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Let k be a number field. Let Ω denote the set of places of k and for v ∈ Ω, let

kv denote the completion of k at v. A classical theorem of Hasse-Minkowski states

that a quadratic form q over k represents zero non-trivially provided it represents

zero non-trivially over kv for all v ∈ Ω; in particular, two quadratic forms over k are

isomorphic if they are isomorphic over kv for all v ∈ Ω. Another classical theorem of

Hasse-Brauer-Noether states that two central simple algebras over k are isomorphic

if they are isomorphic over kv for all v ∈ Ω - a consequence of the injectivity of the

map Br(k) →
⊕

v∈Ω Br(kv), Br(k) denoting the Brauer group of k. These results

can be formulated as a Hasse principle for Galois cohomology.

Let k be a field, ks a separable closure of k and Γk the Galois group of ks over

k. Let G be a linear algebraic group defined over k. Let H1(k, G) = H1(Γk, G(ks))

be the first non-abelian Galois cohomology set of equivalence classes of continuous

one-cocycles Γk → G(ks) [Se4, I.§5]. This pointed set classifies isomorphism classes

of principal homogeneous spaces for G over k; a principal homogeneous space defines

the trivial class if and only if the underlying k-variety has a k-rational point. The

set H1(k, PGLn) classifies isomorphism classes of central simple algebras of degree

n over k; given a non-degenerate quadratic form q of rank n over k, H1(k, O(q))

classifies isomorphism classes of non-degenerate quadratic forms of rank n over k.

The results stated above can then be reformulated as the injectivity of the map

H1(k, G) →
∏
v∈Ω

H1(kv, G)

for G = PGLn or O(q). The injectivity is not true in general for a connected linear

algebraic group defined over k [Se4, III.§4, Th.8]. One of the main contributions of

Kneser around 1960, as pointed out by Serre, was his idea that “simply connected”

is significant for arithmetic; ‘he was surely led to that idea by the study of quadratic

forms and spinor genera’ [K1]. In [K3], Kneser poses the following conjecture.
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Conjecture Let G be a semisimple simply connected linear algebraic group defined

over a number field. Then the map

H1(k,G) →
∏

v∈Ω∞

H1(kv, G)

is injective, Ω∞ denoting the set of real places of k.

In [K2], Kneser proves that if k is a p-adic field, for a semisimple simply connected

linear algebraic group defined over k, H1(k, G) = 0. The proof for classical groups

is related to the classification of quadratic and hermitian forms over p-adic fields.

There is a classification-free proof of this theorem due to Bruhat-Tits [BT]. In view

of this theorem, the set Ω∞ in the statement of the conjecture may be replaced by

Ω. Kneser [K5] proves that surjectivity is true more generally for any connected

semisimple linear algebraic group defined over k.

If G = SLA, A a central simple algebra over k, then H1(k, SLA) ' k∗/Nrd(A∗),

Nrd : A → k denoting the reduced norm and A∗ denoting the group of units

of k. The conjecture in this case is a theorem of Hasse-Maass and Schilling :

λ ∈ k∗ is a reduced norm from A if it is positive at all real places where D is

ramified. A proof due to Eichler is contained in [K5]. For special unitary groups,

the conjecture is proved using a theorem of Landherr, which in fact is a Hasse

principle for hermitian forms over division algebras with unitary involutions. The

simplified proof of Landherr’s theorem given in [K5] was also independently obtained

by Springer. The proof of the conjecture for classical groups - groups of type An,

Bn, Cn, Dn (D4 non-trialitarian) is due to Kneser [K5]. The proof of the conjecture

for all exceptional groups other than E8 is due to Harder [H1]. While the results

of Kneser and Harder date to the mid-sixties, the case E8 was settled some twenty

years later by Chernousov [Ch]. If k is a global field of positive characteristic and

G a semisimple simply connected linear algebraic group defined over k, Harder [H3]

proves that H1(k,G) = 0.

As Kneser points out, the following are consequences of the Hasse principle

conjecture for totally imaginary number fields : (i) H1(k, G) = 0 if G is semisimple

simply connected; (ii) all anisotropic simple groups over k are of type An. Sansuc [Sa,
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Th. 4.2] studies the Hasse principle for principal homogeneous spaces for connected

linear algebraic groups over a number field and shows that the only obstruction to

Hasse principle is the Brauer-Manin obstruction attached to the Brauer group of a

smooth compactification. The proof ultimately reduces to the Hasse principle for G

semisimple simply connected. Kneser [K5] proves that if G is a semisimple connected

linear algebraic group of classical type defined over a number field and p : G̃ → G the

simply connected cover with kernel µ, the connecting map δ : H1(k, G) → H2(k, µ)

defined with respect to the exact sequence

1 → µ → G̃
p−→ G → 1

is surjective. Sansuc proves [Sa, Cor. 4.5] the surjectivity of δ for any semisimple

connected linear algebraic group defined over k; it is a bijection if G is of adjoint

type.

Borovoi [B1, Th. 7.2, 7.3] proves that a homogeneous space of a semisimple

simply connected linear algebraic group defined over a number field with character-

free connected geometric isotropy group satisfies Hasse principle for existence of a

rational point - existence of rational points over each real completion ensures the

existence of a global point. This is an extension of a classical result for smooth

affine quadrics of dimension at least 3. Borovoi uses an abelianisation of the second

non-abelian Galois cohomology set (cf. [Sp2], [FSS]) to study homogeneous spaces.

The final step is to reduce the problem to Kneser’s conjecture. He derives as a

consequence a theorem of Harder [H2] which states that the Hasse principle holds

for projective homogeneous varieties for a connected linear algebraic group defined

over a number field. In [B2] Borovoi proves that the Brauer-Manin obstruction is

the only obstruction to Hasse principle for homogeneous spaces under connected

linear algebraic groups with a connected stabiliser.

Totally imaginary number fields are examples of fields of cohomological di-

mension 2. A field k is said to have cohomological dimension (cd) at most n if

H i(k, M) = 0 for i ≥ n + 1 for all finite discrete Γk-modules M [Se4, I.§3.1]. Serre

posed in the early sixties ([Se1, §4.2],[Se4, III.§3.1]) the following conjecture, which

is a far reaching generalisation of Kneser’s conjecture.
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Conjecture II Let k be a perfect field of cohomological dimension at most 2.

Let G be a semisimple simply connected linear algebraic group defined over k. Then

H1(k, G) = 0.

Conjecture I of Serre concerns H1(k,G) = 0 for any connected linear algebraic

group G defined over a perfect field with cd(k) ≤ 1; this conjecture was settled by

Steinberg [St, Th. 11.12)].

Unlike in the arithmetic case, anisotropic groups of large rank occur in general,

in all classical types over fields of cohomological dimension 2; thus the induction

techniques from arithmetic case to reduce to lower rank groups cannot be extended

to the general case.

The first major breakthrough towards the proof of Conjecture II is due to

Merkurjev and Suslin [Su] in the early eighties for G = SLA; their theorem also

provides a converse of Conjecture II.

Theorem Let k be a perfect field. The following are equivalent

(i) cd(k) ≤ 2

(ii) For every finite extension K/k and every central simple algebra A over K, we

have Nrd(A∗) = K∗.

More than a decade later, the proof of Conjecture II for other classical groups

was given by Eva Bayer and Parimala [BP1]. The proof is via classifying her-

mitian forms over division algebra with involution by the “classical invariants” -

dimension, discriminant and the Clifford invariant. Results on the norm principle

for algebraic groups due to Merkurjev [M1] are crucial for handling the image

H1(k, µ) → H1(k, G), µ denoting the center of G. The conjecture is proved if

G is of type G2 or F4 ([Se2, §8, §9],[BP1]). If G is the split group of type F4,

H1(k, G) classifies isomorphism classes of exceptional central simple Jordan algebras

of dimension 27 over k. The proof of the conjecture in this case uses certain Galois

cohomological invariants associated to these algebras ([R], [Se2]) and Springer’s

classification of “reduced” central simple Jordan algebras [Sp1]. If G is of trialitarian

D4 type, a theorem of Garibaldi [G] states that the image of H1(k, µ) → H1(k, G)

is trivial, µ denoting the center of G. Conjecture II in this case is reduced to a

classification of trialitarian groups by their Tits algebras.
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Conjecture II has been proved in several cases under special assumptions on k

or G. Gille proves that if G is a group of exceptional type other than E8, then

H1(k, G) = 0 if G is quasi-split [Gi, Th. 4] or if index and exponent coincide

for central simple algebras of 2-primary and 3-primary exponents over all finite

field extension of k [Gi, Th. 8, 9, 10]. The proof in the arithmetic case due to

Chernousov can be adapted to show that for simple groups of type E8, H1(k,G) = 0

if cd(kab) ≤ 1, kab denoting the maximal abelian extension of k [Gi, Th. 11].

Index and exponent coincide for central simple algebras over the following classes

of fields:

(I) ([FS], [CTOP, Th. 2.1]) k is a 2-dimensional strict henselian field - quotient

field of a 2-dimensional excellent henselian local domain with residue field

algebraically closed of characteristic 0.

(II) ([dJ]) k is of transcendence degree 2 over an algebraically closed field of

characteristic 0.

It is also proved in [CTOP, §2, Th. 2.3] that if k is a 2-dimensional strict

henselian field, then cd(kab) ≤ 1, thus leading to Conjecture II for such fields.

Several arithmetic properties are satisfied by this class of fields [CTGP]. If G is

a simple group of adjoint type over k, p : G̃ → G is a simply connected covering

and µ = kernel(p), the bijectivity of the map [CTGP, Th. 2.1(a)] δ : H1(k,G) →
H2(k, µ) leads to Hasse principle for projective homogeneous varieties over k [CTGP,

Th. 5.5]. The proof is an adaption of Borovoi’s proof in the arithmetic case.

Colliot-Thélène posed the following conjecture [BP2, pp. 652] analogous to

Kneser’s conjecture for perfect fields of virtual cohomological dimension 2. A field k

is said to have virtual cohomological dimension (vcd) at most n if cd(k(
√
−1)) ≤ n.

Number fields are examples of fields of virtual cohomological dimension 2.

Conjecture HP Let k be a perfect field with vcd(F ) ≤ 2. Let G be a semisimple

simply connected linear algebraic group defined over k. Then the map

H1(k,G) →
∏

v∈Ωk

H1(kv, G)
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is injective, Ωk denoting the space of orderings of k and for v ∈ Ωk, kv denoting the

real closure of k.

Conjecture HP is settled in the affirmative for all classical groups and groups of

type G2 and F4 by Eva Bayer and Parimala [BP2]. A Hasse principle for reduced

norms analogous to the theorem of Hasse-Maass and Schilling is the first step towards

the proof of this theorem. Galois cohomological invariants in degree 3 associated

to H1(k,G) for simply connected groups G constructed by Rost ([M2]) are used in

the construction of invariants to classify hermitian forms over division algebras with

involution over fields of virtual cohomological dimension 2.
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