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Abstract. A graph G is H-saturated if H is not a subgraph of G but the addition of any
edge from the complement of G to G results in a copy of H. The minimum number of edges
(the size) of an H-saturated graph on n vertices is denoted sat(n,H), while the maximum
size is the well studied extremal number, ex(n,H). The saturation spectrum for a graph
H is the set of sizes of H-saturated graphs between sat(n,H) and ex(n,H). In this paper
we show that paths and also trees with a vertex adjacent to many leaves, have a gap in the
saturation spectrum.

The broom B`−s,s, for 2 ≤ s ≤ ` − 3 is obtained by taking a Ks+1 and subdividing one3

edge `− s− 1 times. Note that we explicitly exclude the star K`−1 which would correspond4

to B2,`−2 from the family.5

Theorem 0.1. Brooms B`−s,s are strongly ES-embeddable, for 2 ≤ s ≤ `− 3.6

Proof. Note that if s ≥
⌊
`
2

⌋
, then B`−s,s is a scrub-grass tree and already covered, so without7

loss of generality s <
⌊
`
2

⌋
. Let us fix a B`−s,s, and we shall show that it embeds into a graph8

satisfying the conditions.9

Let G be a vertex minimal counterexample: that G is a graph with as few vertices as10

possible satsfying delta(G) ≥
⌊
`
2

⌋
and d(G) > ` − 3, with at least ` vertices, and that G11

contains no Bs.12

First consider the case where G is 2-connected. Then, by Dirac’s theorem, G contains a13

cycle C on at least 2b `
2
c ≥ ` − 1 vertices. Furthermore G by the average degree condition,14

G contains a vertex v of degree at least `− 2.15

If v is off of the cycle, let r denote the number of neighbors on the cycle. If r = 0, we16

are done by connectivity: which includes a portion of the cycle along with the shortest path17

from the cycle to v as the path, and some of v’s other neighbors as the leaves, which is18

possible as the shortest path contains at most one of v’s neighbors. Thus we may assume19

r ≥ 0. If there exists a sequence of ` − s − 2 consecutive vertices on the cycle with so that20

v has at least s + 1 neighbors not in those consecutive vertices we have found our broom.21

Indeed, let P denote a sequence of `− s− 2 vertices of C containing a minimum number of22

v’s neighbors. v has at at least one neighbor on the cycle not in P , so take one, v′ whose23

cycle distance to P is minimum. Then the path including P extending v′ along the cycle24

(in a shortest way) and then to v has at least ` − s vertices and then there are at least s25

additional neighbors of v to form the broom. That such a sequence exists can be established26

by averaging: There exists a sequence of vertices with at least27

N = d(v)− (`− s− 2) · r

|C|
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This is a decreasing function of r and r ≤ min{d(v), |C|}. If ` − 1 ≤ |C| ≤ d(v), then one28

immediately verifies that this is at least s + 1, by considering the case where r = |C| and29

d(v) = `− 1. If, otherwise, `− 2 ≤ d(v) < |C|, then one observes that30

N ≥
⌈

(`− 2)− (`− s− 2) · `− 2

`− 1

⌉
=

⌈
s + 1− s + 1

`− 1

⌉
≥ s + 1,

since s ≤ `− 3.31

Now assume that every such vertex lies on the cycle. It is easy to see that if such a vertex32

v either has degree at least ` − 1 or v is not complete to the remainder of the cycle then33

the broom is contained in the graph by using v and cycle vertices (in the direction of it’s34

nearest non-neighbor along the cycle, if such exists) as the path, and the remainder of v’s35

neighbors as the star vertices. (Quite importantly, this count relies on the fact that s < b `
2
,36

so the path is guaranteed to include the non-neighbor of v if the degree of v is `− 2.)37

Thus we have reduced ourselves to the case where all vertices v of degree ` − 2 lie on a38

cycle and are adjacent to all other vertices in the cycle (which necessarily has length `− 1).39

Since G has at least ` vertices, and the graph is two connected, at least two vertices on the40

cycle have neighbors off the cycle – and if we can find a way to one of them to a vertex41

of degree ` − 2 on our cycle by a path of length ` − s − 1 we easily find our broom (by42

extending the path using the vertex off the cycle, and using v’s neighbors to complete the43

star potion of the broom). For instance, if a neighbor of a degree ` − 2 vertex is off the44

cycle, it is easy to build such a path (using an edge off of the degree ` − 2 vertex to travel45

an appropriate distance around the cycle, then following the cycle to the neighbor.) While46

we cannot guarantee this in general, we can come close enough: Since the d(G) > `− 3 and47

no vertices of degree `− 2 are off the cycle, d(C) > `− 3, and by averaging two vertices in48

C, adjacent on the cycle, have average degree > ` − 3. But then one, v, has degree ` − 249

and the other (v′) has degree either `− 2 or `− 3. In either case: v′ is either incident to the50

other neighbor of v along C or to the next neighbor in the cycle, and it is then easy to build51

any length path desired from v to the vertex with a neighbor off of the path.52

Finally, we treat the case where G is not 2-connected. In this case we consider the block53

decomposition of the graph. If there is a leaf-block of the block decomposition with at least54

` − 3 vertices, then we are easily done: Since each vertex beyond the cut vertex in that55

component has degree
⌊
`
2

⌋
, there is (by the results of Erdős and Gallai of [?]) a path of56

length `− 3 in the component starting at the cut vertex. Taking a vertex in a different one57

of the blocks, and some of its neighbors to be the head of the broom and connecting it to58

the path yields the desired broom.59

Note that if removal of the internal vertices of a leaf-block leaves at least ` vertices, then60

an easy computation and minimality of the counterexample, shows that the block must have61

at least `− 3 vertices. Indeed, since at least ` vertices remain, the reason this does not yield62

a smaller counterexample must be that the density is too low. That is, if G′ denotes the63

graph with the block removed,64 ∑
v∈G′ deg(v)−

∑
v∈G\G′ deg(v)

|G′|
≤ `− 3,

so65 ∑
v∈G\G′

deg(v) ≥
∑
v∈G

deg(v)− |G′|(`− 3) > |G \G′|(`− 3)
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Thus the average degree in the block (G\G′) is at least `−3, so there is some vertex of such66

a degree in the component necessitating that the component is at least so large. We say that67

a block is non-trivial if it has at least 3 vertices; a leaf block is necessarily non-trivial because68

of the minimum degree requirement. We next note that if there are at least 3 non-trivial69

blocks, then there exists a leaf block whose removal leaves at least ` vertices. Indeed ignoring70

one leaf block, each block contains an internal vertex of degree
⌊
`
2

⌋
sending no edges to the71

component to be deleted. Then there are at least 2(
⌊
`
2

⌋
+ 1)− 1 ≥ ` between the two blocks72

(with the −1 arising as the blocks may share a cut vertex). Thus we may reduce to the73

case of having exactly 2 non-trivial blocks, which are connected either by an edge or at a74

cut vertex. The case where the two non-trivial blocks are joined by an edge can be easily75

discarded by considering a vertex of degree ≥ ` − 2, which must send at least ` − 3 edges76

into one of the blocks and ensures that it has size at least ` − 3. Otherwise, the average of77

the degrees non-cut vertices is at most one less than the total average degree. Thus there78

is a vertex within one of the blocks of degree ` − 3 within a block, and it guarantees the79

existence of a leaf block of at least `− 3 vertices. �80
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