
Extending Vertex and Edge Pancyclic Graphs

Megan Cream∗ Ronald J. Gould† Kazuhide Hirohata‡

December 5, 2017

Abstract

A graph G of order n ≥ 3 is pancyclic if G contains a cycle of each possible length from 3 to
n, vertex (edge) pancyclic if each vertex (edge) is contained on a cycle of each possible length
from 3 to n. A chord is an edge between two vertices of a cycle that is not an edge on the cycle.
A chorded cycle is a cycle containing at least one chord. We define a graph G of order n ≥ 4
to be chorded pancyclic if G contains a chorded cycle of each possible length from 4 to n. In
this article, we consider extentions of the property of being chorded pancyclic to chorded vertex
pancyclic and chorded edge pancyclic.

1 Introduction

The study of the cycle structure in graphs has a long and well developed history. Many aspects of
a cycle have been considered, for example cycle length or elements contained on the cycle are two
such aspects. Given a graph G of order n ≥ 3, we say that G is Hamiltonian if G contains a cycle
that spans V (G), the vertex set of G. We say that G is pancyclic if G contains a cycle of each
possible length from 3 to n. Besides these length considerations, we may ask for more. The graph
G is called vertex pancyclic (edge pancyclic) if each vertex (edge) is contained on a cycle of each
possible length from 3 to n.

More recently another cycle property has been studied (see for example, [7], [9], [4]). We say
that a cycle in G is chorded if G contains an edge between two vertices of the cycle that is not an
edge on the cycle. Further, we say that G is chorded pancyclic if G contains a chorded cycle for each
possible length from 4 to n. The graph G is chorded vertex pancyclic if each vertex is contained in
a chorded cycle of each possible length from 4 to n.

In the early 1970’s, J. A. Bondy ([1], [2]) stated his well-known meta conjecture that almost any
condition that implies a graph is Hamiltonian will imply the graph is pancyclic, possibly with a well
defined class of exceptional graphs. Bondy supported his meta-conjecture with several results (see
[1], [2]). Bondy’s meta-conjecture was extended in [4] to almost any condition that implies a graph is
Hamiltonian will imply it is chorded pancyclic, possibly with some class of well defined exceptional
graphs and some small order exceptional graphs. Again, this extension has been supported by
several results (see [3], [4]). The purpose of this paper is to further consider these ideas and to
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examine the relationship between various degree conditions and chorded vertex (edge) pancyclic
graphs.

We only consider finite simple graphs in this paper. Let G be a graph of order n. A cycle of
length k is called a k-cycle. For an integer r ≥ 3, a vertex ofG is called r-pancyclic if it is contained in
a k-cycle for every r ≤ k ≤ n, and G is also called vertex r-pancyclic if every vertex is r-pancyclic.
If V (G) = {x}, then we denote G by x. We denote the set NG(u) = {x ∈ V (G) |ux ∈ E(G)}
and degG(u) = |NG(u)|. Further, NG[x] = NG(x) ∪ {x}. Let H be a subgraph of G, and let
S ⊆ V (G). For u ∈ V (G) − V (H), we denote NH(u) = NG(u) ∩ V (H) and degH(u) = |NH(u)|.
For u ∈ V (G) − S, NS(u) = NG(u) ∩ S. The subgraph of G induced by S is denoted by 〈S〉,
G − S = 〈V (G) − S〉, and G −H = 〈V (G) − V (H)〉. If S = {u}, then we write G − u for G − S.
For two disjoint subgraphs (resp. subsets) A and B in G (resp. V (G)), E(A,B) is the set of edges
between A and B. For two disjoint graphs G1 and G2, G1 ∪ G2 denotes the union of G1 and G2,
and G1 +G2 denotes the join of G1 and G2. For t (t ≥ 2) disjoint graphs G1, G2, . . . , Gt, we denote
by G1 +G2 + · · ·+Gt the graph satisfying Gi +Gi+1 for every 1 ≤ i ≤ t− 1 and E(Gi, Gj) = ∅ for
every 1 ≤ i < j ≤ t (j 6= i + 1). We denote the complement of G by G, and R1 ⊆ G ⊆ R2 means
that G is isomorphic to a subgraph of R2 containing R1. Let

σ2(G) = min{dG(u) + dG(v) |u, v ∈ V (G), uv 6∈ E(G)},

and σ2(G) =∞ when G is a complete graph. For terms not defined here see [8].
Ore’s classic theorem will be usefull later.

Theorem 1 (Ore [11]). If G is a graph of order n ≥ 3 with σ2(G) ≥ n, then G is hamiltonian.

2 Vertex Pancyclic Extensions

In this section we examine extensions of vertex pancyclic properties to chorded vertex pancyclic
properties. We begin with a result from Hendry [10].

Theorem 2 (Hendry [10]). If G is a graph of order n ≥ 3 and δ(G) ≥ n+1
2 , then G is vertex

pancyclic.

We now extend Hendry’s Theorem to chorded graphs.

Theorem 3. If G is a graph of order n ≥ 4 with δ(G) ≥ n+1
2 , then G is chorded vertex pancyclic.

Proof. Let G be a graph of order n ≥ 4 with δ(G) ≥ n+1
2 . By Theorem 2, any vertex is on a

cycle of every possible length, so suppose x ∈ V (G) is on a cycle C of length k ≥ 5 such that C is
chordless. Now |V (G)− V (C)| = n− k ≤ n− 5. Further, for any vertex w ∈ V (C), |NG−C(w)| ≥
n+1
2 − 2 = n−3

2 . Thus, the intersection of the neighbors of any two vertices of C, off of the cycle
C, contains at least two vertices. Let C = x1, x2, x3, . . . , xk, x1 with x = x1. Note that there exists
w1 ∈ NG−C(x1)∩NG−C(x2) and there exists w2 ∈ NG−C(x2)∩NG−C(x5) such that w1 6= w2 as x2
and x5 are nonadjacent and share no neighbors on C. Then x1, w1, x2, w2, x5, . . . , x1 is a k-cycle with
chord x1x2. Again, by Theorem 2, we know x = x1 also lies on a triangle, say C ′ = x1, x2, x3, x1.
Since |V (G) − V (C ′)| = n − 3, at least one intersection of the form NG−C′(xa) ∩ NG−C′(xb), for
a, b ∈ {1, 2, 3} with a 6= b, must be nonempty. Say w ∈ NG−C′(xa) ∩ NG−C′(xb), then the graph
induced by the vertex set {w, x1, x2, x3} contains a chorded 4-cycle containing x = x1. Therefore,
G is chorded vertex pancyclic.
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The above minimum degree condition is actually strong enough to imply a bit more as we see
in the next theorem.

Theorem 4. Let G be a graph of order n ≥ 10 with δ(G) ≥ n+1
2 . Then for every k ≥ 5 and any

vertex x ∈ V (G), there is a doubly chorded cycle in G containing x, that is G is doubly chorded
5-pancyclic.

Proof. By Theorem 3, we know G is chorded vertex pancyclic. Let Ck : x1 = x, x2, . . . , xk, x1, with
k ≥ 7 be such a cycle in G containing the specified vertex x. If Ck has two or more chords, then
we have the desired cycle. Thus, suppose that it has only one chord. Now by the minimum degree
condition, any two consecutive vertices of Ck have degrees to G−Ck of at least n−5

2 and n−3
2 as at

most one of these vertices is the end vertex of the chord. As |V (G)− V (Ck)| = n− k ≤ n− 7, we
see that any two consecutive vertices of Ck have at least three common neighbors off of Ck. Let
w1 ∈ NG−Ck

(xk)∩NG−Ck
(x1) and let w2 ∈ NG−Ck

(x1)∩NG−Ck
(x2) with w1 6= w2. Now, if x2x6 is

not the chord for Ck, then there exists w3 ∈ NG−Ck
(x2) ∩NG−Ck

(x6), with w3 not equal to either
w1 or w2. Now

xk, w1, x1, w2, x2, w3, x6, x7, . . . , xk

is a k-cycle containing x = x1 with chords xkx1 and x1x2.
If however, x2x6 is the chord of Ck, then we note there exists a w3 6= w1 such that w3 ∈

NG−Ck
(x5) ∩NG−Ck

(x7). Now

xk, w1, x1, x2, x6, x5, w3, x7, . . . , xk

is a k-cycle containing x = x1 with chords xkx1 and x6x7. (Note that xk = x7 is possible.) Thus,
a doubly chorded cycle containing x exists when k ≥ 7.

Next we claim that every vertex x is on a chorded 5-cycle. First suppose that deg (x) = n− 1.
Then by the degree condition, it is easily seen that a P4 exists in N(x), hence x is on a doubly
chorded 5-cycle. Now suppose deg x < n − 1 and let y be any vertex not adjacent to x. By the
minimum degree condition, x and y have at least three common neighbors. Let M be the set
of common neighbors of x and y. Note that the vertices of M must be independent or a doubly
chorded 5-cycle containing x (and y) is easily found. Further, let A = N(x)−M and B = N(y)−M .
Note that each vertex in A has at least two adjacencies to M for otherwise for such a ∈ A

deg a+ deg y ≤ (|A| − 1) + 1 + 1 + |M |+ |B| ≤ n− 1 < n+ 1

a contradiciton. Thus, if am1 and am2 are two such adjacencies of a in M then,

x, a,m1, y,m2, x

is a 5-cycle containing x with chords xm1 and am2. Thus, every vertex of G is on a doubly chorded
5-cycle as claimed.

Finally, we need to show that every vertex is on a doubly chorded 6-cycle. By Theorem 3 we
know every vertex is on a chorded 6-cycle. We may then assume C6 : x = x1, x2, . . . , x6, x1 is a
chorded 6-cycle containing x. If C6 is doubly chorded we have the desired cycle. Therefore, we
can assume C6 has exactly one chord. By the degree condition, the degrees of any two consecutive
vertices on C6 to V (G)− V (C) must be at least n−5

2 and n−3
2 as only one of them can be incident

to the chord. Thus, any such pair have at least two common neighbors off C6. If x1x3 is not the
chord, then they have at least three common neighbors off C6. Now there exists w1 ∈ NG−C6(x1)∩
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NG−C6(x2) and a w2 ∈ NG−C6(x2) ∩NG−C6(x3) with w1 6= w2 and w3 ∈ NG−C6(x1) ∩NG−C6(x3)
with w3 6= w1 or w2. Hence,

x1, w1, x2, w2, x3, w3, x1

is the desired doubly chorded 6-cycle containing x1 = x with chords x1x2 and x2x3.
Now suppose that x1x3 is the chord of C6. Then we repeat the same argument on the consecutive

pairs x6, x1, and x1, x2 and the pair x6, x2 to get the 6-cycle

x6, w1, x1, w2, x2, w3, x6

with chords x6x1 and x1x2. Hence, we see that G is doubly chorded vertex 5-pancyclic.

Example 1. To see that the graph of the previous theorem need not be doubly chorded 4-pancyclic,
let n ∼= 3(mod4) and consider the graph Kn+1

2
,n−1

2
along with a perfect matching in the larger partite

set. This graph is n+1
2 regular. However, no vertex lies in a K4, hence there are no doubly chorded

4-cycles in this graph.

A result of Randerath et al. [12] is the following:

Theorem 5 (Randerath et al. [12]). Let G be a graph of order n ≥ 4 such that σ2(G) ≥ n + 1.
Then G is vertex 4-pancyclic.

We next determine what this σ2 condition implies for chorded vertex pancyclic graphs.

Theorem 6. Let G be a graph of order n ≥ 4 such that σ2(G) ≥ n+ 1. Then G is chorded vertex
5-pancyclic.

Proof. Consider a graph G of order n ≥ 4 such that σ2(G) ≥ n + 1. By Theorem 5, G is vertex
4-pancyclic, so every vertex in V (G) is contained in a cycle of every length from 4 to n.

Claim 1: Every vertex in G is contained on a chorded k-cycle for every k where 6 ≤ k ≤ n.

Let x1 ∈ V (G) and suppose C = x1, x2, x3, . . . , xk, x1 is a k-cycle in G containing x1. If C
does not contain a chord, then x1 and x3 are nonadjacent and thus degG(x1) + degG(x2) ≥ n+ 1.
Therefore, x1 and x3 must share at least three common neighbors not on C. Let w1 be one such
neighbor. Similarly, x2 and x6 must also have a common neighbor, say w2 6∈ V (C) with w1 6= w2.
Then x1, w1, x3, x2, w2, x6, . . . , x1 is a k-cycle containing x1 with the chord x1x2. Thus, the Claim
holds.

Next suppose there is a vertex x ∈ V (G) such that x is not on any chorded 5-cycle in G. But
x does lie on 5-cycles by Theorem 5. Say C : x, c, y, b, a, x is one such 5-cycle. Then x and y are
nonadjacent in G and so deg x + deg y ≥ n + 1. We partiton V (G) as follows: Let C be the set
of common neighbors of x and y. Let A = N(x) − C and let B = N(y) − C. By the degree sum
condition, |C| ≥ 3. Note that there can be no edge between two vertices in C or a chorded 5-cycle
containing x is easily constructed. Also, there can be no edges from A to C or again a chorded
5-cycle containing x exists. Similarly, there are no edges from B to C.

If a1 ∈ A has no adjacencies to B, then deg a1 + degy ≤ |A| − 1 + 1 + |B| + |C| ≤ n − 2, a
contradiction. But that means that every vertex in A has adjacencies in B and similarly every
vertex in B has adjacencies in A. But then deg c1 + deg c2 = 4, again a contradiction. Thus, x1
must be on a chorded 5-cycle and hence G is chorded vertex 5-pancyclic.
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Example 2. In Theorem 6, the degree sum condition is sharp. The balanced complete bipartite
graph, Kn

2
,n
2

has σ2 = n but it does not contain any odd cycles. Thus it is not pancyclic, so clearly
it is not chorded vertex pancyclic either.

Example 3. Theorem 6 is also sharp in terms of 5-pancyclicity. Consider the graph G = (Kn −
E(Kc)), where the integer c ≥ 3, with an additional vertex v adjacent to each vertex of the Kc

whose edges were removed. Then v clearly lies on no chorded 4-cycle. Further, the σ2(G) condition
is realized by v and any vertex in V (G)−N [v] as c+n− 2 ≥ n+ 1 as long as c ≥ 3. Thus, G need
not be chorded vertex pancyclic under this degree sum condition.

Example 3 shows that σ2(G) ≥ n + c for any constant c will fail to imply the graph is vertex
pancyclic when n is sufficiently large. In [12], a sharp minimum degree sum condition implying the
existence of vertex pancyclic graphs was determined.

Theorem 7 (Randerath et al. [12]). Let G be a graph of order n ≥ 3 such that σ2(G) ≥ d4n3 e − 1.
Then G is vertex pancyclic.

Our next result extends Theorem 7 to chorded vertex pancyclic graphs.

Theorem 8. Let G be a graph of order n ≥ 8 such that σ2(G) ≥ d4n3 e − 1. Then G is chorded
vertex pancyclic.

Proof. First note that by Theorem 7, G is vertex pancyclic.

Claim 1: For every x ∈ V (G) there is a chorded 4-cycle in G containing x.

Consider any vertex x ∈ V (G), and take y ∈ V (G) such that xy 6∈ E(G). Such a y exists or
else, by the degree sum condition, N(x) certainly contains a path on three vertices, and hence a
chorded 4-cycle containing x exists. Now partition the remaining vertices of G as follows:

M = NG(x) ∩NG(y),

X = NG(x)−M,

Y = NG(y)−M,

D = V (G)− ({x, y} ∪M ∪X ∪ Y ).

Since σ2(G) ≥ d4n3 e − 1, we see that |M | ≥ n
3 + 1. Note that M must be an independent set,

otherwise x is contained in a chorded 4-cycle. Consider a, b ∈M . Since each vertex a (and b) can be
adjacent to every other vertex in G except for the other vertices in M , hence degG (a)+degG (b) ≤
2
(
2n
3 − 1

)
= 4n

3 − 2. This contradicts the degree sum condition of G since ab 6∈ G. Therefore M
cannot be an independent set. If ab ∈ E(G), then x, a, y, b, x is a 4-cycle containing x with chord
ab.

Next we show that if x1 is on a chorded 4-cycle, then it is on a chorded 5-cycle. So let
C : x1, x2, x3, x4, x1 be a 4-cycle containing x1 with chord x1x3. Then by the degree conditon we
know G is 2-connected. Hence there exists a vertex w not on C that is adjacent to a vertex of
C. Say wx2 is an edge of G. Now if w is also adjacent to either x1 or x3, then a chorded 5-cycle
containing x1 exists. Otherwise, w and x3 are nonadjacent and hence have a common neighbor w1
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not on C. But then x1, x2, w, w1, x3, x1 is a 5-cycle with chord x2x3 that contains x1. Note that a
similar argument holds if w is adjacent to x3 or the chord of C is x2x3.

Next suppose that the vertex x1 is contained on a cycle Ct, t ≥ 6. Say Ct : x1, x2, . . . , xt, x1.
If Ct is chorded we are done, so suppose that it is not chorded. Then x1 and x3 are nonadjacent
and by the degree condtion, they have at least n/3 + 1 common neighbors. Let w1 /∈ V (C) be such
a common neighbor. Similarly, x2 and x6 have a common neighbor w2 6= w1 off of C. But then
x1, w1, x3, x2, x6, . . . , x1 is a t-cycle containing x1 with chord x1x2.

Thus, G is chorded vertex pancyclic.

Definition 1. A graph G of order n is called (h, k)-pancyclic if every set of h vertices in G is
contained in a cycle of every length from k to n.

Theorem 9 (Faudree, Gould, Jacobson, 2009 [5]). Let 2 ≤ k, 2k ≤ m and m < n be integers and
let G be a graph of order n. If δ(G) ≥ bn+2

2 c, then G is (k,m)-pancyclic.

Theorem 10. Let k ≥ 2 and n > 2k, and let G be a graph of order n with δ(G) ≥ bn+2
2 c. Then G

is chorded (k, 2k + 1)-pancyclic.

Example 4. In order to see that 2k + 1 is sharp when k = 2 consider a graph G of even order
n ≥ 8, formed by creating a matching in each partite set of the complete balanced bipartite graph
Kn

2
,n
2

. Let x and y be nonadjacent from the same partite set. Then x and y are not together on

any chorded 4-cycles in G. However, δ(G) = n
2 + 1 = bn+2

2 c as n is even.

Proof. (of Theorem 10) Let G be a graph of order n ≥ 2k + 1 such that δ(G) ≥ bn+2
2 c. Consider

the set X = {x1, x2, . . . , xk} of k vertices in G. By Theorem 9, the vertices in X lie on cycles of
every length from 2k to n. Let C : v1 = x1, v2, . . . , vr, with r ≥ 2k+ 1 be a cycle containing X and
assume C is not chorded, or else we have the desired cycle. Since |V (C)| ≥ 2k + 1, at least one of
the k intervals [xi, xi+1) for i = 1, 2, . . . , k − 1 and [xk, x1) must have at at least two vertices from
V (C)−X. Without loss of generality say [x1, x2) contains two such vertices vi and vi+1.

Note that |V (G)− V (C)| ≤ n− 5. Also note that 2δ(G) ≥ n+ 1. Now by the minimum degree
conditon, two vertices on C have at least two common neighbors off C as n+ 1− 4 = n− 3. Thus,
there exists a vertex w1 /∈ V (C) such that w1 ∈ NG−C(vi−2) ∩ NG−C(vi−1). Also, there exists a
vertex w2 6= w1 with w2 ∈ NG−C(vi−1) ∩ NG−C(vi+2). Now, vi−2, w1, vi−1, w2, vi+2, . . . , vi−2 is an
r-cycle containing X with chord vi−2vi−1.

In [12] a σ2 bound was given for G to be vertex pancyclic.

Theorem 11 (Randerath et al. [12]). Let G be a graph of order n ≥ 4 such that σ2(G) ≥ n. Then
G is vertex 4-pancyclic unless n is even and G = Kn/2,n/2.

In [6] a stronger σ2 bound was given for G to be (k,m)-pancyclic when k ≥ 2.

Theorem 12 ([6]). Let k ≥ 2 and n > 2k. Then if G is a graph of order n with σ2(G) ≥ 2bn+2
2 c+1,

then G is (k, 2k)-pancyclic.

We next extend Theorem 12.

Theorem 13. Let k ≥ 2 and n > 2k. If G is a graph of order n with σ2(G) ≥ 2bn+2
2 c+ 1, then

(1) If k ≥ 4, then G is chorded (k, 2k)-pancyclic,
(2) If k = 2 or 3, then G is chorded (k, 2k + 1)-pancyclic.
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Proof. We note that by the σ2 conditon, σ2(G) ≥ n+ 2 if n is odd and σ2(g) ≥ n+ 3 if n is even.
Let X = {x1, x2, . . . , xk} be a set of k vertices in G. By Theorem 12, the k vertices of X are on
cycles of length 2k to n. Assume the one of these cycles Cr : u1, u2, . . . , ur, u1, is not chorded.
Then the vertices of X partiton Cr into k intervals [xi, xi+1) for i = 1, . . . k − 1 and [xk, x1). Note
that if k ≥ 3, the cycle Cr has length at least 6. Now if one of these intervals contains at least two
vertices of V (C)−X, say that ui, ui+1 are these two vertices. As Cr is not chorded, ui−3 and ui−1
are not adjacent. Now, |V (G)− V (Ck)| = n− r ≤ n− 6. Thus, by the σ2 condition, these vertices
have at least three common neighbors off Cr. Let w1 be such a vertex. Further, ui−2 and ui+2 are
nonadjacent and also have at least three common neighbors off Ck. Let w2 be such a vertex. Now,

ui−3, w1, ui1 , ui−2, w2, ui+2, . . . , ui−3

is an r-cycle containing X with chord ui−3ui−2 as a chord.

Now assume k = 2. We will show that any pair of vertices are on a chorded cycle of length 5.
Suppose x and y are a nonadjacent pair of vertices. By the σ2 condition, x and y have at least
three common neighbors. Let B be the set of common neighbors of x and y. Let A = N(x) − B
and let Y = N(y) − B. It is easy to see that the vertices of B must be independent or a 5-cycle
containing x and y is easily found. Further, there is an edge from b ∈ B to v ∈ A, and if b1 ∈ B
and b1 6= b, then x, v, b, y, b1, x is a 5-cycle containing x and y with chord xb. A similar argument
shows any edge from B to Y produces a chorded 5-cycle containing x and y. But if there are no
edges from B to X or B to Y , then the σ2 condition is violated by any pair of vertices in B. Thus,
there is a chorded 5-cycle containing x and y.

Now assume xy ∈ E(G). Let z be some vertex not adjacent to x and define B as the common
neighbors of x and z, and A = N(x)−B, and Z = N(z)−B. Now an argument similar to the one
in the previous case shows that any edge from A to B places x and y on a chorded 5-cycle. But
such edges must exist or else if y ∈ A then

deg y + deg z ≤ |X|+ |B|+ |Z| < n,

a contradiction. If y, y1 ∈ B, then

degy + deg y1 < n,

again a contradiction.

Thus, in either case any pair of vertices is on a chorded 5-cycle, hence, when k = 2, the graph
G is chorded (2, 5)-pancyclic and thus, for all k ≥ 2, the graph G is chorded (k, 2k + 1)-pancyclic.

To see that we cannot reduce to chorded 4-cycles when k = 2, consider the following graph H:
Let n be odd. Take a pair of nonadjacent vertices x and y with exactly five independent vertices
that are common neighbors of x and y. Call this set of common neighbors M . Let n be odd. Let
R = V (G)−{x, y}−M with |R| = n− 7. Let x be adjacent to (n− 7)/2 vertices of R and let y be
adjacent to the remaining (n− 7)/2 vertices of R. Let the vertices of M each be adjacent to all of
R. Now the nonadjacent pair x, y are on no chorded 4-cycles, as all such 4-cycles use two vertices
of M . Further,

σ2(H) = deg x+ deg y = |R|+ 10 = n+ 3

. Thus, H fails to be chorded (k, 2k)-pancyclic.

Next suppose that k ≥ 4. We know that the vertices of X lie on 2k-cycles by Theorem 12.
From the argument above we also know that on any such 2k-cycle C, the vertices must alternate
between a vertex of X and a vertex in V (G) − X. Let Mi be the common neighbors of the pair
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xi, xi+1 with Mk the common neighbors of xk, x1. Note the following:
(1) Any common neighbor of xi, xi+1 can replace the common neighbor on the 2k-cycle C, creating
a new 2k-cycle containing X which must also be chordless.
(2) Any vertex in Mi is nonadjacent to any vertex in Mj , i 6= j or a chorded cycle would exit.
(3) Without loss of generality, let |M2| ≤ |Mi|, for i 6= 2.
(4) Let R = V (G)− V (C). Then |R| = n− k −

∑k
i=1 |Mi|.

Then, deg x2 + deg x3 ≤ |M1|+ 2|M2|+ |M3|+ |R| which implies that

n+ 3 ≤ n+ |M2| −
k∑

i=4

|Mi| − k < n

as |M2| ≤ |M4|. Thus, there must be a chorded 2k-cycle containing X.
Next let k = 3. We define the graph H1 as follows: For Mi the common neighbors of xi, xi+1 we

assume that |Mi| = n+15
6 , for each i = 1, 2, 3. Let < Mi > be a clique for each i. Let R = G−H1

where |R| = n − 3(n+15
6 ) − 3. Let each vertex from X have exactly 1

3 |R| distinct adjacencies in R
as there are no common adjacencies of such pairs in R. Now σ2(H1) is determined by any two of
the xi. Hence,

deg x1 + deg x2 = 4(
n+ 15

6
) +

2

3
(n− 3(

n+ 15

6
)− 3) = n+ 3.

Then H1 has no chorded 6-cycles containing X. Hence, k = 3 fails to have chorded (3, 6)-cycles.

Next we consider what happens when we reduce the bound on σ2.

Theorem 14. Let G be a graph of order n ≥ 4, and let x be any specified vertex of G. If σ2(G) ≥ n,
then one of the following statements holds.
(i) G is chorded vertex pancyclic.
(ii) Kn/2 +Kn/2 ⊆ G ⊆ Kn/2 + (K1 ∪ F ) (n is even), where F is a spanning subgraph of Kn/2−1,
satifying the following conditions:

· if E(F ) = ∅, then x = v for any v ∈ V (G),
· if E(F ) 6= ∅, then x ∈ V (K1), or x = v such that degF (v) = 0 for v ∈ V (F ).

(iii) G is a spanning subgraph of H = B+x+Ka + (K1 +Kc +Kd), (|V (H)| = n, a ≥ 2, c ≥ 1, 0 ≤
d ≤ a− 2) with all the edges of B + (Kc ∪Kd), where B is a graph of order b ≥ 0 with |E(B)| ≤ 1
satifying the following conditions:

· h = h1 + h2 ≤ 1, where h1 = |E(B)| and h2 = |E(Ka, B)|,
· if z1z2 ∈ E(B) for z1, z2 ∈ V (B), then NKc∪Kd

(z1) ∩NKc∪Kd
(z2) = ∅,

· if mz ∈ E(G) for m ∈ V (Ka) and z ∈ V (B), then NKc∪Kd
(m) ∩NKc∪Kd

(z) = ∅.

Proof. Let G be a graph of order n ≥ 4 such that σ2(G) ≥ n. Suppose that G is not a graph
satisfying (ii) and (iii) in Theorem 14. If G is a complete graph, then the theorem holds. Thus G
is not a complete graph. Note that G is Hamiltonian by Ore’s theorem (Theorem 1). Let C∗ be a
Hamiltonian cycle in G, say C∗ = v1v2 . . . vnv1. Let x be any specified vertex in G. If n = 4, then
either G = K2,2, or G is a chorded 4-cycle containing x and G is chorded vertex pancyclic. Thus
we may assume that n ≥ 5.

Suppose that n = 5. By the σ2(G) condition, C∗ has at least two chords, and then C∗ is
a chorded 5-cycle containing x. Thus we need only to prove that G contains a chorded 4-cycle
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containing x. If the two chords are adjacent, then G contains a chorded 4-cycle containing x,
no matter where x is on the cycle. Thus, we may assume that C∗ has crossing chords which
are independent. If x is an end vertex of one of these chords, then G contains a chorded 4-cycle
containing x. Otherwise, G is a graph satisfying (iii), (a = 2, b = 0, c = 1, d = 0), a contradiction.

Suppose that n ≥ 6. By Theorem 11, G is either vertex 4-pancyclic, or n is even and G =
Kn/2, n/2. Suppose that xu ∈ E(G) for all u ∈ V (G − x). We now consider Hamiltonian cycle C∗

as above. Without loss of generality, we may assume that x = v1. By our assumption, we have
v1vi ∈ E(G) for all 2 ≤ i ≤ n. Then v1v2 . . . viv1 for all 4 ≤ i ≤ n is a chorded i-cycle containing
x. Thus G is chorded vertex pancyclic.

Therefore, there exists some y ∈ V (G− x) with xy 6∈ E(G). Partition V (G)−{x, y} as follows:

M = NG(x) ∩NG(y),

X = NG(x)−M,

Y = NG(y)−M,

D = V (G)− ({x, y} ∪M ∪X ∪ Y ).

Note that σ2(G) condition implies |M | ≥ 2. Let |M | = 2 + t, where t ≥ 0.

Claim 1. |D| ≤ t.

Proof. Suppose that |D| ≥ t+ 1. Since xy 6∈ E(G), by σ2(G) condition, we have

n ≤ σ2(G) ≤ degG(x) + degG(y) ≤ |V (G− {x, y})| − |D|+ |M |
≤ (n− 2)− (t+ 1) + (2 + t) = n− 1, a contradiction.

Claim 2. There exists a chorded n-cycle in G containing x.

Proof. Since n ≥ 6 and G contains a Hamiltonian cycle C∗, it is easy to see that C∗ is a chorded
n-cycle containing x by σ2(G) condition.

Claim 3. There exists a chorded 4-cycle in G containing x.

Proof. Suppose not. Since |M | ≥ 2, let m1,m2 ∈ M . If m1m2 ∈ E(G), then m1ym2xm1 is a
4-cycle with chord m1m2 containing x, a contradiction. Thus m1m2 6∈ E(G). This implies that M
is an independent set. Suppose that X = Y = ∅. By σ2(G) condition, since

|M |+ |{x, y}|+ |D| = n ≤ degG(m1) + degG(m2) ≤ 2(|{x, y}|+ |D|), (1)

we have |M | ≤ 2 + |D|. Since |M | = 2 + t, |D| ≥ t. By Claim 1, |D| = t. Thus degG(mi) = 2 + |D|
for all i ∈ {1, 2} by the inequality (1). This implies that NG(m) = {x, y}∪D for any m ∈M . Thus
G is a graph satisfying the statement (ii), a contradiction. Therefore, X ∪ Y 6= ∅. If X = ∅, then
Y 6= ∅, and G is a graph satisfying the statement (iii) (b = 0), a contradiction. Thus X 6= ∅.

Subclaim 1. For any m ∈M , degX(m) ≤ 1.

Proof. Suppose that degX(m) ≥ 2 for some m ∈ M . Let z1, z2 ∈ NX(m). Then xz1mz2x is a
4-cycle with chord xm containing x, a contradiction. Thus the subclaim holds.
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Subclaim 2. For any z ∈ X, degX∪M (z) ≤ 1.

Proof. Suppose that degX∪M (z0) ≥ 2 for some z0 ∈ X. First, suppose that degX(z0) ≥ 2. Let
z1, z2 ∈ NX(z0). Then xz1z0z2x is a 4-cycle with chord xz0 containing x, a contradiction. Next,
suppose that degM (z0) ≥ 2. Let m1,m2 ∈ NM (z0). Then xm1z0m2x is a 4-cycle with chord xz0
containing x, a contradiction. Finally, suppose that degX(z0) = 1 and degM (z0) = 1. Let z1 ∈
NX(z0) and m ∈ NM (z0). Then xmz0z1x is a 4-cycle with chord xz0 containing x, a contradiction.
Thus the subclaim holds.

Let R = M ∪ {x, y} ∪X. Under the condition X 6= ∅, we claim that Y 6= ∅. Suppose not. Let
z ∈ X. Since zx ∈ E(G), degR(z) ≤ 2 by Subclaim 2. Since yz 6∈ E(G), by σ2(G) condition, we
have

|M |+ |{x, y}|+ |X|+ |D| = n ≤ degG(y) + degG(z) ≤ |M |+ (degR(z) + |D|) ≤ |M |+ 2 + |D|,

and then |X| ≤ 0, a contradiction. Thus Y 6= ∅.

Subclaim 3. |E(〈M ∪X〉)| ≤ 1.

Proof. Suppose that |E(〈M ∪X〉)| ≥ 2. Note that |E(〈M〉)| = 0, since M is an independent set.
We consider three cases.

Case 1. |E(〈X〉)| ≥ 2.

By Subclaim 2, E(〈X〉) is an independent edge set. In this case, note that |X| ≥ 4. Let
{z1z2, z3z4} ⊆ E(〈X〉). Since z1z3 6∈ E(G), degG(z1) + degG(z3) ≥ n. By Subclaim 2, degR(zi) = 2
for all i ∈ {1, 3}. Since degG(zi) = degR(zi) + degY ∪D(zi) = 2 + degY ∪D(zi) for all i ∈ {1, 3},
degY ∪D(z1) + degY ∪D(z3) ≥ n − 4. Suppose that degY ∪D(z1) < (n − 4)/2. Then degY ∪D(z3) ≥
(n − 4)/2. Since z1z4 6∈ E(G), degG(z1) + degG(z4) ≥ n. Since degY ∪D(z1) < (n − 4)/2 by our
assumption, degY ∪D(z4) ≥ (n− 4)/2 by the same arguments above. If NY ∪D(z3) ∩NY ∪D(z4) = ∅,
then |Y ∪ D| ≥ 2(n − 4)/2 = n − 4. On the other hand, since |M | ≥ 2 and |X| ≥ 4, |Y ∪ D| =
|V (G) − (M ∪ {x, y} ∪ X)| ≤ n − 8, a contradiction. Thus NY ∪D(z3) ∩ NY ∪D(z4) 6= ∅. Let
w ∈ NY ∪D(z3)∩NY ∪D(z4). Then xz3wz4x is a 4-cycle with chord z3z4 containing x, a contradiction.
Thus degY ∪D(z1) ≥ (n − 4)/2. By the same arguments above, we have degY ∪D(z2) ≥ (n − 4)/2.
Then since NY ∪D(z1)∩NY ∪D(z2) 6= ∅, there exists a chorded 4-cycle containing x, a contradiction.

Case 2. |E(M,X)| ≥ 2.

Then E(M,X) is an independent edge set by Subclaims 1 and 2. Let m1,m2 ∈M and z1, z2 ∈
X, and let {m1z1,m2z2} ⊆ E(M,X). Since z1z2 6∈ E(G) by Subclaim 2, degG(z1) + degG(z2) ≥ n.
Since degG(zi) = degR(zi) + degY ∪D(zi) = 2 + degY ∪D(zi) for all i ∈ {1, 2}, degY ∪D(z1) +
degY ∪D(z2) ≥ n− 4. Suppose that degY ∪D(z2) < (n− 4)/2. Then degY ∪D(z1) ≥ (n− 4)/2. Since
m1z2 6∈ E(G) by Subclaim 1, degG(m1) + degG(z2) ≥ n. Then since degG(m1) = degR(m1) +
degY ∪D(m1) = 3 + degY ∪D(m1) and degG(z2) = degR(z2) + degY ∪D(z2) = 2 + degY ∪D(z2),
degY ∪D(m1)+degY ∪D(z2) ≥ n−5. Since degY ∪D(z2) < (n−4)/2 by our assumption, degY ∪D(m1) ≥
(n − 5)/2. If NY ∪D(z1) ∩ NY ∪D(m1) = ∅, then |Y ∪ D| ≥ (n − 4)/2 + (n − 5)/2 = n − 9/2. On
the other hand, since |M | ≥ 2 and |X| ≥ 2, |Y ∪ D| = |V (G) − (M ∪ {x, y} ∪ X)| ≤ n − 6, a
contradiction. Thus NY ∪D(z1)∩NY ∪D(m1) 6= ∅. Let w ∈ NY ∪D(z1)∩NY ∪D(m1). Then xm1wz1x
is a 4-cycle with chord m1z1 containing x, a contradiction. Thus degY ∪D(z2) ≥ (n− 4)/2. By the
same arguments above, since degG(m1) + degG(m2) ≥ n and degG(m2) + degG(z1) ≥ n, we have
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degY ∪D(m2) ≥ (n − 6)/2. Then since NY ∪D(z2) ∩ NY ∪D(m2) 6= ∅, there exists a chorded 4-cycle
containing x, a contradiction.

Case 3. |E(〈X〉)| = 1 and |E(M,X)| = 1.

Let m ∈ M , and let z1, z2, z3 ∈ X. Note that {mz1, z2z3} is an independent edge set by
Subclaim 2. Since z1z2 6∈ E(G) by Subclaim 2, degG(z1) + degG(z2) ≥ n. Since degG(zi) =
degR(zi)+degY ∪D(zi) = 2+degY ∪D(zi) for all i ∈ {1, 2}, degY ∪D(z1)+degY ∪D(z2) ≥ n−4. Suppose
that degY ∪D(z1) < (n − 4)/2. Then degY ∪D(z2) ≥ (n − 4)/2. Since z1z3 6∈ E(G) by Subclaim 2,
degG(z1)+degG(z3) ≥ n. Since degY ∪D(z1) < (n−4)/2 by our assumption, degY ∪D(z3) ≥ (n−4)/2.
If NY ∪D(z2) ∩ NY ∪D(z3) = ∅, then |Y ∪ D| ≥ 2(n − 4)/2 = n − 4. On the other hand, since
|M | ≥ 2 and |X| ≥ 3, |Y ∪ D| = |V (G) − (M ∪ {x, y} ∪ X)| ≤ n − 7, a contradiction. Thus
NY ∪D(z2) ∩NY ∪D(z3) 6= ∅. Let w ∈ NY ∪D(z2) ∩NY ∪D(z3). Then xz2wz3x is a 4-cycle with chord
z2z3 containing x, a contradiction. Thus degY ∪D(z1) ≥ (n− 4)/2. By the same arguments above,
since degG(m) + degG(zi) ≥ n for all i ∈ {2, 3}, we have degY ∪D(m) ≥ (n − 5)/2. Then since
NY ∪D(z1) ∩NY ∪D(m) 6= ∅, there exists a chorded 4-cycle containing x, a contradiction.

Therefore, the subclaim holds.

Let h1 = |E(〈X〉)| and h2 = |E(M,X)|, and let h = h1 + h2. By Subclaim 3, h ≤ 1.

By Claim 1 and Subclaim 3, G is a graph satisfying the statement (iii), a contradiction. This
completes the proof of Claim 3.

Claim 4. If G contains a chorded 4-cycle containing x, then there exists a chorded 5-cycle in G
containing x.

Proof. Suppose not. Let C = v1v2v3v4v1 be a chorded 4-cycle in G containing x. Suppose that
v2v4 ∈ E(G). Since n ≥ 6 and G is connected by σ2(G) condition, there exists some z ∈ V (G−C)
such that zv ∈ E(G) for some v ∈ V (C). To get a contradiction, we prove the existence of a
chorded 5-cycle containing x. We consider the following cases.

Case 1. x = v1 or x = v3.

By symmetry, we may assume that x = v1. We consider the following cases based on the
adjacency of z.

Subcase 1. zv1 ∈ E(G).

We claim that vi 6∈ NC(z) for all 2 ≤ i ≤ 4. If v2 ∈ NC(z), then zv2v3v4v1z is a 5-cycle with
chord v1v2 containing x. If v4 ∈ NC(z), then by symmetry, there exists a chorded 5-cycle containing
x. If v3 ∈ NC(z), then zv3v4v2v1z is a 5-cycle with chord v1v4 containing x. Thus the claim holds.
Since zv2 6∈ E(G), |NG(z)∩NG(v2)| ≥ 2 by σ2(G) condition. By the above claim, there exists some
w ∈ NG−C(z) ∩NG−C(v2). Then zwv2v4v1z is a 5-cycle with chord v1v2 containing x.

Subcase 2. zv3 ∈ E(G).

Then note that vi 6∈ NC(z) for all i ∈ {1, 2, 4}. Since zv1 6∈ E(G), NG−C(z) ∩ NG−C(v1) 6= ∅,
and it is Subcase 1.

Subcase 3. zv2 ∈ E(G) or zv4 ∈ E(G).

By symmetry, we may assume that zv2 ∈ E(G). We claim that vi 6∈ NC(z) for all i ∈ {1, 3, 4}.
If vi ∈ NC(z) for some i ∈ {1, 3}, then it is easy to find a chorded 5-cycle containing x. Suppose
that v4 ∈ NC(z). If v1v3 ∈ E(G), then zv2v3v1v4z is a 5-cycle with chord v1v2 containing x.
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Thus v1v3 6∈ E(G). By σ2(G) condition, degG(v1) ≥ 3 or degG(v3) ≥ 3. If degG(v1) ≥ 3, then
N(G−C)−z(v1) 6= ∅, and it is Subcase 1. If degG(v3) ≥ 3, then N(G−C)−z(v3) 6= ∅, and it is Subcase
2. Thus v4 6∈ NC(z), and the claim holds. Since zv1 6∈ E(G), NG−C(z) ∩NG−C(v1) 6= ∅, and it is
Subcase 1.

Case 2. x = v2 or x = v4.
By symmetry, we may assume that x = v2. We consider the following cases based on the

adjacency of z.

Subcase 1. zv1 ∈ E(G) or zv3 ∈ E(G).
By symmetry, we may assume that zv1 ∈ E(G). Then note that vi 6∈ NC(z) for all 2 ≤ i ≤ 4.

Since zv2 6∈ E(G), there exists some w ∈ NG−C(z) ∩NG−C(v2). Then zwv2v4v1z is a 5-cycle with
chord v1v2 containing x.

Subcase 2. zv2 ∈ E(G).
Then note that vi 6∈ NC(z) for all i ∈ {1, 3}. Since zv1 6∈ E(G), there exists some w ∈

NG−v2(z) ∩ NG−v2(v1). If w 6∈ V (C), then zv2v4v1wz is a 5-cycle with chord v1v2 containing x.
Thus w = v4, that is, zv4 ∈ E(G). If v1v3 ∈ E(G), then zv2v1v3v4z is a 5-cycle with chord v1v4
containing x. Thus v1v3 6∈ E(G). By σ2(G) condition, degG(v1) ≥ 3 or degG(v3) ≥ 3. Then both
cases are Subcase 1.

Subcase 3. zv4 ∈ E(G).
Then note that vi 6∈ NC(z) for all i ∈ {1, 3}. Since zv1 6∈ E(G), there exists some w ∈

NG−v4(z) ∩ NG−v4(v1). If w 6∈ V (C), then zwv1v2v4z is a 5-cycle with chord v1v4 containing x.
Thus w = v2, that is, zv2 ∈ E(G). If v1v3 ∈ E(G), then zv2v3v1v4z is a 5-cycle with chord v1v2
containing x. Thus v1v3 6∈ E(G). By σ2(G) condition, degG(v1) ≥ 3 or degG(v3) ≥ 3. Then both
cases are Subcase 1.

If n = 6, then G is chorded vertex pancyclic by Claims 2, 3 and 4. Thus we may assume that
n ≥ 7.

Claim 5. There exists a chorded k-cycle in G containing x for all 6 ≤ k ≤ n− 1.

Proof. Since G 6= Kn/2, n/2 (n is even) by our assumption, G is vertex 4-pancyclic by Theorem 11.
Let 6 ≤ k ≤ n− 1, and consider a chordless k-cycle C = v1v2 . . . vkv1 in G containing x. Without
loss of generality, we may assume that x = v1. Since C is chordless, v1v3 6∈ E(G). Then there exists
z ∈ NG−C(v1) ∩NG−C(v3). Similarly, since v2v6 6∈ E(G), there exists w ∈ NG−C(v2) ∩NG−C(v6).
If k = n − 1, then z = w, and zv3v4 . . . vkv1z is a k-cycle with chord zv6 containing x. Suppose
that 6 ≤ k ≤ n− 2. If z = w, then there exists a chorded k-cycle containing x as above. If z 6= w,
then zv3v2wv6 . . . vkv1z is a k-cycle with chord v1v2 containing x.

Claims 2 – 5 imply that G is chorded vertex pancyclic. This completes the proof of Theorem
14.

3 Edge Pancyclic Extensions

A natural variation of vertex pancyclic graphs is that of edge pancyclic graphs.
In [12], a sharp minimum degree condition was established for edge pancyclic graphs. The graph

Kn/2, n/2 shows we cannot reduce this minimum degree by one.
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Theorem 15 (Randerath et al. [12]). If G is graph of order n with δ(G) ≥ n+2
2 , then G is edge

pancyclic.

Our next result extends Theorem 15.

Theorem 16. If G is a graph of order n ≥ 3 with δ(G) ≥ n+2
2 , then G is chorded edge pancyclic.

Proof. Let e = x1x2 be an edge of the graph G. Since G is edge pancyclic, by Theorem 15 e must
be contained as a cycle-edge in at least one k-cycle for every k, 3 ≤ k ≤ n. By the minimum degree
condition, it is clear that every cycle of length at least n/2 + 2 must be chorded. Assume for some
k < n/2 + 2 that none of the k-cycles containing e are chorded. Let C = x1, x2, x3, . . . , xk, x1 be
such a chordless k-cycle with k ≥ 6 in G. Since δ(G) ≥ n+2

2 , every pair of vertices in G share at
least two common neighbors. Since C is chordless, there exist vertices w1 ∈ NG−C(x2)∩NG−C(x3)
and w2 ∈ NG−C(x3) ∩NG−C(x6) such that w1 6= w2. Then x1, x2, w1, x3, w2, x6, . . . , x1 is a k-cycle
containing e as a cycle-edge and x2x3 as a chord.

Now let C ′ = x1, x2, x3, x1 be a 3-cycle in G containing e. There exists a vertex w ∈ NG−C′(x2)∩
NG−C′(x3), so x1, x2, w, x3, x1 is a 4-cycle containing e as a cycle-edge and x2x3 as a chord. Notice
that x2 and w have a common neighbor w′ 6= x3. Thus x1, x2, w

′, w, x3, x1 is a 5-cycle containing e
as a cycle-edge and x2x3 (and x2w) as a chord. Therefore e is contained in a chorded k-cycle in G
for 4 ≤ k ≤ n, so G is chorded edge pancyclic.

In [5], the idea of edge pancyclic graphs was extended to containing paths.

Definition 2. If G is a graph of order n. We say G is (P,m)-pancyclic if any path P = Pk is
contained on a cycle of every length from m to n.

Definition 3. If G is a graph of order n. We say G is chorded (P,m)-pancyclic if any path
P = Pk is contained on a chorded cycle of every length from m to n.

The next result follows easily form Theorem 16.

Corollary 17. Given a fixed integer k, let G be a graph of order n ≥ k + 2 containing a path
P = Pk and with δ(G) ≥ n

2 + k − 1. Then G is chorded (P, k + 2)-pancyclic.

Proof. Suppose G is a graph of order n with δ(G) ≥ n
2 + k− 1 and let P = Pk be a path in G. We

obtain a new graph G′ by contracting P to a single edge e. This reduces the minimum degree by
up to k − 2, the number of interior vertices of P . So

δ(G′) ≥ n

2
+ k − 1− (k − 2) =

n

2
+ 1.

By Theorem 16, we know that G′ is chorded edge pancyclic. Now expand e back to P to
re-obtain G. In doing so, each chorded cycle that contained e in G′ is now a chorded cycle that
contains P in G. Each such chorded cycle will expand by k − 2 vertices when it is re-obtained in
G. As e was contained in chorded cycles of length 4 to n − (k − 2) in G′, we now have that G is
now on cycles of all lengths 4 + k − 2 = k + 2 to n and so G is chorded (P, k + 2)-pancyclic.

The next result is a consequence of a theorem in [5].

Theorem 18 ([5]). Let G be a graph of order n ≥ 5 and let e be a edge of G. If σ2(G) ≥ n + 1,
then for reach r ≥ 4, the graph G contains a cycle of length r containing e.
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Note: The above σ2(G) condition is clearly sharp for general n.

Theorem 19. Let G be a graph of order n ≥ k+2. If σ2(G) ≥ n+k−1, then for any path P = Pk,
the graph G is (P, k + 2)-pancyclic.

Proof. The proof is by induction on k. If k = 2 the result follows from Theorem 18. Thus, we
assume the result follows if k = t ≥ 2 and we consider k = t + 1. Then, in G there is a path
P ′ = Pt+1 and σ2(G) ≥ n + t. Now we contract one edge of P ′ obtaining the graph G∗ of order
n− 1 containing the contracted path P ∗ = Pt satisfying

σ2(G
∗) ≥ n+ t− 2 = (n− 1) + (t− 1).

Thus, G∗ is (P ∗, t+ 2)-pancyclic. Expanding P ∗ back to P ′ we see that every cycle containing P ∗

now expands to a cycle containing P ′. As these cycles had each length from t + 2 to (n − 1) in
G∗,we see that P ′ now lies on cycles of each length from t + 3 to n in G. Thus, by induction, we
see that G is (P, k + 2)-pancyclic.

Example 5. To see the sharpness of the last result, consider the following graph. Take a copy of
Kk, k ≥ 3, and a copy of Kn−k − e where e = ab was an edge of the Kn−k. Now select a spanning
path P : x1, x2, . . . , xk of the Kk. We now join x1 to a and b and xk to a and b. The vertices
x2, . . . , xk−1 are each joined to all of the Kn−k. The resulting graph G has σ2(G) = n+ k − 2 and
is realized by the degree sum of x1 and any vertex w ∈ Kn−k where w 6= a and w 6= b as:

deg x1 + deg w = k + 1 + n− k − 1 + k − 2 = n+ k − 2.

But the path P is not on any cycle of length k + 2 (although it is on a cycle of length k + 1).
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