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Abstract

For any two positive integers n=>r>1, the well-known Turan Theorem states that there
exists a least positive integer ex(n, K;) such that every graph with n vertices and ex(n, K;) + 1
edges contains a subgraph isomorphic to K,. We determine the minimum number of edges
sufficient for the existence of k cliques with r vertices each intersecting in exactly one common
vertex.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

With integers n=r>1, we let T,, denote the Turdn graph, i.e., the complete
r-partite graph on n vertices where each partite set has either | n/r| or [n/r]
vertices and the edge set consists of all pairs joining distinct parts. The number of
edges in T, is denoted by ex(n, K1), where K, represents the complete graph on r
vertices.

For a graph G and a vertex xe V(G), the neighborhood of x in G is denoted
by Ng(x)={yeV(G):xyeE(G)}, or when clear, simply N(x), and let
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Ng(x) = V(G) — Ng(x). The degree of x in G, denoted by dg(x), or d(x), is the size
of Ng(x). We use J(G) and 4(G) to denote the minimum and maximum degrees,
respectively, in G. The order of G is often denoted by |G| = |V(G)|. For a subset
X < V(G), let G[X] denote the subgraph of G induced by X. A matching in G is
a set of edges from E(G), no two of which share a common vertex, and the
matching number of G, denoted by v(G), is the maximum number of edges in a
matching in G.

Suppose that we are given some fixed graph H. What is the maximum
number, ex(n, H), of edges in a graph G on n vertices that does not contain a
copy of H as a subgraph (often said to forbid H)? A graph G on n vertices with
ex(n,H) edges and without a copy of H is called an extremal graph for H. For
n=|V(H)|, adding one more edge to any one of the extremal graphs will produce a
copy of H.

A graph on 2k + 1 vertices consisting of k triangles which intersect in exactly one
common vertex is called a k-fan and denoted by Fj. For each k, the chromatic
number of Fj is three, and so by the Erdds—Stone theorem [4], ex(n,Fy) =
(14 o(1))n?/4. The following result is due to Erdds et al. [3].

Theorem 1. For every k=1, and for every n>50k>, if a graph G on n vertices has more
than

VZJ {kz—k if k is odd,
4

4 k> — %k if k is even,

edges, then G contains a copy of a k-fan. Further, the number of edges is best
possible.

A graph on (r — 1)k + 1 vertices consisting of k cliques each with r vertices, which
intersect in exactly one common vertex, is called a (k, r)-fan and denoted by Fj ,. The
purpose of this article is to generalize Theorem 1, when k& and r are fixed and »n is
large, as follows.

Theorem 2. For every k>1 and r=2, and for every n>16k*r8, if a graph G on n
vertices has more than

kK> —k if kis odd,
ex(m Ky)+9 ., 5, . i
k= —sk if k is even,

edges, then G contains a copy of a (k,r)-fan. Further, the number of edges is best
possible.
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Note that the number ex(n,K,) = |E(T,,—1)|. To show the lower bound for
ex(n, Fi,) we present the following graph, G, ,. For odd k (where n> (2k — 1)(r —
1) + 1) G,k is constructed by taking a Turan graph T, ,_; and embedding two vertex
disjoint copies of K} in one partite set. For even k (where now n>(2k —2)(r — 1) +
1)G, . is constructed by taking a Turan graph T,,_; and embedding a graph with
2k — 1 vertices, k* — (3/2)k edges with maximum degree k — 1 in one partite set.

2. Lemmas

In this section, we give preparatory lemmas for the proof of the main theorem.
Define f(v,4) = max{|E(G)|: v(G)<v,4(G)<4}. Chvatal and Hanson [2]
proved the following theorem.

Theorem 3. For every v=1 and A>1,

v, 4) =vA + EJ MAVWJ <vA+v.

We will frequently use the following special case proved by Abbott et al. [1]:

Flk— k- 1) = K> —k if k is odd,
’ | K2 =3k if k is even.

The extremal graphs are exactly those we embedded into 7}, in the previous
section to obtain the extremal Fj ,-free graph G,k .

Let a be a positive integer and let X and Y be two disjoint vertex sets of V(G). We
say that X dominates Y with a-deficiency if dy(x)>|Y|—a for each xeX. Let
Vi,Va, ..., Viy be disjoint subsets of V(G). We say that {Vy,Va,...,V,u} is a-
deficiency complete if V; dominates V; with deficiency a for every pair i#; with
i,j=12....m.

The following lemma will be used very heavily in our proof of the main
theorem.

Lemma 2.1. Let a be a positive integer. Let G be a graph and let {X1, X5, ..., X, } be
an a-deficiency complete partition of V(G) with |X;| =ma + 2t for each i. Suppose that
Cy1, Gy, ..., Cy are t cliques of G with the properties:

(1) |CinX;|<2 for each pair i and j,

(2) |CinX;| = 2 for at most one j for each i.

Then, there exist t cliques Dy, D, ..., D, satisfying:

(1) CieD; for each i,
(2) D, — Cy, Dy — Gy, ...,D; — C; are mutually disjoint,
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(3) for each i we have that |D;nX;| =1 for all j except possibly one at which
[DinXj| = |CinXj| =2.

Proof. We need to show that, if C;nX; = 0, there exists a vertex v;eX; — J,_; C;
such that v; is adjacent to all vertices in C;. Iteration of this argument will then
provide the statement. Without loss of generality, we may assume that i = = 1.

Since dy, (v) =|X1| — a for each ve Cy,

ﬂ Ny, (U)

UGC]

=|X\| — |Cilazma + 2t — ma=2t.

By our assumptions, we have that |(J_, C;)n X1|<2(¢ — 1), thus Mvec, Nx, (v) —
UL, G;#0. Lemma 2.1 now follows. [

Lemma 2.2. Let G be a graph and Y, Ya, ..., Y., be m vertex disjoint subsets of V(G)
and YoV (G) — UL, Y such that |Yi|=(i— )a+k for each i=1,....m. If Y;
dominates Y; with a-deficiency for every i=1,2,...,m,j=0,1,...,m, and i#j, then,
there are k vertex disjoint cliques Cy, Cs, ..., Cy satisfying |C;| = m and |C;nY;| = 1
for each i and j=1. Furthermore, if |Yo|=ma + k, then there are k vertex disjoint
cliques Dy, D, ..., Dy with the property that |D;| = m+ 1 and |D;nY;| = 1 for each
i=1,....,kandj=0,1,...,m.

Proof. Let y;1,»12, ...,V1 be k arbitrary vertices in Y;. Since |N (1) N Y2|=|Y>| —
az=k, there are k vertices y2i1,¥22,...,02% in Y, such that y;;y;;€E for all
i=1,...,k. Since |N(y1;))nN(O2,i)nY3|=|Y3] —2a=k, there are k vertices
V3,1,V325 o5 V3k in Y3 such that y3,iEN(y11j)(\N(y21i) for all i=1,2,...,k.
Continuing in the same fashion, we see that Lemma 2.2 follows. [

The case k = 1 of the main theorem is Turan’s theorem, the case of r = 2 is trivial,
and the case of r = 3 is Theorem 1. We assume that k>2 and r>4. The aim of this
section is to prove the following lemma.

Lemma 2.3. Let G be an extremal graph for Fy., on n vertices with n>4k*r*, and
with minimum degree 6> (=3)n—k. Then there exists a partition V(G)=
VouViO-- OV, s, so that Vi#Q for all i =0, ...,r — 2 and for every xeV;, the
following hold:

S GV <k —1 and AG[V)])<k—1; (1)
J#i
deiyy(x)+ > (GIN(x) " Vi) <k — 1. (2)

J#i
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Proof. Since G plus any edge contains a copy of Fi,, G contains k edge disjoint
cliques Dy, D,, ..., Dy sharing one vertex vy with |[D| =r—1 and |D;| = r for all

j=2. Let V(Dy) = {vo,v1, ...,0,—2}. Denote the graph induced by Uf.‘:l D; by D.
Clearly, |D| = k(r — 1). For each i = 0, ..., r — 2, we define X; = (), .; N(v;) — V(D).
Since G does not contain Fy, as a subgraph,

XinX; =0 for i#j.

. I r—=2
Since the minimum degree 6(G) >=n — k,

X0 V(D) >

71—(r—2)k.

Thus,

n

| > = (= 2k = k(r = 1) = == — k(2r = 3). (3)

For each i>1, if there is an edge uve E(G[X}]), replacing v; by the edge uv in D we
obtain a copy of Fy,, a contradiction. Thus,

E(G[X]])=0 foreachi=1,2,...,r—2.
For every x;eX; and i#0, since d(x;)>=n—k, dy(x;) =0, and |X;|>
“5—k(2r — 3), then

ING-x,(x:)| = (n — d(x;)) — | Xi|
<(rf1+k)—( " —k(2r—3))

r—1

=2k(r—1).
Thus,
do—x,(x;)=|G — Xi| —2k(r — 1),
for each xe X; where i = 1,2, ...,r — 2. In particular, we have that
dy ()= X;| — 2k(r — 1) 4)
for each xelX;, ie., X; dominates X; with 2k(r — 1)-deficiency, where i = 1,2, ...,

r—2,j=0,1,....,r—2and j#i.

Claim 4. Let x1,Xx2, ..., X, be r — 2 vertices such that x;€ X; foreachi =1, ...,r — 2.
Then, for any Yo=Xo with |Yo|=2k(r — 1)*=2k(r — 1)(r —2) + k, we have the
following inequality:

r—2

(N N(xi) Yy

i=1

>k.
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Proof. By (4), dx,(x;)=|Xo| — 2k(r — 1), and so
r—2

N(X,‘) ﬁXo
=1

M

i=

Claim 4 follows. [

= |Xo| = 2k(r —1)(r — 2).

Let X denote the set of all vertices of X of degree at least 2k(r — 1)2 in Xp.

Claim 5. |X;|<2k(r—1)(r —2).

Proof. Suppose, to the contrary, |X;|>2k(r — 1)(r — 2). For each i, let
X = {xe X |dy (x)>X|/(2Kk(r = 1) + 1)}.
By (4), dx,(x;)=|Xo| — 2k(r — 1) for every x;eX;, thus N(S)=2X; for every ScX;

with |S| = 2k(r — 1) + 1, which implies that |X{|>|X;| — 2k(r — 1).
Therefore,

r—2 )
%
i=1

There is an xoeX; such that |N(xo)nX;|>|Xi|/(2k(r—1)+1) for each i=

1,2,...,r — 2. Recall that by (3) we have |X;|=n/(r—1)—k(2r —3) for each
i=1,...,r —2. Since n>4k**, the following inequality holds:

>|X;| = 2k(r— 1)(r—2)>1.

[Ny, (x0)| =X/ Qk(r — 1) + 1) =2k(r — 1)(r = 2) + k.
Applying Lemma 2.2 with Y,=DN(xo)nXo, Y1 =N(xo)nXi,...,Yr2=

N(x0) " X,_2, and a = 2k(r — 1), we obtain k vertex disjoint cliques Cj, Cs, ..., Ck
of sizes r — 1 in N(xop). Then, a copy of Fj, is found, a contradiction. [

Let Zy = Xo — Xj and Z; = X; foreach i = 1,2, ...,r — 2. By Claim 5 and (3), we
have that

V= x|<k@r-3)(r-1).

Thus,

V= Zi|<k(2r = 3)(r = 1) + 2k(r — 1)(r — 2) <4k(r — 1)*.

Further, the following inequality holds.
|Zo|=n/(r—1) —k(2r —3) = 2k(r = 1)(r —=2) = n/(r — 1) — k(2r* — 4r + 1).
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Since 5(G)>%n — k, the following inequalities hold for every zoeZ; (recall that
Zy = Xy — X and thus by the definition of X we have A(G[Zy]) <2k(r — 1)%):

INGz,(20)| < (n = d(20)) = (|1 Zo] — 4(G[Z0)))
( " ) ( nl—k(2r2—4r+1)—2k(r—1)2>

r— r—

< dkr(r—1).

In particular, for each zo€Z,, we have that for i>0
dz,(z0)=1Z;| — 4kr(r — 1).

That is, Zy dominates Z; with 4kr(r — 1) deficiency.

Claim 6. For every veV — U?;g Zi, there exists aj=j(v) such that dz(v)<
2k(r — 1)* + k<2kr(r — 1). Further, such aj(v) is unique.

Proof. Suppose, to the contrary, there is a vel — U;f;é Z; such that dz(v)>
2k(r —1)* + k for every j = 0,1, ...,r — 2. Set a = 2k(r — 1) and m = r — 1, then for
all 0<j<r — 2,

|Nz (v)| = dz,(v)=ma + k
and

dz(zi)=|Zj| —a for zieZ;, i>0, i#].
Applying Lemma 2.2, we see that there are k vertex disjoint cliques of order r — 1

whose vertex sets are in N(v), a contradiction.
To show the uniqueness of j(v), suppose there are two distinct j; and j, such that

dz, (v) <2k(r — 1)> + k for both i = 1 and 2. Since n>4k** > 4kr?(r — 1)*, we have
that

dv)<n—|Z, 0Z,| + 4k(r —1)* + 2k

<n— [(Tl—zk(r—l)) (r_l—k(zr— 3))] + k(1) + 2%

-2

:: - 1+2k(r—1)2+k(2r—3)+4k(r—1)2+2k
-2

<r71n—k7

a contradiction. O

Adding each veV—Uf;g Z; to Zj,, we obtain a partition of V=
Vo ViU OV, ;.
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Clearly, for each i =0, ...,r — 2,
n
|Vi|>|Zi|>m* 2k(r — 1)2- (5)

For each i and each v;e V;, since

r—2
+V = z|<2
i=0

A(GIVI])<4(GlZ (r—1)* 4+ 4k(r — 1),

we have that

[N, ()| < (n = d(v:) = (|Vi| = 4(G[V)))
(rfﬁk)_(rfl (r= 1) = 6k(r—1)°)
=k + 2k(r — 1)* + 6k(r — 1)?
< 8ki?.

N

In particular, we have that
dy, (v) > V| — 8k, (6)

We will show that V, Vy,...,V,_, satisfy (1) and (2). Let a = 8kr’>. Since
n=4k? 4>8kr4 for any j, we have that

|V|> —2k(r—1) =(r— Da+ 2k.

Proof of (1). Suppose for some yeV; |N(y)nVi|=k, say the neighbors are
Yi,V2, ..., Yk in V;. By Lemma 2.1, there are k cliques Dy, D>, ..., D; such that
v,yj€D; and |D;| = r for each j. Further, D;n D, = {y} for all j#/. Thus, a copy of
Fj., is found, a contradiction.

Next suppose that > ., v(V;)=k. Let yizi, 222, ..., yrzi be a k-matching with
the property that y; and z; are in the same V, for some /#i. Now, since
n=4kAt = 16k%,

k
m Ny,(yj) " Ny, (z))| >

Vil = 2k(8kr%) = (- = 2k(r = 1)) = 16K > 1.
=1 r—1

Therefore, there exists a vertex ye V;, such that U i, zi} €N(y). By Lemma 2.1,
there are k cliques Dy, D, ..., D such that y,y;,z;eD; and |D;| =r for each j.
Further, D;,nD, = {y} for all j#¢. Thus, a copy of Fj, is found, a contra-
diction. [

Proof of (2). Let veV; have neighbors xj,x;,...,x; in V; and neighbors y,
Z1,¥2,22, ..., Vi, and z, in V' — V; where, for each j =1, ..., ¢,); and z; in the same V7
for some /#i and y;z;e E(G). By (1), both s and ¢ are less than k. Suppose for
the moment that s-+s>k. Consider k of the cliques {v,x1},...,{v,x},
{v,y1,21}, ..., {v,y1,z:}. Applying Lemma 2.1 again, we obtain k cliques
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Dy, Ds, ..., D which induce a copy of Fj,, a contradiction, which completes the
proof of Lemma 2.3. [

3. Proof of the main lemma

The following lemma was obtained in [3].

Lemma 3.1. Let H be a graph and b a nonnegative integer such that b< A(H) — 2, and
let v=v(H), A= A(H). Then

> min{dy(x),b}<v(b+ 4). (7)
xeV(H)

Let G be a graph with a partition of the vertices into » — 1 non-empty parts
V(G)=TVou V- UV, .
Let G; = G[V;] for each i = 0,1, ...,r — 2, and define
Gor = (V(G),{vjv; - vie Vi, v €V}, i#]}),

where “cr” denotes “crossing”. For each i€ {0, 1, ...,r — 2, cr} let di(x) = dg,(x) and
v; = v(G;). We generalized Lemma 6.2 in [3] to the following lemma.

Lemma 3.2. Suppose G is partitioned as above so that (1) and (2) are satisfied. If G is
Fy. ,-free, then

r—2
ZE(Gi)|—< > |Vi||Vj|—IE(Gcr)|><f(k—1,k—1)~ (8)

i=0 0<i<j<r—2

Proof. Observe that G, is an (r—1)-partite graph, and > o, i<, [Vil[V)] —
|E(G,)| is the number of edges missing from the complete (r — 1)-partite graph. By
(1) and the definition of f, we see that |E(G;)|<f(k — 1,k — 1), so the left-hand side
of (8) is bounded above by (r — 1)f(k — 1,k — 1). Delete vertices of G so that the
left-hand side of (8) is maximal, let G be minimal in this case.

We now claim that for each i =0, ..., — 2 and every xe V;,

di(x) = (|V = Vi = der(x)) > 0. ©)
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In fact, if for some xe€ V;, di(x) — (|V — Vi| — der(x)) <0 holds, then

E(G=x)+Y |E<G,~>|—< S V- xil+ Y |V,-||V/|—|E<Ga—x>|>

J#i J#i i#£j<l#i

r—2

=0 0<j</<r—2

— (di(x) = |V = Vi| + der(X))

r—2

2§ 16 - ( S i E<Gc,>|>,
=0 0<j</<r-2

contradicting the minimality of G. Hence (9) holds.
We also claim that for each i =0, ...,r — 2,

di(x) = ([V = Vi| = do(x)) <k = 1= ;. (10)
J#i
To see (10), we need only observe that,
di(x) = (|[V = Vi = der(x))
<k —1=Y" P(GINX) V] + Vil = di(x)] by (2)
J#i

Sk—l—ZVj,

J#i
where the last inequality holds since any matching in G; has at most |V;| — dj(x)
edges with one or both endpoints outside N(x) N ¥;. This proves (10).

We can also assume that for each i =0, ...,r — 2,
1<) v<k -2, (11)
J#i

by the following arguments. If Ej#,- v; =0, then Gj is empty for every j#i, and in
this case by (1),

E(G)] — ( AZE E(Gc,.>|> <|E(G)|</(k - 1,k —1);
j<t

thus (8) holds trivially, verifying the lemma. If Z
we would have

0<di(x) — (|V = Vi| — der(x)) <0,

21V =k — 1, then by (9) and (10),

a contradiction.
We may further suppose that

2<v; foreachi=0,...,r—2. (12)
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To the contrary, without loss of generality, assume that vy <1, then (11) implies that
Z;;g vi<k—1. As
r—2 r—2
5 o< ( 55 va)
i=0

i=0

always holds, we get that Z;;g |E(G)|<f(k—1,k—1) and (8) follows.
Now apply Lemma 3.1 for the graph G; (i=0,...,r — 1) with A =k —1 and
b=k—-1- Zj#ijA — 2 (by (12)). Using (10) and (7) we get

Z ld,(x) - ( Z |V1| - dcr(x)>‘|
xeV; J#i
Z mln{ -1- Z Vj}
xeV; J#i
Sv,-(Z(k—l)—Zvj). (13)

J#i
The left side in (13) equals

AE(G) + Y [EW V)l =D VillVil,

J#i J#i

so adding these r — 1 sums (for i =0, ..., r — 2) gives

r—2
21E(G)| =2 |E(G) +2|E(Gy)]

i=0
r—2

=Z<2E N+ EWV V)= IVillY, >+2 > il
i=0 i#] J#i i<j
r—2

< vi<2(k—1)—zv]~>+22|Vil|Vj
i=0 J#E i<j

=2 k2_2k+1—(k—1—v0)<k—l—z vj> — Z vjv,l

>0 0#/#/#0

+2 ) VY

i<j

This yields |E(G)|<ka—2k+>,_;|VillV;| (by (11), k—1-vp>1 and
k—1-=3,_.yvi=1), and since f(k — 1,k — 1)>k? — 2k, this implies (8), finishing
the proof of Lemma 3.2. [
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4. Proof of the theorem
We can summarize Lemmas 3.2 and 2.3 as follows:

Lemma 4.1. Suppose that G is an Fy. ,~free graph on n vertices with n=4k*r*, and with
minimum degre 6 >"=3n — k, then |[E(G)|<ex(n,K;) + f(k — 1,k — 1).

Proof. We can assume that G has the maximum number of edges under the
conditions of Lemma 4.1 and apply Lemma 2.3 to get a decomposition of G into
Gy, Gy, ..., G2, G, The graph G, consists of the edges between V; and V; for all
distinct pairs i and j. Lemma 3.2 implies that

I—ZlE )|+ |E(Ger)|

i<j

<ex(mK,)+f(k—1,k—1),
and we are done. [
Since ex(n, K,) — ex(n — 1,K;) = | =3n |, we see that the following lemma holds.

Lemma 4.2. Let G be a graph of order n, let k be an integer and ¢ some con-
stant independent from n. If |E(G)|=zex(n,K,)+c¢ and d(x)<=n—k, then
|E(G — x)|zex(n—1,K,) +c+ k.

Proof of Theorem 2. Suppose that n>16k*r®, and that G is an Fy ,-free graph on n
vertices. We need to show that G has at most ex(n, K;) +f(k— 1,k — 1) edges.

Suppose, to the contrary, that |E(G)|>ex(n,K;) +f(k— 1,k —1). By Lemma 4.1,
there exists a vertex x = x, with degree dg(x,) <=t fn — k.

Denote G by G”, and let G"~' = G" — x,,. By Lemma 4.2,
|E(G" |zex(n— 1,K,) +f(k—1,k—1)+k.
If there exists a vertex x,_jeV(G"") with degree dgii(x,—1)<=3(n—1)—k,
then delete it to obtain G" 2 = G"' —x,_;. Continue this process as long as

0(G")<=3i — k, and after n — / steps we get a subgraph G’ with §(G')>=3/ — k.
Note that

(0 —1))22|E(G))| = ex(t,K,) + k(n — £) + f(k — 1,k — 1)=k(n — £).

We have that /> Vkn>4k**, a contradiction to Lemma 4.1. O
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5. Remark

To avoid tedious calculations, we did not attempt to lower the bound n>16k3® in
the proof, although we strongly believe the bound can be lowered substantially.
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