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Abstract

For any two positive integers nXrX1; the well-known Turán Theorem states that there

exists a least positive integer exðn;KrÞ such that every graph with n vertices and exðn;KrÞ þ 1

edges contains a subgraph isomorphic to Kr: We determine the minimum number of edges

sufficient for the existence of k cliques with r vertices each intersecting in exactly one common

vertex.
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1. Introduction

With integers nXrX1; we let Tn;r denote the Turán graph, i.e., the complete

r-partite graph on n vertices where each partite set has either In=rm or Jn=rn
vertices and the edge set consists of all pairs joining distinct parts. The number of
edges in Tn;r is denoted by exðn;Krþ1Þ; where Kr represents the complete graph on r

vertices.
For a graph G and a vertex xAVðGÞ; the neighborhood of x in G is denoted

by NGðxÞ ¼ fyAVðGÞ : xyAEðGÞg; or when clear, simply NðxÞ; and let
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NGðxÞ ¼ VðGÞ � NGðxÞ: The degree of x in G; denoted by dGðxÞ; or dðxÞ; is the size
of NGðxÞ: We use dðGÞ and DðGÞ to denote the minimum and maximum degrees,
respectively, in G: The order of G is often denoted by jGj ¼ jVðGÞj: For a subset
XCVðGÞ; let G½X 
 denote the subgraph of G induced by X : A matching in G is
a set of edges from EðGÞ; no two of which share a common vertex, and the
matching number of G; denoted by nðGÞ; is the maximum number of edges in a
matching in G:

Suppose that we are given some fixed graph H: What is the maximum
number, exðn;HÞ; of edges in a graph G on n vertices that does not contain a
copy of H as a subgraph (often said to forbid H)? A graph G on n vertices with
exðn;HÞ edges and without a copy of H is called an extremal graph for H: For
nXjVðHÞj; adding one more edge to any one of the extremal graphs will produce a
copy of H:

A graph on 2k þ 1 vertices consisting of k triangles which intersect in exactly one
common vertex is called a k-fan and denoted by Fk: For each k; the chromatic

number of Fk is three, and so by the Erd +os–Stone theorem [4], exðn;FkÞ ¼
ð1þ oð1ÞÞn2=4: The following result is due to Erd +os et al. [3].

Theorem 1. For every kX1; and for every nX50k2; if a graph G on n vertices has more

than

n2

4

� �
þ

k2 � k if k is odd;

k2 � 3
2
k if k is even;

(

edges, then G contains a copy of a k-fan. Further, the number of edges is best

possible.

A graph on ðr � 1Þk þ 1 vertices consisting of k cliques each with r vertices, which
intersect in exactly one common vertex, is called a ðk; rÞ-fan and denoted by Fk;r: The
purpose of this article is to generalize Theorem 1, when k and r are fixed and n is
large, as follows.

Theorem 2. For every kX1 and rX2; and for every nX16k3r8; if a graph G on n

vertices has more than

exðn;KrÞ þ
k2 � k if k is odd;

k2 � 3
2
k if k is even;

(

edges, then G contains a copy of a ðk; rÞ-fan. Further, the number of edges is best

possible.
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Note that the number exðn;KrÞ ¼ jEðTn;r�1Þj: To show the lower bound for

exðn;Fk;rÞ we present the following graph, Gn;k;r: For odd k (where nXð2k � 1Þðr �
1Þ þ 1ÞGn;k;r is constructed by taking a Turan graph Tn;r�1 and embedding two vertex

disjoint copies of Kk in one partite set. For even k (where now nXð2k � 2Þðr � 1Þ þ
1ÞGn;k;r is constructed by taking a Turán graph Tn;r�1 and embedding a graph with

2k � 1 vertices, k2 � ð3=2Þk edges with maximum degree k � 1 in one partite set.

2. Lemmas

In this section, we give preparatory lemmas for the proof of the main theorem.
Define f ðn;DÞ ¼ maxfjEðGÞj : nðGÞpn;DðGÞpDg: Chvátal and Hanson [2]

proved the following theorem.

Theorem 3. For every nX1 and DX1;

f ðn;DÞ ¼ nDþ D
2

� �
n

JD=2n

� �
pnDþ n:

We will frequently use the following special case proved by Abbott et al. [1]:

f ðk � 1; k � 1Þ ¼
k2 � k if k is odd;

k2 � 3
2
k if k is even:

(

The extremal graphs are exactly those we embedded into Tn;r�1 in the previous

section to obtain the extremal Fk;r-free graph Gn;k;r:
Let a be a positive integer and let X and Y be two disjoint vertex sets of VðGÞ: We

say that X dominates Y with a-deficiency if dY ðxÞXjY j � a for each xAX : Let
V1;V2;y;Vm be disjoint subsets of VðGÞ: We say that fV1;V2;y;Vmg is a-

deficiency complete if Vi dominates Vj with deficiency a for every pair iaj with

i; j ¼ 1; 2;y;m:
The following lemma will be used very heavily in our proof of the main

theorem.

Lemma 2.1. Let a be a positive integer. Let G be a graph and let fX1;X2;y;Xmg be

an a-deficiency complete partition of VðGÞ with jXijXma þ 2t for each i: Suppose that

C1;C2;y;Ct are t cliques of G with the properties:

(1) jCi-Xjjp2 for each pair i and j;

(2) jCi-Xjj ¼ 2 for at most one j for each i:

Then, there exist t cliques D1;D2;y;Dt satisfying:

(1) CiDDi for each i;
(2) D1 � C1; D2 � C2;y;Dt � Ct are mutually disjoint,
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(3) for each i we have that jDi-Xj j ¼ 1 for all j except possibly one at which

jDi-Xjj ¼ jCi-Xjj ¼ 2:

Proof. We need to show that, if Ci-Xj ¼ |; there exists a vertex vjAXj �
St

c¼1 Cc

such that vj is adjacent to all vertices in Ci: Iteration of this argument will then

provide the statement. Without loss of generality, we may assume that i ¼ j ¼ 1:

Since dX1
ðvÞXjX1j � a for each vAC1;

\
vAC1

NX1
ðvÞ

�����
�����XjX1j � jC1jaXma þ 2t � maX2t:

By our assumptions, we have that jð
St

i¼2 CiÞ-X1jp2ðt � 1Þ; thus
T

vAC1
NX1

ðvÞ �Sk
i¼2 Cia|: Lemma 2.1 now follows. &

Lemma 2.2. Let G be a graph and Y1;Y2;y;Ym be m vertex disjoint subsets of VðGÞ
and Y0DVðGÞ �

Sm
i¼1 Yi such that jYijXði � 1Þa þ k for each i ¼ 1;y;m: If Yi

dominates Yj with a-deficiency for every i ¼ 1; 2;y;m; j ¼ 0; 1;y;m; and iaj; then,

there are k vertex disjoint cliques C1;C2;y;Ck satisfying jCij ¼ m and jCi-Yjj ¼ 1

for each i and jX1: Furthermore, if jY0jXma þ k; then there are k vertex disjoint

cliques D1;D2;y;Dk with the property that jDij ¼ m þ 1 and jDi-Yjj ¼ 1 for each

i ¼ 1;y; k and j ¼ 0; 1;y;m:

Proof. Let y1;1; y1;2;y; y1;k be k arbitrary vertices in Y1: Since jNðy1;iÞ-Y2jXjY2j �
aXk; there are k vertices y2;1; y2;2;y; y2;k in Y2 such that y1;iy2;iAE for all

i ¼ 1;y; k: Since jNðy1;iÞ-Nðy2; iÞ-Y3jXjY3j � 2aXk; there are k vertices

y3;1; y3;2;y; y3;k in Y3 such that y3;iANðy1;iÞ-Nðy2;iÞ for all i ¼ 1; 2;y; k:
Continuing in the same fashion, we see that Lemma 2.2 follows. &

The case k ¼ 1 of the main theorem is Turan’s theorem, the case of r ¼ 2 is trivial,
and the case of r ¼ 3 is Theorem 1. We assume that kX2 and rX4: The aim of this
section is to prove the following lemma.

Lemma 2.3. Let G be an extremal graph for Fk;r on n vertices with nX4k2r4; and

with minimum degree dXðr�2
r�1

Þn � k: Then there exists a partition VðGÞ ¼
V0 ’,V1 ’,? ’,Vr�2; so that Via| for all i ¼ 0;y; r � 2 and for every xAVi; the

following hold:X
jai

nðG½Vj
Þpk � 1 and DðG½Vi
Þpk � 1; ð1Þ

dG½Vi 
ðxÞ þ
X
jai

nðG½NðxÞ-Vj
Þpk � 1: ð2Þ
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Proof. Since G plus any edge contains a copy of Fk;r; G contains k edge disjoint

cliques D1;D2;y;Dk sharing one vertex v0 with jD1j ¼ r � 1 and jDjj ¼ r for all

jX2: Let VðD1Þ ¼ fv0; v1;y; vr�2g: Denote the graph induced by
Sk

i¼1 Di by D:

Clearly, jDj ¼ kðr � 1Þ: For each i ¼ 0;y; r � 2; we define Xi ¼
T

jai NðvjÞ � VðDÞ:
Since G does not contain Fk;r as a subgraph,

Xi-Xj ¼ | for iaj:

Since the minimum degree dðGÞXr�2
r�1

n � k;

jXi,VðDÞjX n

r � 1
� ðr � 2Þk:

Thus,

jXijX
n

r � 1
� ðr � 2Þk � kðr � 1Þ ¼ n

r � 1
� kð2r � 3Þ: ð3Þ

For each iX1; if there is an edge uvAEðG½Xi
Þ; replacing vi by the edge uv in D we
obtain a copy of Fk;r; a contradiction. Thus,

EðG½Xi
Þ ¼ | for each i ¼ 1; 2;y; r � 2:

For every xiAXi and ia0; since dðxiÞXr�2
r�1

n � k; dXi
ðxiÞ ¼ 0; and jXijX

n
r�1

�kð2r � 3Þ; then

jNG�Xi
ðxiÞj ¼ ðn � dðxiÞÞ � jXij

p
n

r � 1
þ k

	 

� n

r � 1
� kð2r � 3Þ

	 

¼ 2kðr � 1Þ:

Thus,

dG�Xi
ðxiÞXjG � Xij � 2kðr � 1Þ;

for each xAXi where i ¼ 1; 2;y; r � 2: In particular, we have that

dXj
ðxÞXjXjj � 2kðr � 1Þ ð4Þ

for each xAXi; i.e., Xi dominates Xj with 2kðr � 1Þ-deficiency, where i ¼ 1; 2;y;

r � 2; j ¼ 0; 1;y; r � 2 and jai:

Claim 4. Let x1; x2;y; xr�2 be r � 2 vertices such that xiAXi for each i ¼ 1;y; r � 2:

Then, for any Y0DX0 with jY0jX2kðr � 1Þ2X2kðr � 1Þðr � 2Þ þ k; we have the

following inequality:

\r�2

i¼1

NðxiÞ-Y0

�����
�����Xk:
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Proof. By (4), dX0
ðxiÞXjX0j � 2kðr � 1Þ; and so

\r�2

i¼1

NðxiÞ-X0

�����
�����XjX0j � 2kðr � 1Þðr � 2Þ:

Claim 4 follows. &

Let X �
0 denote the set of all vertices of X0 of degree at least 2kðr � 1Þ2 in X0:

Claim 5. jX �
0 jp2kðr � 1Þðr � 2Þ:

Proof. Suppose, to the contrary, jX �
0 j42kðr � 1Þðr � 2Þ: For each i; let

X i
0 ¼ fxAX �

0 j dXi
ðxÞXjXij=ð2kðr � 1Þ þ 1Þg:

By (4), dX0
ðxiÞXjX0j � 2kðr � 1Þ for every xiAXi; thus NðSÞ+Xi for every SDX �

0

with jSj ¼ 2kðr � 1Þ þ 1; which implies that jX i
0jXjX �

0 j � 2kðr � 1Þ:
Therefore,

\r�2

i¼1

X i
0

�����
�����XjX �

0 j � 2kðr � 1Þðr � 2Þ41:

There is an x0AX �
0 such that jNðx0Þ-XijXjXij=ð2kðr � 1Þ þ 1Þ for each i ¼

1; 2;y; r � 2: Recall that by (3) we have jXijXn=ðr � 1Þ � kð2r � 3Þ for each

i ¼ 1;y; r � 2: Since nX4k2r4; the following inequality holds:

jNXi
ðx0ÞjXjXij=ð2kðr � 1Þ þ 1ÞX2kðr � 1Þðr � 2Þ þ k:

Applying Lemma 2.2 with Y0 ¼ Nðx0Þ-X0; Y1 ¼ Nðx0Þ-X1;y;Yr�2 ¼
Nðx0Þ-Xr�2; and a ¼ 2kðr � 1Þ; we obtain k vertex disjoint cliques C1;C2;y;Ck

of sizes r � 1 in Nðx0Þ: Then, a copy of Fk;r is found, a contradiction. &

Let Z0 ¼ X0 � X �
0 and Zi ¼ Xi for each i ¼ 1; 2;y; r � 2: By Claim 5 and (3), we

have that

V �
[r�2

i¼0

Xi

�����
�����pkð2r � 3Þðr � 1Þ:

Thus,

V �
[r�2

i¼0

Zi

�����
�����pkð2r � 3Þðr � 1Þ þ 2kðr � 1Þðr � 2Þo4kðr � 1Þ2:

Further, the following inequality holds.

jZ0jXn=ðr � 1Þ � kð2r � 3Þ � 2kðr � 1Þðr � 2Þ ¼ n=ðr � 1Þ � kð2r2 � 4r þ 1Þ:
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Since dðGÞXr�2
r�1n � k; the following inequalities hold for every z0AZ0 (recall that

Z0 ¼ X0 � X �
0 and thus by the definition of X �

0 we have DðG½Z0
Þp2kðr � 1Þ2Þ:

jNG�Z0
ðz0Þjp ðn � dðz0ÞÞ � ðjZ0j � DðG½Z0
ÞÞ

p
n

r � 1
þ k

	 

� n

r � 1
� kð2r2 � 4r þ 1Þ � 2kðr � 1Þ2

	 

p 4krðr � 1Þ:

In particular, for each z0AZ0; we have that for i40

dZi
ðz0ÞXjZij � 4krðr � 1Þ:

That is, Z0 dominates Zi with 4krðr � 1Þ deficiency.

Claim 6. For every vAV �
Sr�2

i¼0 Zi; there exists a j ¼ jðvÞ such that dZj
ðvÞo

2kðr � 1Þ2 þ ko2krðr � 1Þ: Further, such a jðvÞ is unique.

Proof. Suppose, to the contrary, there is a vAV �
Sr�2

i¼0 Zi such that dZj
ðvÞX

2kðr � 1Þ2 þ k for every j ¼ 0; 1;y; r � 2: Set a ¼ 2kðr � 1Þ and m ¼ r � 1; then for
all 0pjpr � 2;

jNZj
ðvÞj ¼ dZj

ðvÞXma þ k

and

dZj
ðziÞXjZjj � a for ziAZi; i40; iaj:

Applying Lemma 2.2, we see that there are k vertex disjoint cliques of order r � 1
whose vertex sets are in NðvÞ; a contradiction.

To show the uniqueness of jðvÞ; suppose there are two distinct j1 and j2 such that

dZji
ðvÞo2kðr � 1Þ2 þ k for both i ¼ 1 and 2. Since nX4k2r4X4kr2ðr � 1Þ2; we have

that

dðvÞp n � jZj1,Zj2 j þ 4kðr � 1Þ2 þ 2k

p n � n

r � 1
� 2kðr � 1Þ2

	 

þ n

r � 1
� kð2r � 3Þ

	 
h i
þ 4kðr � 1Þ2 þ 2k

¼ r � 2

r � 1
n � n

r � 1
þ 2kðr � 1Þ2 þ kð2r � 3Þ þ 4kðr � 1Þ2 þ 2k

o
r � 2

r � 1
n � k;

a contradiction. &

Adding each vAV �
Sr�2

i¼0 Zi to ZjðvÞ; we obtain a partition of V ¼
V0 ’,V1 ’,? ’,Vr�2:
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Clearly, for each i ¼ 0;y; r � 2;

jVijXjZijX
n

r � 1
� 2kðr � 1Þ2: ð5Þ

For each i and each viAVi; since

DðG½Vi
ÞpDðG½Zi
Þ þ V �
[r�2

i¼0

Zi

�����
�����p2kðr � 1Þ2 þ 4kðr � 1Þ2;

we have that

jNG�Vi
ðviÞjp ðn � dðviÞÞ � ðjVij � DðG½Vi
ÞÞ

p
n

r � 1
þ k

	 

� n

r � 1
� 2kðr � 1Þ2 � 6kðr � 1Þ2

	 

¼ k þ 2kðr � 1Þ2 þ 6kðr � 1Þ2

o 8kr2:

In particular, we have that

dVj
ðviÞXjVjj � 8kr2: ð6Þ

We will show that V0;V1;y;Vr�2 satisfy (1) and (2). Let a ¼ 8kr2: Since

nX4k2r4X8kr4; for any j; we have that

jVjjX
n

r � 1
� 2kðr � 1Þ2Xðr � 1Þa þ 2k:

Proof of (1). Suppose for some yAVi; jNðyÞ-VijXk; say the neighbors are
y1; y2;y; yk in Vi: By Lemma 2.1, there are k cliques D1;D2;y;Dk such that
y; yjADj and jDjj ¼ r for each j: Further, Dj-Dc ¼ fyg for all jac: Thus, a copy of

Fk;r is found, a contradiction.

Next suppose that
P

jai nðVjÞXk: Let y1z1; y2z2;y; ykzk be a k-matching with

the property that yj and zj are in the same Vc for some cai: Now, since

nX4k2r4X16k2r3;

\k
j¼1

ðNVi
ðyjÞ-NVi

ðzjÞÞj4
�����

�����Vij � 2kð8kr2ÞX n

r � 1
� 2kðr � 1Þ2

	 

� 16k2r2X1:

Therefore, there exists a vertex yAVi; such that
Sk

j¼1fyj; zjgDNðyÞ: By Lemma 2.1,

there are k cliques D1;D2;y;Dk such that y; yj; zjADj and jDjj ¼ r for each j:

Further, Dj-Dc ¼ fyg for all jac: Thus, a copy of Fk;r is found, a contra-

diction. &

Proof of (2). Let vAVi have neighbors x1; x2;y; xs in Vi and neighbors y1;
z1; y2; z2;y; yt; and zt in V � Vi where, for each j ¼ 1;y; t; yj and zj in the same Vc

for some cai and yjzjAEðGÞ: By (1), both s and t are less than k: Suppose for

the moment that s þ tXk: Consider k of the cliques fv; x1g;y; fv; xsg;
fv; y1; z1g;y; fv; yt; ztg: Applying Lemma 2.1 again, we obtain k cliques
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D1;D2;y;Dk which induce a copy of Fk;r; a contradiction, which completes the

proof of Lemma 2.3. &

3. Proof of the main lemma

The following lemma was obtained in [3].

Lemma 3.1. Let H be a graph and b a nonnegative integer such that bpDðHÞ � 2; and

let n ¼ nðHÞ; D ¼ DðHÞ: ThenX
xAVðHÞ

minfdHðxÞ; bgpnðb þ DÞ: ð7Þ

Let G be a graph with a partition of the vertices into r � 1 non-empty parts

VðGÞ ¼ V0 ’,V1 ’,? ’,Vr�2:

Let Gi ¼ G½Vi
 for each i ¼ 0; 1;y; r � 2; and define

Gcr ¼ ðVðGÞ; fvivj : viAVi; vjAVj; iajgÞ;

where ‘‘cr’’ denotes ‘‘crossing’’. For each iAf0; 1;y; r � 2; crg let diðxÞ ¼ dGi
ðxÞ and

ni ¼ nðGiÞ: We generalized Lemma 6.2 in [3] to the following lemma.

Lemma 3.2. Suppose G is partitioned as above so that (1) and (2) are satisfied. If G is

Fk;r-free, then

Xr�2

i¼0

jEðGiÞj �
X

0piojpr�2

jVijjVjj � jEðGcrÞj
 !

pf ðk � 1; k � 1Þ: ð8Þ

Proof. Observe that Gcr is an ðr � 1Þ-partite graph, and
P

0piojpr�2 jVijjVjj �
jEðGcrÞj is the number of edges missing from the complete ðr � 1Þ-partite graph. By
(1) and the definition of f ; we see that jEðGiÞjpf ðk � 1; k � 1Þ; so the left-hand side
of (8) is bounded above by ðr � 1Þf ðk � 1; k � 1Þ: Delete vertices of G so that the
left-hand side of (8) is maximal, let G be minimal in this case.

We now claim that for each i ¼ 0;y; r � 2 and every xAVi;

diðxÞ � ðjV � Vij � dcrðxÞÞ40: ð9Þ
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In fact, if for some xAVi; diðxÞ � ðjV � Vij � dcrðxÞÞp0 holds, then

jEðGi �xÞjþ
X
jai

jEðGjÞj�
X
jai

jVi � xjjVjjþ
X

iajocai

jVjjjVcj� jEðGcr � xÞj
 !

¼
Xr�2

j¼0

jEðGjÞj �
X

0pjocpr�2

jVjjjVcj � jEðGcrÞj
 !

� ðdiðxÞ � jV � Vij þ dcrðxÞÞ

X

Xr�2

j¼0

jEðGjÞj �
X

0pjocpr�2

jVj jjVcj � jEðGcrÞj
 !

;

contradicting the minimality of G: Hence (9) holds.
We also claim that for each i ¼ 0;y; r � 2;

diðxÞ � ðjV � Vij � dcrðxÞÞpk � 1�
X
jai

nj : ð10Þ

To see (10), we need only observe that,

diðxÞ � ðjV � Vij � dcrðxÞÞ

pk � 1�
X
jai

½nðGj ½NðxÞ-Vj 
Þ þ jVj j � djðxÞ
 by ð2Þ

pk � 1�
X
jai

nj ;

where the last inequality holds since any matching in Gj has at most jVj j � djðxÞ
edges with one or both endpoints outside NðxÞ-Vj : This proves (10).

We can also assume that for each i ¼ 0;y; r � 2;

1p
X
jai

njpk � 2; ð11Þ

by the following arguments. If
P

jai nj ¼ 0; then Gj is empty for every jai; and in

this case by (1),

jEðGiÞj �
X
joc

jVjjjVcj � EðGcrÞj
 !

pjEðGiÞjpf ðk � 1; k � 1Þ;

thus (8) holds trivially, verifying the lemma. If
P

jai nj ¼ k � 1; then by (9) and (10),

we would have

0odiðxÞ � ðjV � Vij � dcrðxÞÞp0;

a contradiction.
We may further suppose that

2pni for each i ¼ 0;y; r � 2: ð12Þ
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To the contrary, without loss of generality, assume that n0p1; then (11) implies thatPr�2
i¼0 nipk � 1: As

Xr�2

i¼0

f ðni;DÞpf
Xr�2

i¼0

ni;D

 !

always holds, we get that
Pr�2

i¼0 jEðGiÞjpf ðk � 1; k � 1Þ and (8) follows.

Now apply Lemma 3.1 for the graph Gi ði ¼ 0;y; r � 1Þ with D ¼ k � 1 and
b ¼ k � 1�

P
jai njpD� 2 (by (12)). Using (10) and (7) we get

X
xAVi

diðxÞ �
X
jai

jVjj � dcrðxÞ
 !" #

p
X
xAVi

min diðxÞ; k � 1�
X
jai

nj

( )

pni 2ðk � 1Þ �
X
jai

nj

 !
: ð13Þ

The left side in (13) equals

2jEðGiÞj þ
X
jai

jEðVi;VjÞj �
X
jai

jVijjVjj;

so adding these r � 1 sums (for i ¼ 0;y; r � 2) gives

2jEðGÞj ¼ 2
Xr�2

i¼0

jEðGiÞ þ 2jEðGcrÞj

¼
Xr�2

i¼0

2jEðGiÞj þ
X
iaj

jEðVi;VjÞj �
X
jai

jVijjVjj
 !

þ 2
X
ioj

jVijjVj j

p
Xr�2

i¼0

ni 2ðk � 1Þ �
X
jai

nj

 !
þ 2

X
ioj

jVijjVjj

¼ 2 k2 � 2k þ 1� ðk � 1� n0Þ k � 1�
X
j40

nj

 !
�

X
0ajaca0

njnc

" #

þ 2
X
ioj

jVijjVj j:

This yields jEðGÞjpk2 � 2k þ
P

ioj jVijjVjj (by (11), k � 1� n0X1 and

k � 1�
P

ia0 niX1), and since f ðk � 1; k � 1Þ4k2 � 2k; this implies (8), finishing

the proof of Lemma 3.2. &
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4. Proof of the theorem

We can summarize Lemmas 3.2 and 2.3 as follows:

Lemma 4.1. Suppose that G is an Fk;r-free graph on n vertices with nX4k2r4; and with

minimum degre dXr�2
r�1

n � k; then jEðGÞjpexðn;KrÞ þ f ðk � 1; k � 1Þ:

Proof. We can assume that G has the maximum number of edges under the
conditions of Lemma 4.1 and apply Lemma 2.3 to get a decomposition of G into
G0;G1;y;Gr�2; Gcr: The graph Gcr consists of the edges between Vi and Vj for all

distinct pairs i and j: Lemma 3.2 implies that

jEðGÞj ¼
Xr�2

i¼0

jEðGiÞj þ jEðGcrÞj

p
X
ioj

jVijjVj j þ f ðk � 1; k � 1Þ

p exðn;KrÞ þ f ðk � 1; k � 1Þ;

and we are done. &

Since exðn;KrÞ � exðn � 1;KrÞ ¼ Ir�2
r�1

nm; we see that the following lemma holds.

Lemma 4.2. Let G be a graph of order n; let k be an integer and c some con-

stant independent from n: If jEðGÞjXexðn;KrÞ þ c and dðxÞpr�2
r�1

n � k; then

jEðG � xÞjXexðn � 1;KrÞ þ c þ k:

Proof of Theorem 2. Suppose that nX16k3r8; and that G is an Fk;r-free graph on n

vertices. We need to show that G has at most exðn;KrÞ þ f ðk � 1; k � 1Þ edges.
Suppose, to the contrary, that jEðGÞj4exðn;KrÞ þ f ðk � 1; k � 1Þ: By Lemma 4.1,

there exists a vertex x ¼ xn with degree dGðxnÞor�2
r�1

n � k:

Denote G by Gn; and let Gn�1 ¼ Gn � xn: By Lemma 4.2,

jEðGn�1ÞjXexðn � 1;KrÞ þ f ðk � 1; k � 1Þ þ k:

If there exists a vertex xn�1AVðGn�1Þ with degree dGn�1ðxn�1Þor�2
r�1

ðn � 1Þ � k;

then delete it to obtain Gn�2 ¼ Gn�1 � xn�1: Continue this process as long as

dðGiÞor�2
r�1

i � k; and after n � c steps we get a subgraph Gc with dðGcÞXr�2
r�1

c� k:

Note that

cðc� 1Þ=2XjEðGcÞjXexðc;KrÞ þ kðn � cÞ þ f ðk � 1; k � 1ÞXkðn � cÞ:

We have that c4
ffiffiffiffiffi
kn

p
X4k2r4; a contradiction to Lemma 4.1. &
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5. Remark

To avoid tedious calculations, we did not attempt to lower the bound nX16k3r8 in
the proof, although we strongly believe the bound can be lowered substantially.
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