ii). The graph G ¼ Kn � Eðbn=3cP3Þ has r2ðGÞ ¼ 2n� 5. For any set S of k
vertices that are ordered such that there are a maximum number of consecutive
pairs in the order that are not adjacent (bk=3c missing P3’s and possibly an
additional missing edge), then the smallest cycle containing S in the appropriate
order is dð5k � 2Þ=3e. Thus G is not ðk;mÞ-pancyclic ordered if m < dð5k � 2Þ=3e.
On the other hand, if r2ðGÞ � 2n� 4 for a graph G of order n, then
ðKn � bn=2cK2Þ � G and so G is easily seen to be ðk;mÞ-pancycylic ordered for all
m � b3k=2c, completing the proof of Case (ii).

Case (iii). The graph G ¼ Kn � EðCkÞ has r2ðGÞ ¼ 2n� 6. For the set S of k
vertices that contains the cycle Ck in the natural order, the smallest cycle con-
taining the set S in the appropriate order is 2k. Thus G is not ðk;mÞ-pancyclic
ordered if m < 2k. On the other hand, if r2ðGÞ � 2n� 5 for a graph G of order n,
then G is a disjoint union of paths of length at most 2. Thus, clearly G is ðk;mÞ-
pancyclic ordered for all m � dð5k � 2Þ=3e, which completes the proof of Case (iii)
and Theorem 8. (
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By considering set S ¼ fx1; x2; � � � ; xkg, the graph F3 in Fig. 3 and the graph F2

in Fig. 2 provide examples which are not ðk;mÞ-pancyclic ordered, giving the
lower bounds for the required minimum degree sum. This verifies the following
proposition.

Proposition 1. Let k � 4 be a positive integer and G is a graph of order n.

If 2k � m � ð5k � 3Þ=2, the graph G is not ðk;mÞ-pancyclic ordered unless
r2ðGÞ � nþ 4k � m� 6.

If m > ð5k � 3Þ=2, the graph G is not ðk;mÞ-pancyclic ordered unless
r2ðGÞ � nþ ð3k � 9Þ=2.

Proof. In the case 2k � m � ð5k � 3Þ=2, r2ðF3Þ ¼ nþ 4k � m� 7, and there is no
cycle of length m containing S in the appropriate order. (

In the remainder of the paper we provide the following result that shows that
these bounds are also sufficient when m � 2k.

Theorem 9. If k � 4 and G is a graph of order n with r2ðGÞ � nþ 4k � m� 6, then
G is ðk;mÞ-pancyclic ordered for 2k � m � ð5k � 3Þ=2.

Proof. Suppose that G satisfies the above conditions, and to the contrary
S ¼ fv1; v2; � � � ; vkg is an ordered set of k vertices of G that implies that G is not
ðk;mÞ-pancyclic ordered.

Claim 1. There is a cycle D with at most m vertices that contains S and encounters
the vertices of S in the required order.

Note that if u and v are nonadjacent vertices, then they have
nþ 4k � m� 6� ðn� 2Þ ¼ 4k � m� 4 common adjacencies. If, in addition, u and
v are in S, then they have 3k � m� 2 common adjacencies in G� S. Let k1 be the

Fig. 3. F3
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number of consecutive pairs with viviþ1 2 EðGÞ taking the indices modulo k. All of
these k1 edges will be placed in the cycle D. First consider the case when m ¼ 2k. If
k1 � 2, then a cycle of length 2k � k1 can be constructed by choosing a path of
length 2 between vj and vjþ1 using a vertex u in G� S when vjvjþ1 62 EðGÞ. If
k1 ¼ 0 or 1, then every pair of consecutive vertices vi and viþ1 with viviþ1 62 EðGÞ
has at least k � k1 common adjacencies in G� S, by noting the possible common
adjacencies of vi and viþ1 in S. Thus, by placing paths of length 2 between non-
adjacent vertices, there is a cycle D with 2k � k1 vertices that contains S and
encounters the vertices in the required order, completing the proof of Claim 1
when m ¼ 2k.

A similar approach will be taken when m > 2k, except that some of the paths
between nonadjacent consecutive vertices of S will possibly have length 3. We will
build the cycle as follows: after including the k1 edges between consecutive pairs of
vertices of S, choose a maximum number k2, of 2-paths joining nonadjacent
consecutive pairs of S. Join any remaining pairs with 3-paths, if possible, until all
consecutive pairs are joined, or no others can be joined by 1-, 2- or 3-paths. Let k3
be the number of paths of length 3 between consecutive vertices of S. If all pairs
are joined then the cycle D results. Thus, k1 þ k2 þ k3 � k � 1, and the length of
the path system is k1 þ 2k2 þ 3k3. Note that k2 � 3k � m� 2 in general, and if
k1 � 1, then k2 � 3k � m� k1.

Let S2 be the k2 central vertices in the paths of length 2 and S3 be the
2k3 � 2ðk � 1� k2 � k1Þ central vertices of the paths of length 3. Assume that S
contains a consecutive pair vi and viþ1 not joined by a 1-, 2- or 3-path. Also, let Svi

and Sviþ1 be the neighborhoods of vi and viþ1 respectively in G� ðS [ S2 [ S3Þ. We
can assume that Svi \ Sviþ1 ¼ ; and there are no edges between Svi and Sviþ1 , since
this contradicts the way the path system was constructed. We can also assume
that vi and viþ1 have at most k � 2� � adjacencies in S, where � ¼ 1 if k1 � 1 and 0
otherwise. By the maximaility of k2 either vi or viþ1, say vi, can be adjacent to at
most k3 vertices of S3. Suppose Sviþ1 is not empty and let w 2 Sviþ1 . Since vi and w
have no common adjacency in G� ðS [ S2 [ S3Þ, we have the following inequality:

nþ 4k � m� 6 � dðviÞ þ dðwÞ � k � 2� �þ k1 þ ðk � k1Þ=2þ 2k2 þ 3k3

þðn� ðk þ k2 þ 2k3Þ � 1Þ:

This implies that m � 5k=2� 2þ �þ k1=2 � 5k=2� 1, which contradicts the fact
that m � ð5k � 3Þ=2, which would complete the proof of Claim 1.

Hence we can assume that Sviþ1 is empty and that Svi is not empty with w 2 Svi .
If viþ1 has k3 or fewer adjacencies in S3, then the above count would complete the
argument. Consequently, it must be the case that viþ1 has more than k3 adja-
cencies in S3. But this implies that for some j, viþ1 is adjacent to both interior
vertices, say x and y of the 3-path joining vj and vjþ1. If w is adjacent to both x and
y then each of the 3-paths ðvi;w; x; viþ1Þ and ðvi;w; y; viþ1Þ would yield a new path
system of the same length, and the appropriate choice leaves both vj and vjþ1
having neighbors in G� S � S2 � ðS3 � fx; yg [ fwgÞ. By using this alternate set
of 1-, 2- and 3-paths and applying the previous argument, a contradiction occurs.
Hence, whenever viþ1 is adjacent to both interior vertices of a 3-path in S3, it must
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be the case that w can be adjacent to at most one of those vertices. Subsequently,
Since viþ1 and w have no common adjacency in G� ðS [ S2 [ S3Þ we get the
following inequality:

nþ 4k � m� 6 � dðviþ1Þ þ dðwÞ � k � 2� �þ k1 þ ðk � k1Þ=2þ 2k2 þ 3k3

þðn� ðk þ k2 þ 2k3Þ � 1Þ:

This result is a contradiction, and with all cases exhausted the proof of Claim 1
follows. (

Select a cycle C of maximum length p � m that encounters the vertices of S in
the required order. Let H ¼ G� C.

Claim 2. p > k.

This is clearly true except when k1 ¼ k. In this case, by assuming G is edge
maximal, the set S induces Kk. Since dðGÞ � 4k � m� 4 � k, each vertex of S has
an adjacency in G� S. Assume that viui 2 EðGÞ for i ¼ 1; 2 with u1; u2 2 G� S.
Either u1 ¼ u2, u1u2 2 EðGÞ, or u1u2 62 EðGÞ. In the later case, since u1 and u2 have
at least 4k � m� 4 common adjacencies, either u1 or u2 can be inserted into C or
they have at most k=2 common adjacencies on C. Thus, they have a common
adjacency in G� S. Each of these cases now yields a cycle C of length either k þ 1,
k þ 2 or k þ 3 < 2k � m, which verifies Claim 2. (

Claim 3. p ¼ m.

Assume that p < m. Note that each vertex of C has an adjacency in H . If this is
not so, then select a vertex x 2 C with no adjacency in H , and let y be a vertex in
H . The vertex y cannot be adjacent to two consecutive vertices of C, and so we
have

nþ 4k � m� 6 � dðxÞ þ dðyÞ � ðp � 1Þ þ ðn� p � 1Þ þ p=2:

This implies that 8k � 2m� 8 � p � m� 1. Since m � ð5k � 3Þ=2, the displayed
inequality implies that ð8k � 7Þ=3 � m � ð5k � 3Þ=2. This yields a contradiction,
unless k ¼ 5;m ¼ 11, and p ¼ 10. In this special case the graph H is complete,
each vertex y 2 H is adjacent to every other vertex of C and not adjacent to x, and
x is adjacent to all of the other vertices of C. Also, jH j � 2, since G is k-ordered
hamiltonian. This implies the vertices of S alternate on C and are precisely the
vertices of C not adjacent to the vertices of H , since a C11 could be constructed
using two vertices of H and avoiding a vertex of C. However, a C11 can be formed
using the edges x�y; yxþ and the edge xxþþ, a contradiction in this special case.
Hence, we may assume that each vertex of C has an adjacency in H .

Select a vertex x 2 C such that xþ 62 S. For convenience let y ¼ xþ, z ¼ xþþ,
and w ¼ x�. If possible, choose x not in S. Let u 2 H such that xu 2 EðGÞ. We will
show that zu 2 EðGÞ. If not, then observe that z and u have no common adjacency
in H , since this would imply the existence of a cycle of length p þ 1 with the
required properties. Hence, we have the following inequality:

Generalizing Pancyclic and k-Ordered Graphs 301



nþ 4k � m� 6 � dðzÞ þ dðuÞ � ðp � 1Þ þ ðn� p � 1Þ þ ðp � 1Þ=2:

This implies that 8k � 2m� 7 � p � m� 1. Hence, ð8k � 6Þ=3 � m � ð5k � 3Þ=2,
and consequently k � 3, a contradiction. Therefore NH ðxÞ ¼ NH ðzÞ, and in par-
ticular zu 2 EðGÞ.

Now suppose xz 62 EðGÞ. Let N ¼ NH ðxÞ and Nþ ¼ N [ fyg. Then

jNH ðxÞj � ðnþ 4k � m� 6� 2ðp � 2ÞÞ=2 ¼ ðnþ 4k � m� 2p � 2Þ=2 � 1:

If two vertices of Nþ are adjacent, then a cycle of length p þ 1 results, so we can
assume that Nþ is an independent set. For vertices u1 and u2 in Nþ we have the
following inequality:

nþ 4k � m� 6 � dðu1Þ þ dðu2Þ � p þ 2ðn� p � ððnþ 4k � m� 2p � 2Þ=2ÞÞ:

This implies 8k � p þ 2mþ 8, and so k � 5. Moreover, if k ¼ 4, then m ¼ 8 and
p � 7, which gives a contradiction. When, k ¼ 5, it follows that m ¼ 11, p ¼ 10,
there are ðn� 13Þ=2 vertices in N , and each vertex in Nþ is adjacent to all vertices
of the ðn� 7Þ=2 vertices of H � N as well as to every other vertex of C. Also, both
x and z are adjacent to all of the remaining p � 2 ¼ 8 vertices of C. Note that if
v 2 H � N , then dðvÞ � nþ 3� dðxÞ � 8þ ðn� 13Þ=2 ¼ ðnþ 3Þ=2. Thus,
dH�N ðvÞ � ðnþ 3Þ=2� 5� ðn� 13Þ=2 ¼ 3. Hence, there is a path ðw; v1; v2; u; zÞ
with v1; v2 2 H � N that can be used to form a C11 from C, if x 62 S. Hence we can
assume that x, and by symmetry z, are both in S. Also, there is a path
ðx; u1; v; u2; zÞ with u1; u2 2 Nþ and v 2 H � N . Hence if zþ 62 S, then there is the
required C11, since zzþþ 2 EðGÞ. This implies that zþ 2 S, and by symmetry
w� 2 S. Since there are three consecutive vertices of S in C10, it follows that our
choice for x could have been made with both x and xþ not in S, which would imply
the existence of a C11 as required. It follows that xa 2 EðGÞ.

Note that wy 62 EðGÞ, since this would imply the existence of a cycle of length
p þ 1 with the required properties. The vertex u 2 N is not adjacent to w, since this
would give a cycle of length p þ 1 with the required properties. If w and u have a
common adjacency in H , then there is also a cycle of length p þ 1 using the edge xz.
However, no common adjacency in H of w and u implies the following inequality:

nþ 4k � m� 6 � dðwÞ þ dðuÞ � n� p � 1þ ðp � 2Þ þ p=2:

This implies that 8k � 2m� 6 � p � m� 1. This gives the inequality
ð8k � 5Þ=3 � m � ð5k � 3Þ=2, which implies k � 1, a contradiction. Thus we can
conclude there is a cycle of length m that encounters S in the correct order,
verifying Claim 3. (

Assume there exist cycles of every length from m to p containing S in the
correct order, but there is no cycle of length p þ 1 with this property. Let C ¼ Cp

be a required cycle of length p, and let H ¼ G� C. The k vertices of S divide the
vertices of C into k disjoint intervals except for endvertices, each starting and
ending with a vertex of S.
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Claim 4. Some vertex in H has at least two adjacencies in some interval, or every
vertex of C has an adjacency in H .

Suppose there is a vertex x in C having no adjacencies in H , and every vertex
y 2 H has at most one adjacency in every interval of C. It follows that y has at
most k adjacencies in C. This gives the following inequality:

nþ 4k � m� 6 � dðxÞ þ dðyÞ � ðn� p � 1Þ þ k þ ðp � 1Þ:
This implies m � 3k � 4, and hence 3k � 4 � ð5k � 3Þ=2, and so k � 5. Thus, if
k > 5 the claim follows. Thus, we have a contradiction unless k ¼ 4 or 5. Observe
also that this implies that any vertex in C adjacent to no vertex of H must be
adjacent to all of C.

In the case when k ¼ 4 (5), the vertex y has precisely four (five) adjacencies in
C and none of these can be in S, since vertices of S are each in two intervals. Thus,
the vertices of S have no adjacencies in H , so they are adjacent to all other vertices
of C. Also, the vertices of H form a complete graph. Further, each of the intervals
in C has at least three vertices. Let u1 and u2 be vertices of C in consecutive
intervals with adjacencies w1 and w2 in H (possibly w1 ¼ w2) such that no vertex
between them has any adjacencies in H . Note that all vertices between u1 and u2

are adjacent to all other vertices of C. Let P be the path from u2 to u1
� on C and Q

the reverse order path from u2
� to u1. Then, there is a cycle of length p þ 1 or

p þ 2 using ðu1;w1;w2; u2Þ, P , u1
�u2

� and Q that encounters S in the correct order.
There is a chord of length two from each vertex of S in C, so the cycle of length
p þ 2 can be shortened if necessary. This gives a contradiction, which completes
the proof of Claim 4. (

Claim 5. If each vertex of C has an adjacency in H , then there is a vertex of H with
k þ 1 adjacencies in C and hence two adjacencies in some interval of C.

First consider the case when there is some interval in C with at least 4 vertices.
Let x1; x2; x3; x4 be four consecutive vertices in that interval. Let yi be an adjacency
of xi in H for 1 � i � 4. If yi ¼ yj, i 6¼ j, then we are done, so the yi’s are distinct. If
y1 and y4 have a common adjacency in H , then there is a cycle of length p þ 1 with
the required property, a contradiction. If y1y4 62 EðGÞ, then the following
inequality follows:

nþ 4k � m� 6 � dðy1Þ þ dðy4Þ � ðn� p � 2Þ þ p=2þ p=2 < n;

a contraction. Hence y1y4 2 EðGÞ. If x2 or x3 is insertible in the cycle obtained
from C by replacing x2 and x3 with y1 and y4, then there is a cycle of length p þ 1,
contradicting our choice of C. A cycle of length p þ 1 also results if y1 and x3 have
a common adjacency in H . Since, neither of these occur, we have the following
inequality:

nþ 4k � m� 6 � dðy1Þ þ dðx3Þ � ðn� p � 1Þ þ p=2þ p=2 < n;

which gives a contradiction unless y1x3 2 EðGÞ. However, y1x3 2 EðGÞ implies
there is a vertex in H with two adjacencies in an interval of C.
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We may now assume there is no interval of C with four vertices. It follows that
p ¼ m ¼ 2k, the vertices of S alternate, and each interval has precisely three
vertices. Let x1; x2; x3 be the three consecutive vertices in some interval. Let y1 be
an adjacency of x1 in H . If y1x3 2 EðGÞ or y1x2 2 EðGÞ, then we have proved the
claim, so neither is an edge in G. Also, if y1 and x3 have a common adjacency in H ,
then there is a cycle of length p þ 1, a contradiction. Therefore, we have the
following inequality:

nþ 2k � 6 � dðy1Þ þ dðx3Þ � ðn� 2k � 1Þ þ ð2k � 1Þ þ ðk � 1Þ:

This implies k � 3, a contradiction. Therefore, we can conclude there is a vertex in
H with at least k þ 1 adjacencies in C and hence at least two adjacencies in some
interval of C, completing the proof of Claim 5. (

Select two vertices x and y in one of the intervals of C which have a common
adjacency, say z 2 H , that are at a minimum distance along C. Let A be the
vertices of C strictly between x and y in this interval. Thus, none of the vertices A
are in S.

Claim 6. Some vertex in A has an adjacency in H .

Suppose not and consider the cycle obtained from C by replacing the path with
vertices in A by the path ðx; z; yÞ. If all of the vertices of A can be inserted into this
cycle, then the required cycle of length p þ 1 exists, which gives a contradiction. If
not, then insert as many vertices as possible, and assume we are left with a set
; 6¼ B � A of vertices that cannot be inserted. Select a vertex w 2 B. If b ¼ jBj and
w has no adjacency in H , then we have the following inequality:

nþ 4k � m� 6 � dðwÞ þ dðzÞ � ððb� 1Þ þ ðp � bþ 1Þ=2Þ þ ðððn� p � 1Þ
þ ðp � bþ 1Þ=2Þ < n;

a contradiction, completing the proof of Claim 6.

Claim 7. jAj ¼ 1

Suppose jAj � 2. If all of the vertices in A are insertible in the path C � A, then
the required cycle of length p þ 1 is obtained. Assume not, and let ðx1; x2; � � � ; xsÞ
be the path of C using the vertices in A. Let xt be the first vertex of A starting from
x1 that is not insertible. Observe that xt and z must have a common adjacency in
H , since if this is not true then we get the following inequality:

nþ 4k � m� 6 � dðxtÞ þ dðzÞ � ðn� p � 1Þ þ ða� 1Þ þ ðp � aþ 1Þ < n;

a contradiction. Let zt be such a common adjacency. If t > 1, then the required
cycle of length p þ 1 is obtained by using the path ðy; z; zt; xtÞ to replace A and
inserting all of the remaining vertices of A except for x1. Hence, we must have that
x1 is not insertible, and so t ¼ 1. Likewise, xs is not insertible, and there is a vertex
zs 2 H that is a common adjacency of xs and z. If s ¼ 2, then the required cycle of
length p þ 1 can be obtained by using the path ðx; z; z2; x2; yÞ and avoiding the
vertex x1. The required cycle can also be obtained if all of the vertices of A strictly
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between x1 and xs can be inserted. Thus, we can assume that s > 2, and let xr be
the first vertex past x1 that is not insertible. Associated with xr is the vertex zr 2 H
that is commonly adjacent to z and xr. Again, the required cycle is obtained by
using the path ðx; z; zr; xr; � � �Þ, inserting the vertices strictly between x1 and xr and
avoiding x1. Therefore, we can conclude that jAj ¼ 1, completing the proof of
Claim 7. (

Claim 8. No vertex of H can have three adjacencies in one interval.

Assume there is a vertex z 2 H with adjacencies x1; x2; x3. By Claim 7 we know
that there is precisely one vertex on C between x1 and x2 and between x2 and x3.
Denote these vertices by y1 and y2. Neither y1 nor y2 is insertible, since this would
give the desired cycle of length p þ 1. Also, y1y2 62 EðGÞ for the same reason.
Therefore, y1 and y2 have a common adjacency in H , which we will denote by z0,
since if this did not occur the following inequality results:

nþ 4k � m� 6 � dðy1Þ þ dðy2Þ � ðn� p � 1Þ þ p=2þ p=2 � n� 1;

a contradiction. This implies that x2 is not insertible for the same reason as y1 and
y2. Observe that x2 and z cannot have a common adjacency in H , since this gives a
cycle of length p þ 1 avoiding y1 and using z and the common adjacency. The
same argument implies that y2 and z0 do not have a common adjacency in H . This
implies the following inequality involving x2; y2; z; z0:

2ðnþ4k�m�6Þ� dðx2Þþdðz0Þþdðy2ÞþdðzÞ� 2ðn�p�1Þþ4ðp=2Þ� 2ðn�1Þ;

a contradiction. Therefore, no vertex of H can have three adjacencies in an
interval of C, completing the proof of Claim 8. (

The previous observations have placed many restrictions on the graph G. No
vertex of H can have three adjacencies in any interval of C, and when there are
two adjacencies in some interval they are at a distance two on C. In fact, if a
vertex of H is adjacent to t vertices of S, then the vertex can have at most 2k � t
adjacencies in C, since the vertices of S are in two intervals. We also know that at
least one vertex of C has no adjacencies in H . If two vertices are in the same
interval and are at a distance three apart on the cycle C, then both cannot have
adjacencies in H , for otherwise a count similar to that at the end of Claim 8 would
produce a contradiction. Consequently, C has at most 2k < m � p vertices, a
contradication. Thus, by Claim 4, some vertex of H has two adjacencies in some
interval. Also, each pair u; v 2 H of nonadjacent vertices have

dH ðuÞ þ dH ðvÞ � nþ 4k � m� 6� p ¼ jH j þ 4k � m� 6 � jH j þ 3=2;

which implies they have at least two common adjacencies in H .

Claim 9. If y1; y2 2 H each have two adjacencies in the same interval of C, then they
have the same two adjacencies.

Assume that ðx1; x2; � � � ; xtÞ are the vertices of an interval, and that
y1xi; y1xiþ2; y2xj; y2xjþ2 2 EðGÞ with i < j. Previous observations imply that
xiþ1; xjþ1 have adjacencies in H . Hence, to avoid having two vertices in the interval
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with adjacencies in H that are at a distance on C, we must have j � iþ 6. Either
y1y2 2 EðGÞ or there is a y 2 H such that ðy1; y; y2Þ is a path in H . Let
A ¼ fxiþ3; xiþ4; � � � ; xj�1g, which is a set with at least three vertices, and let P be the
path containing the remaining vertices of C. Starting with xiþ3 and using the order
on A, insert one at a time the vertices of A into P or the path obtained from P from
inserting vertices of A. If all of the vertices of A can be inserted, then a Cpþ1 cycle
can be constructed using the path from xiþ2 to xj containing y1 and y2, and
replacing P with a path with the appropriate number of vertices of A inserted. If
all of the vertices of A cannot be inserted, then let xq be the first vertex that cannot
be inserted. Let B ¼ fxq; xqþ1; � � � ; xj�1g with b ¼ jBj. There must be some com-
mon adjacency, say z 2 H , of xq and y1, for otherwise the following inequality
results:

nþ 4k � m� 6 � dðy1Þ þ dðxqÞ � n� p � 1þ ðb� 1Þ þ 2ððp � bþ 1Þ=2Þ ¼ n� 1;

a contradiction. A Cpþ1 can be constructed using the path ðxiþ2; y1; z; xqÞ and by
inserting all but one of the vertices of A� B. This gives a contradiction that
completes the proof of Claim 9. (

Let u be a vertex of C that does not have an adjacency in H , and assume that
dCðuÞ ¼ p � r. Thus, u is not adjacent to r vertices of C including itself. Then, each
vertex of H has at least nþ 4k � m� 6� ðp � rÞ � ðn� p � 1Þ ¼ 4k � m� 5þ r
adjacencies in C. Therefore, if r � 4, then 4k � m� 5þ r � 4k � ð5k � 3Þ=2� 1 ¼
ð3k þ 1Þ=2 > 3k=2. This implies that each vertex of H will have a pair of adja-
cencies in more than half of the k intervals of C, and so each pair of vertices
h1; h2 2 H will have two adjacencies in some common interval. By Claim 9 the
vertices h1 and h2 will have the same two adjacencies in this interval and they will
be at a distance 2 on C. Hence, h1h1 62 EðGÞ, since otherwise there would be the
required Cpþ1. Thus, we can assume that H has no edges. This contradicts the fact
that each vertex in H has at least 2 adjacencies in H . Hence we can assume that
r � 3.

Claim 10. r � 2.

Suppose not, and let u be a vertex of C such that dðuÞ ¼ dCðuÞ ¼ p � 3. If each
vertex of H is nonadjacent to some other vertex of H , then each vertex of H will
have 4k � m� 1 � ð3k þ 1Þ=2 adjacencies in C. This implies that each vertex of H
will have a pair of adjacencies in more that half of the k intervals of C, and so H
will have no edges. This contradicts the fact that each vertex in H has at least two
adjacencies in H . Hence we can assume that some vertex of H , say x, is adjacent to
all of the other vertices of H . Note that each vertex of H has at least ð3k � 1Þ=2
adjacencies in C, and thus has pairs of adjacencies in at least ðk � 1Þ=2 of the k
intervals of C. This implies that there is no triangle in H , since at least some pair
of vertices in the triangle will have a common pair of adjacencies in some interval
of C. Thus, there are no edges in the neighborhood of x in H , so H is just a star
centered at x. This gives a contradiction if jH j � 3, since some pair of nonadjacent
vertices of H will not have two common adjacencies in H . This leaves only the
case when H is just an edge, say xy. Let v be a vertex of C between two adjacencies
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of x in some interval of C. Thus, v is not adjacent to x and also it cannot be
inserted into C. Therefore, we have the following inequality:

nþ 2 � nþ 4k � m� 6 � dðxÞ þ dðvÞ � p=2þ p=2þ 2 � n;

a contradiction that completes the proof of Claim 10.

Claim 11. r � 1.

Suppose not, say dðuÞ ¼ dCðuÞ ¼ p � 2. Thus, each vertex of H has degree at
least 4k � m� 3 � dð3k � 3Þ=2e relative to C and is adjacent to two vertices in
each of at least 3k � m� 3 � dðk � 3Þ=2e intervals of C. Also, note that each
vertex v 2 H has at least nþ 4k � m� 6� ðp þ ðn� p � 1ÞÞ ¼ 4k � m� 5 �
dð3k � 7Þ=2e adjacencies in H in common with any vertex of C that is between two
adjacencies of v in some interval of C. Thus, jH j � 4k � m� 4 � dð3k � 5Þ=2e.
Thus, on the average each interval has at least ð4k � m� 4Þð3k � m� 3Þ=k �
ðdð3k � 3Þ=2edðk � 3Þ=2eÞ=k vertices of H with a pair of adjacencies in that
interval. Observe that if a vertex v of H is nonadjacent to t other vertices of H ,
then v has degree at least 4k � m� 3þ t � dð3k � 3Þ=2e þ t relative to C and is
adjacent to two vertices in each of at least 3k � m� 3þ t � dðk � 3Þ=2e þ t
intervals of C.

We will first consider the cases when k � 6. Some interval of C will have at
least ðdð3k � 3Þ=2edðk � 3Þ=2eÞ=k � dð14Þ=6e ¼ 3 vertices of H with the same pair
of adjacencies in the interval. These three vertices, which we will denote by T , are
all nonadjacent. Thus, there is a vertex v of H with dH ðvÞ � jH j � 3. If there is a
vertex of v 2 H with dH ðvÞ � jH j � 5, then v has a pair of adjacencies in at least
dðk þ 5Þ=2e intervals of C. Since each of the vertices of H has a pair of adjacencies
in at least dðk � 3Þ=2e of the intervals of C, each will share a pair of vertices in
some interval with v. This implies that v has no adjacencies in H , a contradiction.
If dH ðvÞ ¼ jH j � 4, then select a set R of three vertices of H that are adjacent to v,
and this can be done since jH j � dð3k � 5Þ=2e � 7. If all of the vertices of R are
adjacent, then each of the intervals of C that contains their pairs of adjacencies are
disjoint and are disjoint from those associated with v. This implies that
dðk þ 3Þ=2e þ 3dðk � 3Þ=2e � k, a contradiction. Hence, some pair of vertices of R
are not adjacent, and so some vertex of u 2 R has a pair of adjacencies in at least
dðk � 1Þ=2e of the intervals of C. This implies that u is not adjacent to v, a
contradiction that implies that there is no vertex v with dH ðvÞ � jH j � 4. It has
already been shown that there is a triple T of nonadjacent vertices that will each
have degree jH j � 3 in H , and so all of these vertices are adjacent to the all of the
vertices in H � T . This implies the intervals of C that contain the pairs of adja-
cencies of the vertices of H � T are disjoint from the at least dðk þ 1Þ=2e intervals
associated with the vertices of T . However this is not possible, since
2dðk � 3Þ=2e þ dðk þ 1Þ=2e > k. Thus, no pair of vertices of the at least four
vertices in H � T are adjacent. This implies there is a vertex w 2 H with
dH ðwÞ � jH j � 5, a contradiction. Thus, we can assume that k ¼ 4 or 5.

When k ¼ 5, then m ¼ 10 or 11. If m ¼ 10, then jH j � 6, each vertex of H has at
least five adjacencies in H , and at least seven adjacencies in C with pairs of adja-
cencies in at least two intervals of C. There are no triangles in H , since it is not
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possible to have three disjoint sets of intervals, eachwith at least two intervals. Thus,
for some vertex v 2 H , we must have dH ðvÞ � jH j=2, and so v will be nonadjacent to
at least two additional vertices of H . Therefore, v will have pairs of adjacencies in at
least four of the five intervals of C, and hence cannot be adjacent to any of the other
vertices of H . This is a contradiction, so we can assume that m ¼ 11.

When k ¼ 5 and m ¼ 11, then jH j � 5, each vertex of H has at least four adja-
cencies in H and at least six adjacencies in C with a pair of adjacencies in at least one
interval ofC. If no vertex ofH has pairs of adjacencies in twodifferent intervals, then
jH j ¼ 5, each vertex of H has a pairs of adjacencies in a unique interval, no vertex of
S is adjacent to a vertex ofH , and each interval has at least five vertices.Hence, using
any interval of the cycleC, there is an extension to aCpþ2 by simultaneously inserting
two vertices ofH , one ofwhich has a pair of adjacencies in the interval. Thus, for any
z 2 S, neither zzþþ nor zz�� can be in EðGÞ, since this would imply the existence of a
Cpþ1. Therefore, dCðzÞ � p � 3, a contradiction.

Let v 2 H be a vertex with a maximum number, say t, of pairs of adjacencies in
intervals of C. We know that t � 2. Let R be the set of vertices of H that are
adjacent to v, and so we have that jRj � 4, and no vertex of R has a common pair
of adjacencies with v in some interval of C. If t ¼ 5, then each vertex of R would
have a common pair of adjacencies with v in some interval of C, a contradiction.
If t ¼ 4, then all of the vertices of R would have their pair of adjacencies in the
same interval, and so no pair of vertices of R would be adjacent. This implies each
vertex of R has degree at most jH j � 5, which implies t � 5, a contradiction. If
t ¼ 3, then the pairs of adjacencies associated with the vertices of R must be in the
two intervals disjoint from the intervals associated with v. Hence, two vertices, say
u1 and u2 of R will have a common pair of adjacencies in one of these two
intervals, u1u2 62 EðGÞ, and so each of u1 and u2 will have pairs of adjacencies in
both of the intervals disjoint from the intervals associated with v. This implies that
neither u1 not u2 is adjacent to any vertex of R, a contradiction as before. If t ¼ 2,
then the argument used in the t ¼ 3 case will imply there is a vertex of R that is
nonadjacent to at least two other vertices of R, and this implies t � 3. With this
contradiction we can assume that k ¼ 4.

The argument for k ¼ 4 and m ¼ 8 is identical to the argument for k ¼ 5 and
m ¼ 11, except that the parameters are different. In this case jH j � 4, each vertex
of H has at least three adjacencies in H and at least five adjacencies in C with a
pair of adjacencies in at least one interval of C. This observaton completes the
proof of Claim 11. (

Finally we consider the case when r ¼ 1, that is dðuÞ ¼ dCðuÞ ¼ p � 1, and so
each vertex with no adjacency in H is adjacent to all of the other vertices of C.
Each vertex of H has two adjacencies in some interval of C. Let y1 2 H , and let
ðx1; x2; x3Þ be a path in some interval of C with y1x1; y1x3 2 EðGÞ. Previous
observations imply there is a y2 2 H that is adjacent to both x2 and y1. If x�1 is in
the same interval of C as x1, then x�1 has no adjacencies in H and cannot be
adjacent to x2. This contradicts the fact that dðuÞ ¼ dCðuÞ ¼ p � 1. Hence, x1 and
likewise x3 are in S, and if y1 has two adjacencies in any interval, both are in S.
This implies that y1 has just k adjacencies in C. This gives a contradiction except
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when k ¼ 4, in which case y1 is adjacent to precisely the vertices of S. Thus, k ¼ 4,
all vertices of H are adjacent to precisely the vertices of S, and there are no edges
in H . This gives a contradiction that completes the proof of Theorem 9. (

For m ¼ ð5k � 3Þ=2, the r2ðGÞ condition of Theorem 9 is
r2ðGÞ � n ¼ ð3k � 9Þ=2, and this condition does not involve the variable m.
Hence, a direct corollary of Theorem 9 and the example implying the sharpness of
Theorem 2 is the following:

Corollary 3. Let k � 4 and G be a graph of order n with r2ðGÞ � nþ ð3k � 9Þ=2.
Then, G is ðk;mÞ-pancyclic ordered if ð5k � 3Þ=2 < m � n. Also, the bound on r2 is
sharp.

The results of this section are summarized in the following result.

Theorem 10. Let 4 � k � m � n be positive integers, and let G be a graph of order
n. Then, the graph G is ðk;mÞ-pancyclic ordered if r2ðGÞ satisfies any of the fol-
lowing conditions:

(i) r2ðGÞ � 2n� 3 when k � m < b3k=2c,
(ii) r2ðGÞ � 2n� 4 when b3k=2c � m < dð5k � 2Þ=3e,
(iii) r2ðGÞ � 2n� 5 when dð5k � 2Þ=3e � m < 2k,
(iv) r2ðGÞ � nþ 4k � m� 6 when 2k � m � ð5k � 3Þ=2,
(v) r2ðGÞ � nþ ð3k � 9Þ=2 when m > ð5k � 3Þ=2.

Also, all of the conditions on r2ðGÞ are sharp.
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