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Game 1 - Three Card Game

The Tools: A man has three cards, one red on both sides, one
blue on both sides, and one blue on one side and red on the other
side.

Side 2Side 1
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Play

The Game: He places the three cards into a hat and asks you to
blindly select one card and only look at one side of the card. You
show him that side of the card and he offers to bet even money he
can tell you the color of the other side of the card.
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Play

The Game: He places the three cards into a hat and asks you to
blindly select one card and only look at one side of the card. You
show him that side of the card and he offers to bet even money he
can tell you the color of the other side of the card.

Is this a fair bet?
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Common Thinking

Suppose the side you show is red.

Then, most people say this is a fair bet since:

The card is either red-red

or the card is red-blue

and the man has a 50% chance of guessing correctly.
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The Scam - I mean the real solution

Despite the last argument there is a strategy to maximumize
winning!
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The Scam - I mean the real solution

Despite the last argument there is a strategy to maximumize
winning!

◮ The key is - 2 cards have the same color on both sides.
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The Scam - I mean the real solution

Despite the last argument there is a strategy to maximumize
winning!

◮ The key is - 2 cards have the same color on both sides.

◮ The man will always guess the same color as that shown
and be correct 2/3 of the time!
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Guarini’s Problem - Knights on a 3× 3 chessboard

Problem: Have the knights switch row positions using only legal
moves.
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Recall that knights only move in an L shape.

Two questions are now clear:

1. Can this be done?

2. If it can be done, what is the minimum number of moves
needed?
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A Graph Model
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A Graph Model
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Tiling the chessboard with dominoes
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Tiling the chessboard with dominoes
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Holes in the Chessboard
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With the lower left square removed, no tiling is possible, as only 63
squares remain and each dominoe covers exactly 2 squares.

Ron Gould Emory University Supported by Heilbrun Distinguished Emeritus FellowshipSome Unusual Applications of Math



With the lower left square removed, no tiling is possible, as only 63
squares remain and each dominoe covers exactly 2 squares.

With both the upper left and lower right squares removed, still no
tiling is possible, as each dominoe covers one white and one black
square, and 30 white and 32 black squares remain!
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Gomory’s Theorem

Theorem
If you remove one black and one white square from anywhere on

the 8× 8 chessborad, then you can tile the remaining board with

31 dominoes.
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Proof of Gomory’s Theorem
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The coin game - for 2 players

One hundred randomly selected coins are placed in a row. The
sum of the values of these coins is T which is odd.

GAME: Player 1 selects one coin from either end of the row.
Player 2 selects one coin from either end of the row. Play
continues, alternating turns, until all coins have been selected.

Problem: Show that there is a strategy so that

Player 1 always wins! (i.e. get most of the money)
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Sketch of proof
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1. Think of the coins as partitioned into two groups.
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1. Think of the coins as partitioned into two groups.

2. Count the value of the coins in one color to determine which
color has the most (> T/2) WLOG say white.
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1. Think of the coins as partitioned into two groups.

2. Count the value of the coins in one color to determine which
color has the most (> T/2) WLOG say white.

3. Player 1 selects the end coin that is white.
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1. Think of the coins as partitioned into two groups.

2. Count the value of the coins in one color to determine which
color has the most (> T/2) WLOG say white.

3. Player 1 selects the end coin that is white.

4. Player 2 now has only red coins on either end to select from.
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1. Think of the coins as partitioned into two groups.

2. Count the value of the coins in one color to determine which
color has the most (> T/2) WLOG say white.

3. Player 1 selects the end coin that is white.

4. Player 2 now has only red coins on either end to select from.

5. Player 1 now selects the white coin uncovered by the choice
Player 2 just made.
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1. Think of the coins as partitioned into two groups.

2. Count the value of the coins in one color to determine which
color has the most (> T/2) WLOG say white.

3. Player 1 selects the end coin that is white.

4. Player 2 now has only red coins on either end to select from.

5. Player 1 now selects the white coin uncovered by the choice
Player 2 just made.

6. Player 2 again has only reds to choose from. This continues
until the game ends with Player 1 having all the white coins
and the win.
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The Moral of the Story

Never give a non-mathematician an even break!
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The Paint Ball War

The Game: Three friends, Matt (the mathematician) Phil (the
physicist) and Ed (the engineer) decide to play paintball.

Matt - limited experience: 50% shooter.
Phil - plays more: 75% shooter.
Ed - plays constantly: 100% shooter.
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Some Rules - To Make the Game Fair

Because of the ability differences, they decide to follow some old
dueling traditions... so
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Some Rules - To Make the Game Fair

Because of the ability differences, they decide to follow some old
dueling traditions... so

◮ Matt will get the first shot (50%).
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Some Rules - To Make the Game Fair

Because of the ability differences, they decide to follow some old
dueling traditions... so

◮ Matt will get the first shot (50%).

◮ Phil will get the second shot (75%).
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Because of the ability differences, they decide to follow some old
dueling traditions... so

◮ Matt will get the first shot (50%).

◮ Phil will get the second shot (75%).

◮ Ed will get the third shot (100%).
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Some Rules - To Make the Game Fair

Because of the ability differences, they decide to follow some old
dueling traditions... so

◮ Matt will get the first shot (50%).

◮ Phil will get the second shot (75%).

◮ Ed will get the third shot (100%).

◮ Should it be needed, another round then follows among any
survivors.
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What strategy should Matt use?
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What strategy should Matt use?

◮ If he shoots (and hits) Ed, then there is a 75% chance Phil
shoots him.
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What strategy should Matt use?

◮ If he shoots (and hits) Ed, then there is a 75% chance Phil
shoots him.

◮ If he shoots Phil, then Ed immediately will shoot him!
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What strategy should Matt use?

◮ If he shoots (and hits) Ed, then there is a 75% chance Phil
shoots him.

◮ If he shoots Phil, then Ed immediately will shoot him!

◮ Surrender and go to a bar and wait for the winner to join him
there later!
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What strategy should Matt use?

◮ If he shoots (and hits) Ed, then there is a 75% chance Phil
shoots him.

◮ If he shoots Phil, then Ed immediately will shoot him!

◮ Surrender and go to a bar and wait for the winner to join him
there later!

◮ Matt’s best move is to purposely miss!
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Why is this a good move?

1

1/4

L

3/4

Phil kills Ed

Ed kills Phil

1/2

Matt mises
1/2

Matt kills Ed

Matt wins

Ed wins

Ed kills Matt1

Phil misses

Now Phil’s shot

Figure : The strategy tree diagram.

P( Ed wins ) = 1

4
×

1

2
= 1

8
= .125
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Why is this a good move?

1/43/4

R1/2

3/41/4

.

.

.

R is the right subtree

1/21/2

D

Phil misses

M kills P

M wins

1/2

Phil wins

P kills M

M misses M kills P

Phil misses

P kills E

M missesp = prob
Phil wins

M wins

Figure : The strategy tree diagram.
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Why is this a good move?

Use the fact we are repeating turns.

The subtree D contains this repeated pattern.

(3/4× 1/2× 3/4) = x

then
x × 1/4× 1/2 = y

then
y × 1/4× 1/2 etc.

So we get a geometric series with first term
a = 3/4× 1/2× 3/4 = 9/32 and ratio r = 1/4× 1/2
Hence, P(Phil wins) = a/(1− r) = 72/224 ≈ .312.
Now

P(Matt wins) = 1−P(Phil wins)−P(Ed wins) = 1−.321−.125 = .554.
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The Moral of the Story

Never give a non-mathematician and even break.
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The 5 card trick - due to Fitch Chaney, 1950

Suppose you and a partner want to perform the following 5 card
trick.
A normal deck is shuffled and you are dealt 5 cards (without your
partner seeing). Then you:
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5♥

5♥

10♥8♣ J♠

10♥8♣ J♠
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The Trick

Now your partner enters the scene and identifies the face down
card exactly!
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How is this trick done?
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How is this trick done?

1. We need to convey two pieces of information:
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How is this trick done?

1. We need to convey two pieces of information:

2. The suit and the rank of the down card!
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How the suit information is encrypted

Given any 5 cards from a standard deck, the

The Pigeon Hole Principle:
There must be at least 2 cards of the same suit!

Thus, we can use one card from that suit placed in a predetermined
position to signal the suit. Say for now - the left most position.
Now how do we handle the rank?
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lexicographic ordering is the key!

3 ”unused cards” - Use the relative ranks to have a low (L),
medium (M) and high (H) card among the 3 remaining cards.
The lexicographic orderings of these three produce:

L M H (call this 1)
L H M (call this 2)
M L H (call this 3)
M H L (call this 4)
H L M (call this 5)
H M L (call this 6)
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The solution
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5♥

5♥

10♥8♣ J♠

10♥8♣ J♠

2

4

8

A

3

5

6

7

9

10

J

Q

K
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The solution

5♥

5♥

10♥8♣ J♠

10♥8♣ J♠ Q♣

Q♣

2

4

8

A

3

5

6

7

9

10

J

Q

K
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The Moral of the Story

Never give a non-mathematician an even break.
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The Game of Penny Ante

This game was invented by Walter Penny in 1969.

The Game: Ask your opponent to select any pattern of heads
(H) and tails (T) of length three they wish. Then you select a
different pattern. Flip pennies repeatedly until one of the two
patterns occurs on three consecutive tosses. The person with that
pattern wins an even money bet.
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Is this a fair game?

Many people think the game is unfair because the second person
only gets to choose their pattern after the first person has selected.
This means they do not have all the choices the first person had.
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Is this a fair game?

Many people think the game is unfair because the second person
only gets to choose their pattern after the first person has selected.
This means they do not have all the choices the first person had.

Those are the conditions - but that is not the advantage!
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Suppose, for ease of argument, your opponent selected HHH .
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Suppose, for ease of argument, your opponent selected HHH .

Then you will select THH .
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Case Analysis
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Case Analysis

H H H

P =  1/8  that first three flips are heads

......
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Case Analysis

H H H
...

Now suppose this is the first HHH in the sequence.

...
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Case Analysis

H H H
...

Now suppose this is the first HHH in the sequence.

Then  THH had to occur first!

Thus, 7/8 of the time THH wins!

T

...
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An analysis of all the other possibilities (more involved tree
structures and infinite geometric series) shows that the following
rule always wins with probability at least 2/3.

Let the opponent select a pattern of three. Now move their first
two choices to your last two choices and fill the first position with
what ever choice does not form a palindrome!
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The moral of the story

Never give a non-mathematician an even break.
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2 decks problem

Suppose two standard decks of cards are individually shuffled and
placed on a table. Now, the top card of each deck is turned over
to determine if there is an EXACT MATCH. This process is
continued throughout the remaining cards.

Given an even money bet - would you bet there was an exact
match before the cards run out?
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The quick answer

One view of this problem is that when the card from deck 1 is
turned over, there is a 1

52
chance the card in deck 2 will match it.

Thus, the expected number of matches when going through the
entire deck would be:

np = (52)
1

52
= 1.

Thus, the actual length of the deck does not seem to matter.
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Can we squeeze more out of this?

That rough answer seems to say it would seem a wise bet to say
there would be a match.

BUT HOW WISE???.
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What is really going on here?

Another way to look at this problem, and one that brings far more
to the table, is to think of the 2nd deck as a permutation of the
first deck. Now, the question we are asking is how many
permutations of the deck have at least one position unchanged (a
fixed point)?

This unchanged position gives us an exact match!

A permutation with no fixed points is called a derangement.
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Counting derangements - use IEP

At this point, students would be familiar with De Morgan’s Laws.
So the step to the IEP is a natural one.

Suppose we want to count how many permutations (of our 52
cards) have at least i matches with deck 1.
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Counting derangements - use IEP

At this point, students would be familiar with De Morgan’s Laws.
So the step to the IEP is a natural one.

Suppose we want to count how many permutations (of our 52
cards) have at least i matches with deck 1.

There are
(

52

i

)

positions for the i matches to occur.
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Counting derangements - use IEP

At this point, students would be familiar with De Morgan’s Laws.
So the step to the IEP is a natural one.

Suppose we want to count how many permutations (of our 52
cards) have at least i matches with deck 1.

There are
(

52

i

)

positions for the i matches to occur.

Fill the other 52− i positions in (52− i)! possible ways.
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Counting derangements - use IEP

At this point, students would be familiar with De Morgan’s Laws.
So the step to the IEP is a natural one.

Suppose we want to count how many permutations (of our 52
cards) have at least i matches with deck 1.

There are
(

52

i

)

positions for the i matches to occur.

Fill the other 52− i positions in (52− i)! possible ways.

Then, applying the IEP we obtain:
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Counting derangements via IEP:

D52 = 52!
i=52
∑

i=0

(−1)i

i !

.
But we know from Calculus that:

lim
n→∞

Dn

n!
=

1

e
≈ .3679.

Hence, P(derangement) ≈ .3679 and thus P(match) ≈ .63.
Thus, it is a very good even money bet!
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The Game of NIM

Game: Given t ≥ 2 piles of chips, two players proceed as follows:

Player 1 removes some number of chips from exactly one pile.

Player 2 then removes some number of chips from exactly one pile.

Players alternate turns until no chips remain. The first player that
cannot remove some chips loses.
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Is there a strategy for optimal play?

To find the strategy, it really helps to start at the end of the game.

When no chips remain we call this the ZERO POSITION.

Your goal as a player is to put your oponent in the zero position.
How can we achieve this?
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Base two representations

The key is to think of each pile of chips as a number and to look
at the base 2 representation of this number.

Say we have three piles of 8, 5 and 6 chips.
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Base 2 view

8: 1 0 0 0
5: 0 1 0 1
6: 0 1 1 0
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Base 2 view

8: 1 0 0 0
5: 0 1 0 1
6: 0 1 1 0
—————
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Base 2 view

8: 1 0 0 0
5: 0 1 0 1
6: 0 1 1 0
—————
A: 1 0 1 1

(not a zero position)
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What to do?

Player 1 would like to put the other player into a zero position.

We think of a zero position as 0 0 0 0

So to get our parity counts above to a zero position we must
remove chips from one pile so that all the colums have an even
number of ones:
This can always be done!
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One such move

Looking at our example:

8: 1 0 0 0
5: 0 1 0 1
6: 0 1 1 0
—————
A: 1 0 1 1

(not a zero position)

Removing 5 chips from the pile of 8 will produce what we need!
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3: 0 0 1 1
5: 0 1 0 1
6: 0 1 1 0

—————-
A: 0 0 0 0

(zero position)
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Player 2 is now in a hopeless position!
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Player 2 is now in a hopeless position!

Any move made by Player 2 produces a none zero position!
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Player 2 is now in a hopeless position!

Any move made by Player 2 produces a none zero position!

Player 1 will then repeat the strategy of moving to a zero position!
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Player 2 is now in a hopeless position!

Any move made by Player 2 produces a none zero position!

Player 1 will then repeat the strategy of moving to a zero position!
Eventually player 1 will reduce to the ultimate zero position - no
chips, and win the game
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