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Abstract.

The state of the art iterative method for solving large linear systems is the conjugate
gradient (CQG) algorithm. Theoretical convergence analysis suggests that CG converges
more rapidly than steepest descent. This paper argues that steepest descent may be
preferable to CG when solving linear systems arising from the discretization of ill-posed
problems. Specifically, it is shown that, for ill-posed problems, steepest descent has a
more stable convergence behavior than CG, which may be explained by the fact that
the so called “filter factors” for steepest descent behave much less erratically than those
for CG. Moreover, it is shown that, with proper preconditioning, the convergence rate
of steepest descent is competitive with that of CG.
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1 Introduction

We consider linear systems that arise from discretization of ill-posed problems,
(1.1) b=Ax+n,

where A is an ill-conditioned n x n matrix, whose singular values decay to zero.
The vector b and matrix A are assumed known, and the vector n, which repre-
sents perturbations and/or noise in the data, is assumed unknown. The aim is to
compute an approximation of the unknown vector, x. Following the terminology
of Hansen [7], we call such a linear system a discrete ill-posed problem.

Discrete ill-posed problems arise in applications, such as astronomy, medical
imaging, geophysical applications, and many other areas [4, 7, 11]. Because A
is ill-conditioned, and because there is noise in b, it is very difficult to compute
accurate approximations of x. To see why this is the case, suppose we naively
assume the noise is small enough to ignore, and compute Xpaive = A~ 'b. Let
A = UZVT be the singular value decomposition (SVD) of A, where U and V
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are n X n orthogonal matrices, and ¥ =diag(o1,02,...,0,), 01 > 03 > -+ > 0.
If we denote the columns of U and V' as u; and v;, respectively, then

B n uTb n .
(1.2) Xnaive = VI 1T =3 —L—v; =3 (5,- + Z—) vi,

i=1 i=1

where x = ). &v; and n = ), m;u;. From (1.2), we can make the following
observations. First, discrete ill-posed problems have the property that the sin-
gular values decay to, and cluster at 0. Thus, division by small singular values,
0, magnifies the corresponding noise components, 7;. In addition, most discrete
ill-posed problems have the additional property that the singular vectors, v;,
tend to oscillate more for smaller singular values. Thus, the naive solution is
horribly corrupted by large oscillating components. These properties of ill-posed
problems, as well as the above explanation using the SVD, are well known; see,
for example, [4, 7, 11] for more details.

A general approach to compute an accurate approximation of x can be formu-
lated as a modification of the naive solution [7]; specifically,

i ul’b
(1.3) Xfily = z;%;—iw,
=

where the filter factors, ¢;, satisfy ¢; ~ 1 for large o;, and ¢; =~ 0 for small o;.
That is, the large singular value components of the solution are reconstructed,
while the components corresponding to the small singular values are filtered out.

Different choices of filter factors lead to different methods. For example, the
truncated SVD (TSVD) solution is given by (1.3), where

1 ifi<k
s={ s

ifi >k
If £t = diag(s-,..., 2,0,...,0), then the TSVD solution can be written as
(1.4) Xgva = USTVT .

The spectral filter solution (1.3) is also referred to as a regularization method.
The truncation index, k, is called a regularization parameter, whose specific value
is problem dependent. It is nontrivial to choose an “optimal” regularization pa-
rameter, though good values can be estimated using methods such as generalized
cross validation, the L-curve, or some other scheme [4, 7, 11].

There are many other regularization methods besides TSVD. In this paper we
focus on iterative regularization methods, which may be appropriate for large
scale problems. We describe the basic idea behind iterative regularization in
Section 2, and, in particular, discuss the conjugate gradient (CG) and steepest
descent methods. We compare the filter factors for these methods, and investi-
gate how their behavior is related to the convergence history of the algorithms.
In Section 3 we see how this behavior carries over to preconditioned versions
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of the algorithms. We find that, with proper preconditioning, the convergence
rate of steepest descent is competitive with that of CG, and, moreover, that
steepest descent has a more stable convergence behavior than CG. In Section 4
we compare the two preconditioned algorithms on a realistic large scale example
from image restoration. Concluding remarks are given in Section 5.

2 TIterative Regularization

Tterative methods are used to solve large linear systems, Ax = b. Ultimately,
the iteration converges to Xpaive = A~ 'b, which, for ill-posed problems, is a
poor approximation of the true solution, x. Fortunately, schemes such as CG
and steepest descent belong to a class of iterative regularization methods [4, 11].
Such iterative algorithms exhibit a semi-convergence behavior with respect to
the relative error, ||xx — x||/||x||, where x; is the approximate solution at the
kth iteration. That is, the relative error begins to decrease and, after some
“optimal” iteration, begins to rise. By stopping the iteration when the error is
low, we obtain a good (regularized) approximation of the solution. The iteration
index plays the role of the regularization parameter. As with other regularization
methods, it is a nontrivial matter to choose an “optimal” stopping iteration.

Because it converges more rapidly, CG is usually considered superior to steep-
est descent. For ill-posed problems, though, one should not only consider con-
vergence speed, but also regularization properties of the methods. In this section
we compare the filter factors and convergence behavior of CG and steepest de-
scent. Because our problems are usually not symmetric, we use implementations
applied (implicitly) to the normal equations, AT Ax = ATb. In particular, we
consider the conjugate gradient method for least squares problems (CGLS) [1],
and the residual norm steepest descent method (RNSD) [9].

To determine the filter factors for RNSD, we first need to recall that, given an
initial guess, xq, the RNSD iteration is given by xx+1 = = + apATr), | where
r;, = b — Axy. Substituting ry into xx41, we have

(2.1) xpi1 = aATb + (I — aAT A)x; .

Assuming, without loss of generality, xo = 0, and using (2.1), we see that
(2.2) Xpp1 = Pr(ATA)ATD

where the polynomial P}, is defined as

(2.3) Pr(N) = Po_i(N) + o (1 — ATAP._1 (), P_1(\) =
Substituting A = USV7 into (2.2), we obtain

ulb

o;

Vi

n
(2.4) Xer1 = »_ 07 Pr(07)
i=1

Comparing (2.4) with (1.3), we see that the RNSD filter factors are o7 Py (0?).
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Filter factors for CGLS can be found in a similar way; see [10, 7]. Specifically,
they are 0? Ry (0?) where the polynomial Ry is defined as

(2.5) Ry(A) = (1 —apA + %> Ri—1(N) — akﬂk_le—z + oy,
a1 Qf—1

where R_1(\) = 0 and Ry(\) = ap.

Because P ()\) and Ry () are defined recursively, it is difficult to see how the
filter factors for RNSD and CGLS compare. We can, however, make such a
comparison experimentally for small scale problems. Consider, for example, the
test problem heat from Hansen’s Regularization Tools [6]. We used this example
to construct b = Ax+n, where A is a 64 x 64 matrix and n is a vector containing
rz|1|n(?|om entries, normally distributed with mean 0, variance 1, and scaled so that

n
14|

In Figure 2.1, we show the filter factors for iterations k = 1,2,4 and 23. Recall
that we would like the filter factors to start off at 1, and eventually decay to
0. We observe that at the 4th iteration, the filter factors for CGLS begin to
oscillate, and this oscillation increases as the iterations proceed (as can be seen
when k = 23). This property of the CGLS filter factors was observed by Vogel
[10]. In comparison, the filter factors for RNSD behave much more stably.

=0.001. The condition number of A is approximately 7.03 x 1022,
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(a) CGLS filter factors. (b) RNSD filter factors.

Figure 2.1: Filter factors for a few selected iterations of CGLS and RNSD.

The iterative regularization properties of CGLS and RNSD are seen in Figure
2.2. Note that CGLS converges much more rapidly than RNSD, and the semi-
convergence behavior of CGLS is much more pronounced than it is for RNSD.
This suggests that if we do not have a good stopping criteria for CGLS, then we
are at high risk of computing a poor solution. However, RNSD converges too
slowly to be considered a practical method for this problem.
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Figure 2.2: Convergence history of CGLS and RNSD.

We have done similar experiments with several other examples, including those
from [6], but omit the results due to space restrictions. We remark, however,
that we obtained similar results for each problem.

Though one would be tempted to dismiss RNSD as a viable approach, and
instead search for good stopping criteria for CGLS, we compare the methods
further when preconditioning is used to accelerate convergence.

3 Preconditioning

Preconditioning is used with iterative methods to accelerate the rate of con-
vergence; that is, to reduce the number of iterations needed to compute a good
approximation of the solution. The standard approach to preconditioning, when
solving Ax = b, is to construct a matrix, P, such that the singular values of
P~'A are clustered around 1. More singular values clustered around one, as
well as tighter clusters, implies faster convergence.

At each iteration of a preconditioned method, a linear system of the form
Pz = w is solved. If P is a good approximation to a severely ill-conditioned
A, then P will also be very ill-conditioned, and thus inaccuracies in the data
will be highly amplified when Pz = w is solved in the first iteration. Further
iterations do not improve the situation, and, in general, there is no hope of
recovering a good approximation of the solution. Thus, the standard approach
to preconditioning cannot be used when solving ill-posed problems.

An approach for preconditioning ill-posed problems, first proposed in [5], is
to construct a matrix P that clusters the large singular values around one, but
leaves the small singular values alone. We can argue why this approach can be
effective by constructing an “ideal” preconditioner as follows. Let A = ULVT
be the SVD of A, where ¥ =diag(o1,09,...,0,). Define Py as

(31) P, = UEkVT )

where ¥, =diag(o1,...,0%,1,...,1), and k is the truncation index for the TSVD
solution (1.4). Then the preconditioned system has the form P~1A = VAVT
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where A =diag(1,...,1,0%+1,...,0n). Thus the large singular values are per-
fectly clustered at one, and are well separated from the small singular values.
Regularization properties of the iterative methods imply that it takes only one
iteration to compute a regularized solution.

To illustrate the effectiveness of this “ideal” preconditioner, and to study
the behavior of the filter factors for the preconditioned algorithms PCGLS and
PRNSD, we again consider the heat example. The preconditioner is given by
(3.1), where the truncation index, k, was chosen to

(3.2) min |viuTs — x|,

where x is the true solution. We admit that it is unrealistic to construct such an
ideal preconditioner in practice, but the purpose of this section is to investigate
the behavior of PCGLS and PRNSD under ideal situations. We provide a more
realistic example in the next section.

The filter factors for PCGLS and PRNSD at iterations £ = 1,2,4, and 5 are
shown in Figure 3.1. Notice that the filter factors for the early iterations of
both methods behave like they should for a spectral filtering scheme, starting
at 1, and eventually decaying to 0. But at the 5th iteration, the PCGLS filter
factors begin to oscillate, and this oscillation increases as the iteration proceeds.
However, the filter factors for PRNSD remain virtually unchanged for iterations
2, 4, and 5, and this situation continues for subsequent iterations.
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(a) PCGLS filter factors. (b) PRNSD filter factors.

Figure 3.1: Filter factors for a few selected iterations of PCGLS and PRNSD.

In Figure 3.2, we show the convergence history of PCGLS and PRNSD, and
observe that the convergence rate of PRNSD is competitive with that of PCGLS.
Moreover, the PRNSD relative error does not increase drastically like it does for
PCGLS. This is an important point because one of the most difficult issues for
iterative regularization methods is determining an optimal stopping point. With
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PCGLS, there is a much higher risk of computing a poor solution when using an
imperfect stopping rule. As with the unpreconditioned case, we obtained similar
results on several other examples.

1 T T T T T T T T T T
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I
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0 5 10 15 2 % 0 0 5 10 15 2 % 30
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(a) CGLS/PCGLS convergence. (b) RNSD/PRNSD convergence.

Figure 3.2: Convergence history of PCGLS and PRNSD.

The observations in this section have been made under ideal conditions. For a
realistic, large scale problem, it is not possible to compute an SVD to use as an
ideal preconditioner. But, as illustrated next, in some applications, it is possible
to use an approximate SVD, or spectral decomposition.

4 An Application to Image Restoration

There are many applications where scientists use images to analyze experi-
ments, study structures, and record unique events. It may be difficult, or im-
possible, to repeat the process by which the image was obtained. Unfortunately,
due to environmental effects and/or technological problems, the images are rarely
perfect, and in some cases may be substantially distorted by blurring and noise.
Image restoration is the process of recovering a good image from the degraded
one. In many cases the image restoration problem can be accurately modeled
as a discrete ill-posed problem (1.1), where b represents the observed, blurred
and noisy, image, x represents an ideal, undistorted image, and A models the
blurring phenomenon.

The matrices that arise in image restoration are highly structured, involving
circulant, Toeplitz and Hankel matrices. For an n x n image, A is n? x n2.
Matrix vector multiplications with A can be done using O(n?logn) arithmetic
operations using fast Fourier transforms (FFT). Preconditioning such structured
matrices has been thoroughly investigated in the literature; see the survey paper
[2] and the references therein. Moreover, many of these approaches have been
applied to image restoration [5].

Although a variety of approaches to preconditioning have been proposed, the
most popular is to use circulant approximations. The approximation we use is

min ||A — P||p
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where, for two dimensional image restoration problems, the minimization is done
over all matrices that are block circulant with circulant blocks (BCCB). It is very
inexpensive to construct these preconditioners; see [2] for more details.

An important and useful property of BCCB matrices is that they can be di-
agonalized efficiently using FFTs. That is, every BCCB matrix can be written
as P = F*AF, where A is a diagonal matrix containing the eigenvalues of P,
F is the unitary (two dimensional) discrete Fourier transform matrix, and F* is
the complex conjugate transpose of F [3]. Thus, a BCCB approximation of A
provides an approximate spectral decomposition, which can be used in an analo-
gous manner as outlined in Section 3 for the ideal SVD preconditioner. That is,
we determine a reasonable truncation index, and construct the preconditioner

P =F*"AF.

In a realistic problem, we cannot use (3.2) to determine the truncation index.
Instead, we must use a parameter-choice method, such as the discrepancy princi-
pal, generalized cross validation (GCV), L-curve, or some other method [4, 7, 11].
We use GCV for the results reported in this section.

We remark that for computational purposes, the matrix F does not need to be
constructed explicitly, since multiplying a vector by F is equivalent to applying
an FFT to that vector, and multiplication by F* is equivalent to applying an
inverse FFT. Moreover, the eigenvalues of the BCCB matrix can be obtained
by computing an FEFT of its first column [3]. For an n x n image (thus an
n? x n? matrix A), it requires only O(n?logn) arithmetic operations to compute
an FFT.

It is not the intention of this section to propose a new preconditioner, but
instead to see how PCGLS and PRNSD perform on a realistic problem, using
a well established approach for preconditioning. For large scale problems, we
cannot compute the filter factors, since it requires knowledge of the singular
values of the preconditioned system, P~'A. However, if the true solution is
known, we can monitor and compare the convergence history of the methods.

The image restoration test problem! we use was developed at the US Air
Force Phillips Laboratory, Lasers and Imaging Directorate, Kirtland Air Force
Base, New Mexico. The image is a computer simulation of a field experiment
showing a satellite as taken from a ground based telescope. The true and blurred
images have 256 x 256 pixels, and are shown in Figure 4.1. The matrix A is an
ill-conditioned 65, 536 x 65,536 block Toeplitz matrix with Toeplitz blocks.

This data has been widely used in the literature for testing image restoration
algorithms. As with the small scale examples in [6], such as heat, this data has
become a standard example on which to test algorithms. Our numerical tests
were done on a Sun Ultra 80, using Matlab 6.1. Efficient implementations were
done using RestoreTools, a Matlab package for image restoration [8].

Figure 4.2 shows the relative errors for each of the algorithms, with and with-
out preconditioning. We emphasize that the preconditioner was constructed as

I This data is included in the image restoration package, Restore Tools, which can be obtained
from http://www.mathcs.emory.edu/~nagy/RestoreTools. Examples showing how to use the
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(a) True image. (b) Blurred image.

Figure 4.1: Satellite image data.
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(a) CGLS/PCGLS convergence. (b) RNSD/PRNSD convergence.

Figure 4.2: Convergence history of the methods, using the satellite image data.

if we did not know the true solution, using the GCV method to choose the trun-
cation index (for an explanation on how this is done, see [8, Example 4.1]), thus
simulating how the algorithms perform on a large scale, realistic problem. We
see that the convergence behavior is similar to what was observed in Section 3.
Figure 4.3 shows the PCGLS and PRNSD restorations at the 10th iteration.

5 Concluding Remarks

Without preconditioning, the very slow convergence rate of steepest descent
makes it impractical to use for large scale linear systems. However, we have
shown that with proper preconditioning, steepest descent may be preferable to
the conjugate gradient method when solving discrete ill-posed problems. Not
only is the convergence rate (to a good solution) competitive, but the semi-
convergence behavior (i.e., increase in relative error) of steepest descent may be
preferable for applications where it is difficult to determine adequate stopping
criteria. Although we have shown that the semi-convergence behavior of the

data in iterative methods may be found in an associated manuscript [8].
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(a) PCGLS restoration. (b) PRNSD restoration.

Figure 4.3: Restorations computed using PCGLS and PRNSD at the 10th iter-
ation.

algorithms seems to be related to the filter factors, more work is needed to
establish a precise relationship. This is a subject of our continuing research.

REFERENCES

1. A. Bjorck. Numerical Methods for Least Squares Problems. STAM, Philadel-
phia, PA, 1996.

2. R. H. Chan and M. K. Ng. Conjugate gradient methods for Toeplitz systems.
SIAM Review, 38:427-482, 1996.

3. P. J. Davis. Clirculant Matrices. Wiley, New York, 1979.

4. H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Prob-
lems. Kluwer Academic Publishers, Dordrecht, 2000.

5. M. Hanke, J. G. Nagy, and R. J. Plemmons. Preconditioned iterative reg-
ularization. In L. Reichel, A. Ruttan, and R. S. Varga, editors, Numerical
Linear Algebra, pages 141-163. de Gruyter, Berlin, 1993.

6. P. C. Hansen. Regularization tools: A Matlab package for the analysis and
solution of discrete ill-posed problems. Numerical Algorithms, 6:1-35, 1994.

7. P. C. Hansen. Rank-deficient and discrete ill-posed problems. SIAM,
Philadelphia, PA, 1997.

8 K. P. Lee, J. G. Nagy, and L. Perrone. Iterative meth-
ods for image restoration: A Matlab object oriented approach.
http://www.mathcs.emory.edu/~nagy/Restore Tools, 2002.

9. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing
Company, Boston, 1996.

10. C. R. Vogel. Solving ill-conditioned linear systems using the conjugate gradi-
ent method. Technical report, Department of Mathematical Sciences, Mon-
tana State University, 1987.

11. C. R. Vogel. Computational Methods for InverseProblems. SIAM, Philadel-
phia, PA, 2002.



