More on Chorded Cycle

Ron Gould Emory University

AMS Meeting - Knoxville

March 22-23, 2014

∃ >

Ron GouldEmory University AMS Meeting - Knoxville More on Chorded Cycle

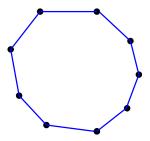
Over the years there have been many results that find conditions sufficient for cycles (often with various properties like containing a set of vertices, or a set of edges, etc.).

But the one property that was greatly ignored was the following:

Question

What conditions imply a graph contains a cycle with a chord?

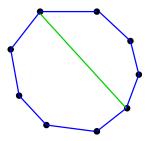
Here a **chord** is an edge between two vertices on the cycle that is not an edge of the cycle.



Question

What conditions imply a graph contains a cycle with a chord?

Here a **chord** is an edge between two vertices on the cycle that is not an edge of the cycle.

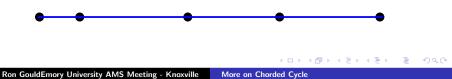


First answer by J. Czipzer 1963 - using min deg $\delta(G)$

Theorem

If G has minimum degree at least 3, then G contains a chorded cycle.

longest path in G

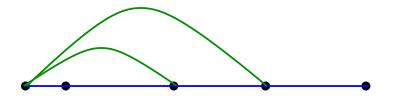


First answer by J. Czipzer 1963 - using min deg $\delta(G)$

Theorem

If G has minimum degree at least 3, then G contains a chorded cycle.

longest path in G



• Other conditions for a chorded cycle.

< 回 > < 注 > < 注 >

æ

- Other conditions for a chorded cycle.
- Some specified number of disjoint chorded cycles.

- Other conditions for a chorded cycle.
- Some specified number of disjoint chorded cycles.
- Some specified number of disjoint doubly chorded cycles.

- Other conditions for a chorded cycle.
- Some specified number of disjoint chorded cycles.
- Some specified number of disjoint doubly chorded cycles.
- Cycles with a designated minimum number of chords.

Theorem

If G is a graph on $n \ge 4k$ vertices with minimum degree $\delta(G) \ge 3k$, then G contains at least k independent chorded cycles.

Note: This can be viewed as a generalization of the Corradi-Hajnal Theorem.

伺 ト イヨト イヨト

Theorem

If G is a graph on $n \ge 4k$ vertices with minimum degree $\delta(G) \ge 3k$, then G contains at least k independent chorded cycles.

Note: This can be viewed as a generalization of the Corradi-Hajnal Theorem.

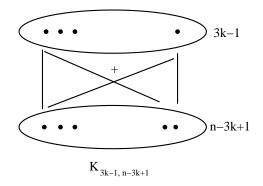
- 4 同 2 4 三 2 4 三 2 4

Theorem

Let G be a graph of order $n \ge 3k$ with minimum degree $\delta(G) \ge 2k$, then G contains k disjoint cycles.

Sharpness

Clearly, $n \ge 4k$ is needed as the cycles need at least 4 vertices each. For $n \ge 6k$, the graph $K_{3k-1,n-3k+1}$ has $\delta = 3k - 1$ and no collection of k independent chorded cycles, as chorded cycles here require 3 vertices from each partite set.



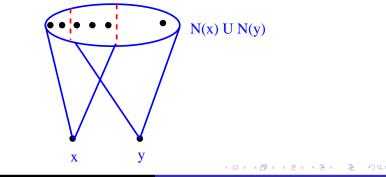
RG, K. Hirohata, P. Horn, 2012

Theorem

If G is a graph on $n \ge 4k$ vertices such that for any pair of non-adjacent vertices x, y,

$$|N(x,y)| \geq 4k+1,$$

then H contains at least k independent chorded cycles.



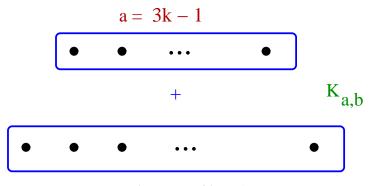
Theorem

If G is a graph on $n \ge 6k$ vertices with

 $\sigma_2(G) \geq 6k-1,$

回 と く ヨ と く ヨ と

then G contains k vertex disjoint doubly chorded cycles.



 $\mathbf{b} = \mathbf{n} - 3\mathbf{k} + 1$

・ロン ・回と ・目と ・目と

æ

Ron GouldEmory University AMS Meeting - Knoxville More on Chorded Cycle

Other Natural Questions for Chorded Cycles

• Make a set of edges the chords.

白 ト イヨト イヨト

Other Natural Questions for Chorded Cycles

- Make a set of edges the chords.
- Place k vertices on k vertex disjoint chorded cycles.

Other Natural Questions for Chorded Cycles

- Make a set of edges the chords.
- Place k vertices on k vertex disjoint chorded cycles.
- Place k indep. edges on k vertex disjoint chorded cycles.

- Make a set of edges the chords.
- Place k vertices on k vertex disjoint chorded cycles.
- Place k indep. edges on k vertex disjoint chorded cycles.
- Place *k*-path linear forest on *k* disjoint chorded cycles.

- Make a set of edges the chords.
- Place k vertices on k vertex disjoint chorded cycles.
- Place k indep. edges on k vertex disjoint chorded cycles.
- Place *k*-path linear forest on *k* disjoint chorded cycles.
- Control the order of the chorded cycles.

- Make a set of edges the chords.
- Place k vertices on k vertex disjoint chorded cycles.
- Place k indep. edges on k vertex disjoint chorded cycles.
- Place *k*-path linear forest on *k* disjoint chorded cycles.
- Control the order of the chorded cycles.
- Expand our chorded cycle system to span V(G).

Question

Can we make an independent set of k edges the chords of k vertex disjoint chorded cycles?

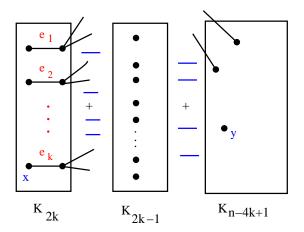
Ron GouldEmory University AMS Meeting - Knoxville More on Chorded Cycle

Theorem

Let $k \ge 1$ be an integer and G be a graph of order $n \ge 14k$. If $\sigma_2(G) \ge n + 3k - 2$, then for any k independent edges e_1, e_2, \ldots, e_k of G, the graph G contains k vertex disjoint cycles C_1, C_2, \ldots, C_k such that e_i is a chord of C_i for all $1 \le i \le k$. Furthermore, $4 \le |V(C_i)| \le 5$ for each i.

回 と く ヨ と く ヨ と

Sharpness Example



(1日) (1日) (日)

æ

Question- Placing vertices on chorded cycles

Question

When can we distribute k vertices on k disjoint chorded cycles?

・日・ ・ヨ・ ・ヨ・

[with M. Cream, R. Faudree and K. Hirohata]

Theorem

Let $k \ge 1$ be an integer and let G be a graph of order $n \ge 16k - 12$. If $\delta(G) \ge n/2$ then for any set of k vertices $\{v_1, v_2, \ldots, v_k\}$ there exists a collection of k vertex disjoint chorded cycles $\{C_1, \ldots, C_k\}$ such that $v_i \in V(C_i)$ and $|V(C_i)| \le 6$ for each $i = 1, 2, \ldots, k$.

Question

When can we distribute k independent edges on k disjoint chorded cycles?

- 4 回 2 - 4 □ 2 - 4 □

[with M. Cream, R. Faudree and K. Hirohata]

Theorem

Let G be a graph of order $n \ge 18k - 2$ and let e_1, e_2, \ldots, e_k be a set of k independent edges in G. If

$$\delta(G) \geq \frac{n+2k-2}{2}$$

then there exists a system of k chorded cycles C_1, \ldots, C_k such that $e_i \in E(C_i)$ and $|V(C_i)| \le 6$ for each $i = 1, 2, \ldots, k$.

回 と く ヨ と く ヨ と

[with M. Cream, R. Faudree and K. Hirohata] As a Corollary to the proof we obtain the fact the edges

 $e_1, e_2, ..., e_k$

can be a mix of either chords or edges of the cycles (again one edge per cycle).

Further, we can show that the cycle system can also be extended to span V(G).

Doubly Chorded Cycles

[with M. Cream, R. Faudree and K. Hirohata]

Theorem

Let G be a graph of order $n \ge 22k - 2$ and let e_1, \ldots, e_k be k independent edges in G. Then if

$$\delta(G) \geq \frac{n+2k-2}{2}$$

then there exists a system of k vertex disjoint doubly chorded cycles C_i, \ldots, C_k such that $e_i \in E(C_i)$ and $|V(C_i)| \le 6$ for each $i = 1, 2, \ldots, k$.

Corollary

The above system can be extended to span V(G).

Question

When can we distribute a k path linear forest on k disjoint chorded cycles?

- 4 回 2 - 4 □ 2 - 4 □

Fact

Given independent path $P_{r_1}, P_{r_2}, \ldots, P_{r_k}$ with each $r_i \ge 2$ let $r = \sum r_i$. Then the number of interior vertices in this path system is r - 2k.

Theorem

Let $P_{r_1}, P_{r_2}, \ldots, P_{r_k}$ be a linear forest in a graph G of order 16k + r - 2 with

$$\delta(G) \geq n/2 + r - 1 - k.$$

Then there exists a system of k chorded cycles $C_1, \ldots C_k$ such that the path P_{r_i} lies on the cycle C_i and $|V(C_i)| \le r_i + 4$.

・ロト ・回ト ・ヨト ・ヨト