On Chorded Cycles

Ron Gould Emory University

Oct. 24, 2016

Given a graph G on $n \ge 3$ vertices:

If the minimum degree $\delta(G) \ge 2$ then G contains a cycle.

Given a graph G on $n \ge 3$ vertices:

If the minimum degree $\delta(G) \geq 2$ then G contains a cycle.

Theorem (Corradi and Hajnal)

If $\delta(G) \ge 2k$ and $|G| \ge 3k$ then G contains k vertex disjoint cycles.

Over the years there have been many results that find conditions sufficient for cycles (often with various properties like containing a set of vertices, or a set of edges, etc.).

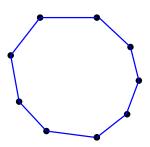
But the one property that was greatly ignored was the following:

An Old Question by Posa, 1960

Question

What conditions imply a graph contains a cycle with a chord?

Here a **chord** is an edge between two vertices on the cycle that is not an edge of the cycle.

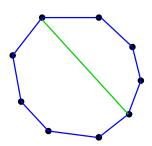


An Old Question by Posa, 1960

Question

What conditions imply a graph contains a cycle with a chord?

Here a **chord** is an edge between two vertices on the cycle that is not an edge of the cycle.



First answer by J. Czipzer 1963 - using min deg $\delta(G)$

Theorem

If G has minimum degree at least 3, then G contains a chorded cycle.

First answer by J. Czipzer 1963 - using min deg $\delta(G)$

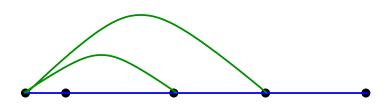
Theorem

If G has minimum degree at least 3, then G contains a chorded cycle.

First answer by J. Czipzer 1963 - using min deg $\delta(G)$

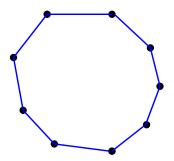
Theorem

If G has minimum degree at least 3, then G contains a chorded cycle.



Sharpness Example

Minimum degree 2 is not enough! Simply take any cycle.



Other conditions for a chorded cycle.

- Other conditions for a chorded cycle.
- Some specified number of disjoint chorded cycles.

- Other conditions for a chorded cycle.
- Some specified number of disjoint chorded cycles.
- Some specified number of disjoint doubly chorded cycles.

- Other conditions for a chorded cycle.
- Some specified number of disjoint chorded cycles.
- Some specified number of disjoint doubly chorded cycles.
- Cycles with a designated minimum number of chords.

Some History (45 years later) - D. Finkel, 2008

Theorem

If G is a graph on $n \ge 4k$ vertices with minimum degree $\delta(G) \ge 3k$, then G contains at least k vertex disjoint chorded cycles.

Some History (45 years later) - D. Finkel, 2008

Theorem

If G is a graph on $n \ge 4k$ vertices with minimum degree $\delta(G) \ge 3k$, then G contains at least k vertex disjoint chorded cycles.

Theorem

Let G be a graph of order $n \ge 3k$ with minimum degree $\delta(G) \ge 2k$, then G contains k vertex disjoint cycles.

Some History (45 years later) - D. Finkel, 2008

Theorem

If G is a graph on $n \ge 4k$ vertices with minimum degree $\delta(G) \ge 3k$, then G contains at least k vertex disjoint chorded cycles.

 $\delta(G) \ge 3$ implies chorded cycle.

Theorem

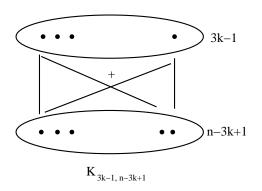
Let G be a graph of order $n \ge 3k$ with minimum degree $\delta(G) \ge 2k$, then G contains k vertex disjoint cycles.

 $\delta(G) \ge 2$ implies cycle.

Sharpness

Clearly, $n \ge 4k$ is needed as the cycles need at least 4 vertices each.

For $n \ge 6k$, the graph $K_{3k-1,n-3k+1}$ has $\delta = 3k-1$ and no collection of k vertex disjoint chorded cycles, as chorded cycles here require 3 vertices from each partite set.



Bialostocki, Finkel and Gyarfas, 2008

Conjecture

Let r, s be nonnegative integers and G a graph with order at least 3r + 4s and minimum degree $\delta(G) \ge 2r + 3s$.

Then G contains a collection of r cycles and s chorded cycles, all vertex disjoint.

They proved this conjecture for r = 0, s = 2 and for s = 1 and every r.

Bialostocki, Finkel and Gyarfas, 2008

Theorem

Let G be a graph with order at least 8 and $\delta(G) \geq 6$, then G contains two vertex disjoint chorded cycles.

They also settled the extremal problem of the minimum number of edges in a graph on n vertices ensuring two vertex disjoint chorded cycles.

Chiba, Fujita and Gao, 2010

Settled the conjecture completely, actually proving more.

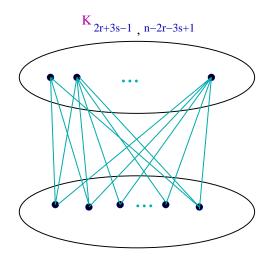
Theorem

Let r and s be integers with $r+s\geq 1$. Let G be a graph of order at least 3r+4s. If

$$\sigma_2(G) \geq 4r + 6s - 1,$$

then G contains a collection of r + s vertex disjoint cycles, such that s of them are chorded.

Sharpness example



Y. Gao and L. Guojun -2012

Theorem

Let k be a positive integer and G a graph of order $n \ge 4k$ with $\sigma_2(G) \ge 6k - 1$. Then G contains k vertex disjoint chorded cycles.

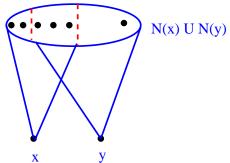
RG, K. Hirohata, P. Horn, 2010

Theorem

If G is a graph on $n \ge 4k$ vertices such that for any pair of non-adjacent vertices x, y,

$$|N(x,y)| \ge 4k + 1,$$

then H contains at least k vertex disjoint chorded cycles.



S. Qiao and S. Zhang, 2010

Theorem

If G is a graph with at least 4k vertices and minimum degree at least $\lceil \frac{7k}{2} \rceil$, then G contains k vertex disjoint cycles, each with at least 2 chords.

Call such cycles doubly chorded cycles (or DCC's).

RG, K. Hirohata, P. Horn

Theorem

If G is a graph on $n \ge 6k$ vertices with

$$\sigma_2(G) \geq 6k - 1$$
,

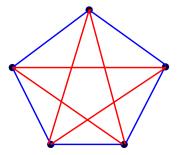
then G contains k vertex disjoint doubly chorded cycles.

Question

How many chords should we expect or hope to find?

Cycles with many chords?

A special case: Cliques



 K_5 : 4-regular but with 5 chords

In general:

Given a K_{k+1} : It is k-regular with

$$f(k) = \frac{(k-2)(k+1)}{2}$$

chords. We think of f(k) chorded cycles as "loose" K_{k+1} cliques.

Note: There are no single chorded cliques.

Theorem

Ali, Staton - 1999

If
$$\delta(G) = k$$
, then G contains a

$$\left\lceil \frac{k(k-2)}{2} \right\rceil$$
 – chorded cycle.

Note: There are no single chorded cliques.

Theorem

Ali, Staton - 1999

If $\delta(G) = k$, then G contains a

$$\left\lceil \frac{k(k-2)}{2} \right\rceil$$
 – chorded cycle.

Corollary

If $\delta(G) \geq 3$, then G contains a doubly chorded cycle - that is, a loose K_4 .

Theorem

If $\delta(G) = k$, then G contains an

$$f(k) = \frac{(k+1)(k-2)}{2}$$
 - chorded cycle.

Theorem

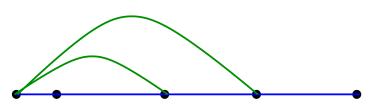
If $\delta(G) = k$, then G contains an

$$f(k) = \frac{(k+1)(k-2)}{2}$$
 - chorded cycle.

Theorem

If $\delta(G) = k$, then G contains an

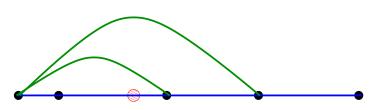
$$f(k) = \frac{(k+1)(k-2)}{2}$$
 - chorded cycle.



Theorem

If $\delta(G) = k$, then G contains an

$$f(k) = \frac{(k+1)(k-2)}{2}$$
 - chorded cycle.



The story so far:

Lower End: $\delta(G) \ge k$ implies an $f(k) = \frac{(k-1)(k+2)}{2}$ -chorded cycle.

Upper End:

Theorem

Hajnal and Szemerédi

If $\delta(G) \ge kt$, |G| = (k+1)t, then G can be covered by t vertex disjoint K_{k+1} 's.

Conjecture

If $\delta(G) \geq kt$, and $|G| \geq (k+1)t$ then G contains t

$$f(k) = \frac{(k+1)(k-2)}{2}$$
 – disjoint chorded cycles.

Conjecture

If
$$\delta(G) \geq kt$$
, and $|G| \geq (k+1)t$ then G contains t

$$f(k) = \frac{(k+1)(k-2)}{2}$$
 – disjoint chorded cycles.

Tight End: Hajnal-Szemerédi Theorem.

Conjecture

If $\delta(G) \geq kt$, and $|G| \geq (k+1)t$ then G contains t

$$f(k) = \frac{(k+1)(k-2)}{2}$$
 – disjoint chorded cycles.

Tight End: Hajnal-Szemerédi Theorem.

If t = 1, this is our first Theorem.

Conjecture

If $\delta(G) \geq kt$, and $|G| \geq (k+1)t$ then G contains t

$$f(k) = \frac{(k+1)(k-2)}{2}$$
 – disjoint chorded cycles.

Tight End: Hajnal-Szemerédi Theorem.

If t = 1, this is our first Theorem.

We show it is true for some classes of graphs, and for graphs with some extra "room".

RG, P. Horn, C. Magnant 2012

Theorem

There exist k_0 , t_0 such that if $\delta(G) \ge kt$, where $k \ge k_0$, $t \ge t_0$ and $n \ge n_0(k, t)$, then G contains t disjoint cycles with at least

$$f(k) = \frac{(k+1)(k-2)}{2}$$

chords.

RG, P. Horn, C. Magnant 2012

Theorem

There exist k_0 , t_0 such that if $\delta(G) \ge kt$, where $k \ge k_0$, $t \ge t_0$ and $n \ge n_0(k, t)$, then G contains t disjoint cycles with at least

$$f(k) = \frac{(k+1)(k-2)}{2}$$

chords.

• Bounds for k_0 and t_0 show a tradeoff.

RG, P. Horn, C. Magnant 2012

Theorem

There exist k_0 , t_0 such that if $\delta(G) \ge kt$, where $k \ge k_0$, $t \ge t_0$ and $n \ge n_0(k, t)$, then G contains t disjoint cycles with at least

$$f(k) = \frac{(k+1)(k-2)}{2}$$

chords.

- Bounds for k_0 and t_0 show a tradeoff.
- Bounds for n_0 quite large.

• minimum degree $\leq k-1$,

- minimum degree $\leq k 1$,
- k-1 degenerate,

- minimum degree $\leq k-1$,
- k-1 degenerate,
- At least two vertices of degree $\leq k 1$.

- minimum degree $\leq k-1$,
- k-1 degenerate,
- At least two vertices of degree $\leq k-1$.
- Problem: Not very useful!

Let
$$d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$$
.

- If G has average degree at least 2d, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$ -chorded cycle.
- There exist graphs with average degree 2d o(1) with no f(k)-chorded cycle.

Let
$$d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$$
.

- If G has average degree at least 2d, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$ -chorded cycle.
- There exist graphs with average degree 2d o(1) with no f(k)-chorded cycle.

Let
$$d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$$
.

- If G has average degree at least 2d, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$ -chorded cycle.
- There exist graphs with average degree 2d o(1) with no f(k)-chorded cycle.
- Sharpness: Bipartite graph $K_{d,n}$.

Let
$$d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$$
.

- If G has average degree at least 2d, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$ -chorded cycle.
- There exist graphs with average degree 2d o(1) with no f(k)-chorded cycle.
- Sharpness: Bipartite graph $K_{d,n}$.
- k = 2, 3, 4: Trivial induction removing vertex of lowest degree if $< \delta$.

Let
$$d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$$
.

- If G has average degree at least 2d, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$ -chorded cycle.
- There exist graphs with average degree 2d o(1) with no f(k)-chorded cycle.
- Sharpness: Bipartite graph $K_{d,n}$.
- k = 2, 3, 4: Trivial induction removing vertex of lowest degree if $< \delta$.
- $k \ge 5$ much tougher induction.

Bondy's Meta-Conjecture

Conjecture

Almost any non-trivial condition on a graph which implies the graph is hamiltonian (contains a spanning cycle) also implies the graph is pancyclic (contains cycles of all possible lengths). There may be a simple family of exceptional graphs (including small order exceptions).

Extending the meta-conjecture

With M. Cream and K. Hirohata we extended Bondy's meta-conjecture.

Definition

We call a graph chorded pancyclic is it contains a chorded cycle of all possible lengths from 4 to the order of the graph.

Conjecture

Almost any non-trivial condition on a graph which implies the graph is hamiltonian (contains a spanning cycle) also implies the graph is chorded pancyclic (contains cycles of all possible lengths). There may be a simple family of exceptional graphs (including small order exceptions).

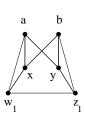
Evidence

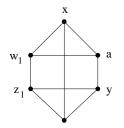
Theorem

(Bondy, 1971) If G is a graph of order $n \ge 3$ with $\sigma_2(G) \ge n$, then G is pancyclic or $G = K_{n/2,n/2}$.

Theorem

Let G be a graph of order $n \ge 4$. If $\sigma_2(G) \ge n$, then G is chorded pancyclic, $G = K_{n/2, n/2}$, or $G = G_6$.





b Two drawing of G_6 which has no chorded 4-cycles.

Are there many short chorded cycles?

- Are there many short chorded cycles?
- Can we make a set of edges chords?

- Are there many short chorded cycles?
- Can we make a set of edges chords?
- Can we place *k* vertices on *k* vertex disjoint chorded cycles?

- Are there many short chorded cycles?
- Can we make a set of edges chords?
- Can we place k vertices on k vertex disjoint chorded cycles?
- Can we place k indep. edges on k vertex disjoint chorded cycles?

- Are there many short chorded cycles?
- Can we make a set of edges chords?
- Can we place k vertices on k vertex disjoint chorded cycles?
- Can we place *k* indep. edges on *k* vertex disjoint chorded cycles?
- Can we place *k*-path linear forest on *k* disjoint chorded cycles?

- Are there many short chorded cycles?
- Can we make a set of edges chords?
- Can we place k vertices on k vertex disjoint chorded cycles?
- Can we place k indep. edges on k vertex disjoint chorded cycles?
- Can we place *k*-path linear forest on *k* disjoint chorded cycles?
- Can we control the order of the chorded cycles?

- Are there many short chorded cycles?
- Can we make a set of edges chords?
- Can we place k vertices on k vertex disjoint chorded cycles?
- Can we place k indep. edges on k vertex disjoint chorded cycles?
- Can we place *k*-path linear forest on *k* disjoint chorded cycles?
- Can we control the order of the chorded cycles?
- Can we expand our chorded cycle system to span V(G)?

Question

Can we make many short chorded cycles?

with Chen, Hirohata, Ota and Song

Theorem

Let k be a natural number. Then there exists a positive integer n_k such that if G is a graph with $\delta(G) \geq 3k + 8$ and order at least n_k , then G contains k vertex disjoint chorded cycles of the same length.

Theorem

Let G be a multigraph of order n and minimum degree at least 5. Then G contains a chorded cycle of length at most $c_0 \log_2 n$, where $30 \le c_0 \le 300$ is a constant.

Specifing certain edges to be chords

Question

Can we make an independent set of k edges the chords of k vertex disjoint cycles?

work with M. Cream, R. Faudree, K. Hirohata

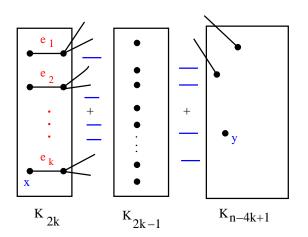
Question

Can we make an independent set of k edges chords of k vertex disjoint cycles?

Theorem

Let $k \geq 1$ be an integer and G be a graph of order $n \geq 14k$. If $\sigma_2(G) \geq n + 3k - 2$, then for any k independent edges e_1, e_2, \ldots, e_k of G, the graph G contains k vertex disjoint cycles C_1, C_2, \ldots, C_k such that e_i is a chord of C_i for all $1 \leq i \leq k$. Furthermore, $4 \leq |V(C_i)| \leq 5$ for each i.

Sharpness Example



Question- Placing vertices on chorded cycles

Question

When can we distribute k vertices on k disjoint chorded cycles?

Placing vertices on chorded cycles

[with M. Cream, R. Faudree and K. Hirohata]

Theorem

Let $k \geq 1$ be an integer and let G be a graph of order $n \geq 16k-12$. If $\delta(G) \geq n/2$ then for any set of k vertices $\{v_1, v_2, \ldots, v_k\}$ there exists a collection of k vertex disjoint chorded cycles $\{C_1, \ldots, C_k\}$ such that $v_i \in V(C_i)$ and $|V(C_i)| \leq 6$ for each $i = 1, 2, \ldots, k$.

Placing Edges on Chorded Cycles

[with M. Cream, R. Faudree and K. Hirohata]

Theorem

Let G be a graph of order $n \ge 18k - 2$ and let e_1, e_2, \dots, e_k be a set of k independent edges in G. If

$$\delta(G) \geq \frac{n+2k-2}{2}$$

then there exists a system of k chorded cycles C_1, \ldots, C_k such that $e_i \in E(C_i)$ and $|V(C_i)| \le 6$ for each $i = 1, 2, \ldots, k$.

[with M. Cream, R. Faudree and K. Hirohata]

As a Corollary to the proof we obtain the fact the edges

$$e_1, e_2, \ldots, e_k$$

can be a mix of either chords or edges of the cycles (again one edge per cycle).

Further, we can show that the cycle system can also be extended to span V(G).

Doubly Chorded Cycles

[with M. Cream, R. Faudree and K. Hirohata]

Theorem

Let G be a graph of order $n \geq 22k-2$ and let e_1, \ldots, e_k be k independent edges in G. Then if

$$\delta(G) \geq \frac{n+2k-2}{2}$$

then there exists a system of k vertex disjoint doubly chorded cycles C_i, \ldots, C_k such that $e_i \in E(C_i)$ and $|V(C_i)| \leq 6$ for each $i = 1, 2, \ldots, k$.

Corollary

The above system can be extended to span V(G).

Containing Linear Forests

Fact

Given independent path $P_{r_1}, P_{r_2}, \ldots, P_{r_k}$ with each $r_i \geq 2$ let $r = \sum r_i$. Then the number of interior vertices in this path system is r - 2k.

Theorem

Let $P_{r_1}, P_{r_2}, \dots, P_{r_k}$ be a linear forest in a graph G of order 16k + r - 2 with

$$\delta(G) \ge n/2 + r - 1 - k.$$

Then there exists a system of k chorded cycles $C_1, \ldots C_k$ such that the path P_{r_i} lies on the cycle C_i and $|V(C_i)| \le r_i + 4$.

