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Abstract. In this paper we generalize a reliable and efficient algorithm, developed in the context of least-square
(LS) methods, to estimate the image corresponding to a given object when a set of observed images are available
with different and spatially invariant PSFs, to deal with the case of spatially variant PSFs. Noise is assumed
additive and Gaussian. The proposed algorithm allows the use of the classical single-image deblurring techniques
for the simultaneous deblurring of the observed images, with obvious advantages both in computational cost
and ease of implementation. Its performance and limitations are analyzed through numerical simulations. In an
appendix we also present a novel, computationally efficient, deblurring algorithm that is based on a Singular Value
Decomposition (SVD) approximation of the variant PSF, and which is usable with any standard space-invariant
direct deblurring algorithm.
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1. Introduction

In a recent paper Vio et al. (2003c) have presented an efficient solution for the problems of composition and simulta-
neous deblurring of a set of observed images (of a fixed object), where each observed image is degraded by a different
spatially invariant point spread function (PSF). An important field where this methodology can be exploited are the
restoration of images obtained by the Large Binocular Telescope (LBT). This instrument consists of two 8.4m mirrors
on a common mount with a spacing of 14.4m between the centers (Angel et al. 1998). For a given orientation of the
telescope, the diffraction-limited resolution along the center-to-center baseline is equivalent to that of a 22.8m mirror,
while the resolution along the perpendicular direction is that of a single 8m mirror. A possible way to obtain an image
with an improved and uniform spatial resolution is to simultaneously deconvolve the images taken with different ori-
entations of the telescope. Another example is the multi-frequency observations of the Cosmic Microwave Background
(CMB) obtained from satellites such as PLANCK. In fact, although some other physical components are present at
the microwave frequencies, the images taken at high galactic latitudes are expected to be almost entirely dominated
by the CMB contribution in a large range of observing frequencies (e.g., see Stolyarov et al. 2002). Since the PSFs
corresponding to the images obtained at the various frequencies can be quite dissimilar, simultaneous deblurring can
be useful for improving the extraction of CMB information from the data.

However, especially for LBT, because of the different corrections of the adaptive optics across the image domain,
the PSF is expected to be space-variant (Bertero & Boccacci 2000). In this situation, the computational advantages
provided by the methodology of Vio et al. (2003c) cannot be exploited. Here we extend such a methodology for dealing
also with this more general case.

In Sect. 2 we formalize the problem and propose an efficient solution in Sect. 3. In Sect. 4 its performance is studied
through numerical experiments. Finally, in Sect. 6 we close with final comments and conclusions.
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2. Formalization of the problem

Suppose one has p observed images, g;(z,y), j = 1,2,...,p of a fixed two-dimensional object fo(z,y), each of which is
degraded by a different blurring operator. In case of a generic blurring operator, g;(z,y) be modeled as

gi(z,y) = / Kj(z,y,z'y") fo(z',y")dz'dy’, (1)

where, for each j, K;(z,y) is a (possibly) space variant PSF.
In practice, the experimental images are discrete N x N arrays of pixels (for simplicity, we assume square images)
contaminated by noise. Therefore model (1) has to be recast in the form

N-1
gj(m,n) = Z Kij(m,n,m',n") fo(m',n') + w;(m,n), (2)

m' ,n'=0

where w;(m,n) is additive white noise. For the moment, we assume constant standard deviations across images:
Ow; = Oy

The image restoration problem of interest is to find an estimate f(m,n) of fo(m,n) given the observed images
{gj(m,n)} and the known PSFs {K;(m,n,m',n')}.

In case of a spatially invariant PSF, i.e., model (2) can be simplified in the form

N-1
gj(m’n) = Z Kj (m - ml,n - nl)fO(mI:nl) + w; (man)a (3)
m',n'=0
or equivalently X .
g](m7n) = Kj(man)f()(man) +wj(m7n)7 (4)

where symbol “*” denotes the Discrete Fourier Transform (DFT). In the context of a LS approach, Vio et al. (2003c)
have shown that a reliable and computationally efficient solution to this problem can be obtained on the basis of a
weighted composition, say ¢(m,n) (called the mean image), of the images g;(m,n)

830 (M) + 32 [ (m,n) [ K3, (m,m)]g;(m, )

{(m,n) = = VI 5 : (5)
L+ 375250 1K (m, ) [2 /| Ko (m, m) 2]
where K, (m,n), called the mean PSF, is given by
Kj,(m,n) = max[Ky (m,n), Ka(m,n),. .., K,(m,n)]. (6)

Here, the operator max[ | extracts the element in the array with the largest modulus, and jo is the value of the
corresponding index j. This composition is optimal in LS sense since gc (m,n) represents the DFT of “observed”
image with the PSF whose energy distribution is maximally concentrated in the spatial domain compatibly with the
original {K;(m,n)}. In certain applications {(m,n) could be of interest by itself. It allows us to transform the multi-
image deblurring problem into a classical single-image deblurring problem with a single PSF given by K jo(m,n). The
computational benefits are obvious.

Unfortunately, in case of spatially variant PSFs, this approach cannot be used because model (2) cannot be
represented in the Fourier domain.

3. A simple but efficient solution

Since the DFT is a linear operator, it is not difficult to see that if

8(m,n) = DFT [s(m,n)], (7)
then N
3(m,n) = DFT ZD (m,n)s( mn] ZDFT[D (m,n)s mn]—Zszmn (8)

Here, D;(m,n) are N x N matrices with entries in the range [0, 1] such that ). D;(m, n) = 1 for each value of (m,n),
and §;(m,n) = DFT[D;(m, n)s(m,n)]. With this equation, it is possible to rewrite Eq. (5) in the form

(9)

oo R G (1) + 35, (K (m,m) K5, (m, )i (m, )
clmm) ; 1+ 3 [ (m,n) 2| Ky (m,m) 2] '
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Of course, this equation is of no practical interest. However, if the matrices D;(m,n) have non-zero entries only in
correspondence to square or rectangular regions of the image domain, and each of such regions has its own PSF, then
Eq. (9) can be written in the form

R & Gijo (M) + 35, Ky (mym) [ Ky (m,m)]gi (mom) I
) = S g omo oo, 2 Gmm)

In practice, this equation may be assumed to provide f (m,n) in the case of a spatially variant PSF when the blur is
approximately spatially invariant in the image domain fixed by the non-zero entries of D;(m,n).

The simplest form for D;(m,n) is obtained through piecewise constant interpolation, when the permitted values
are either 0 or 1. In this case, the non-zero entries constitute a partitioning of the image domain. This means that
for a given coordinate, say (mg,ng), (;(mo,no) contains only the contribution of the component (;(mg,ng) with non-
zero entries in that subregion. Although in many situations such a choice provides satisfactory results, sometimes the
resulting ((m,n) suffers blocking artifacts that are problematic for the deblurring operation. A more sophisticated
alternative, able to avoid this kind of problem, is based on a linear interpolation approach (see Nagy & O’Leary 1998).
The basic idea is simpler to understand in the one-dimensional case.

If a one-dimensional domain is partitioned in a number of N subregions with dimension N, a useful set of
overlapping masks, with dimension 2 x Ny, is shown in Fig. 1. In fact, since they go smoothly to zero, the boundary
artifacts that affect each of the §;(m,n) are strongly weakened. Moreover, the overlap works in such a way to further
reduce these effects. The only exception is represented by the regions on the border of the domain.

In the two-dimensional case the argument is similar although made a bit more difficult by the larger number of
masks that overlap at a give point of the image domain, and by the fact that there are two different situations for the
subregions on the border of the frame. However, it is not difficult to see that, independently from the partitioning of
the image domain, the resulting masks must have fixed values at the points marked in Fig. 1. Computationally, they
can be obtained by interpolating these points through a bilinear interpolation (Press et al. 1992).

(10)

4. Some numerical experiments

We present results of some numerical experiments to show the reliability and the good performance of the methodology
presented above. For each experiment we use a set of eight images, sized 400 x 400 pixels. Fig. 2 shows the spatial
pattern of the variation of the PSF across the first image. The PSFs of the remaining images are obtained by rotating
this figure by 22.5°,45°,67.5°,90°,112.5°,135°,157.5° degrees, respectively. The PSFs are bidimensional Gaussian
with dispersion along the major axis set to twelve pixels, and to four pixels along the minor axis. The non-stationary
pattern of the PSF has been deliberately chosen quite peculiar in order to test the capabilities of the algorithm in
extreme situations.

Figs. 3-4 show the deblurring results for a set of 169 identical point-like objects uniformly distributed across the
image. Noise is additive and Gaussian with a standard deviation of 2% of the maximum value of the blurred images.
We have chosen these particular examples since, being the sources of non-smooth functions, deblurring is a difficult
problem. The image (;(m,n) has been calculated by partitioning the observed images in 25 square subregions (i.e.,
Np = 25), and by using piecewise constant interpolation for D;(m,n). Two deblurring methods have been used. The
first is a sectioning iterative method based on a modified residual norm steepest descent method (MRNSD) that can
be used to enforce non-negativity of the solution (Nagy & O’Leary 1997, 1998), whereas the second is a novel direct
method based on a Singular Value Decomposition (SVD) approximation of the variant PSF (appendix A provides a
short description) coupled with a Tikhonov technique that is computationally very fast. For comparison, the deblurring
of the first image of the set (that with the PSF shown in Fig. 2) is also presented. In every case the improvement due
to the use of the eight images is evident. The superiority of the results provided by the MRNSD approach is due to
the fact that the Tikhonov method does not enforce a non-negativity constraint on the solution.

Although the use of piecewise constant interpolation for D;(m,n) can provide reasonable results, very often the use
of the linearly interpolated version is able to remarkably improve them. Figs. 5-7 show the results of an experiment,
carried out under the same condition of the previous one, that confirms the superiority of the interpolated method
(here N, = 80).

In various situations the choice of the linearly interpolation mask constitutes a necessity. In fact, when the constant
interpolation mask is applied to the object shown in Fig. 8 (NB. here noise is additive and Gaussian with standard
deviation of 2% the standard deviation of the dispersion of the blurred images), the results are not so good since
fi (m,n) contains blocking artifacts that later are magnified by the deblurring operation. Consequently, the use of
the linearly interpolated mask becomes necessary. In any case, although this approach produces better results, some
problems still remain in form of fringes that contaminate (;(m,n). This is linked to edge effects because the original
image contains significant features close to its boundaries. The situation is made more troublesome by the fact that
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the masks D;(m,n) overlap, thus causing a propagation of artifacts to the central regions of {;(m,n). For this reason,
as explained in Vio et al. (2003c), before the calculation of (;(m,n), all the images g;j(m,n) should be windowed
through the matrix
025 xax B, 0 <m,n < Ny;
h(m,n) =< 025 xax B, N — Ny, <m,n < Nj; (11)
1 otherwise.

Fig. 9 shows the results obtained after this operation with Ny = 80 and N,, = 40. A border of 40 pixels was removed
by the windowing operation (see Vio et al. 2003c). Again, the improvement due to the use of the eight images is
evident. In this specific case, since the nonnegativity of the solution is not as critical as in the experiments presented
above, Tikhonov regularization is able to provide results as good as those provided by MRNSD, but at a much lower
computational cost (and thus, much more quickly).

5. Extension to images with different noise levels

So far we have assumed that the noise level is the same in all the images (0, = 0y), a condition that allows the
combination of different images to provide the most interesting results. Moreover, this requirement is often satisfied
in practice. For example, with LBT the images taken at different orientations of the telescope are expected to be
characterized by the same noise level.

The extension of the method to images with different noise levels is straightforward (Vio et al. 2003c). If the
different o, are known, one may account for the different variabilities by substituting Eq. (10) with

2 _ & éijo (mvn) + Zj.—/éjo [K;j(mvn)/]&:jo (mvn)]@l](man) _ AL
D D T N o7 37y oy - i DLCL) 12

A A~

Here, Kij(m,n) = K;j(m,n)/oy, and g;j(m,n) = §;j(m,n)/oy;. The rest of the procedure remains as described in
Sect. 3.

6. Conclusions

We have considered the problem of composition and simultaneously deblurring a set of images of a fixed object
when the corresponding PSFs are space-variant and different from each other. We have developed a method, based
on a LS approach, to efficiently transform a multi-image deblurring problem into a single-image one. This approach
provides substantial savings in computational requirements, and can be implemented using numerical algorithms
for single-image problems. These conclusions are confirmed by our numerical experiments. We have also presented a
novel, computationally efficient, direct deblurring algorithm, which is based on a Singular Value Decomposition (SVD)
approximation of the space variant PSF coupled with Tikhonov regularization.
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Fig. 1. One- and two-dimensional bases for the computation of the masks using the linear interpolation approach. In the one-
dimensional case the dashed line indicates the limits of each subregion, whereas in the two-dimensional case they indicate the
limits of the masks. Symbols x denote the center of a subregion, whereas the values of the masks at the marked points are
given by e =1, ¢ = 0.5, A = 0.25, B =0.

Appendix A: SVD approximation for spatially variant blurs
In matrix notation, model (2) can be written in the form
g=Kf+w, (A1)

where K is a large N2 x N2 ill-conditioned matrix which models the blurring phenomena, f is a vector of length
N? representing the true image, and g is a vector representing the observed image. Because the problem is ill-posed,
regularization methods are needed in order to compute an approximation of f. A useful tool in constructing and
analyzing regularization methods is the singular value decomposition (SVD). The problem is that KC is a very large
matrix, and it may not be computationally feasible to explicitly compute its SVD.

In Vio et al. (2003a,b) it has been shown that for spatially invariant blurs, spectral decompositions using fast
transforms (such as DFT and the Discrete Cosine Transform) can sometimes be used in place of the SVD, but this
depends on the PSF and the boundary condition. If it is not appropriate to use fast transforms, then another approach
we considered was to compute an approximation of the SVD from a Kronecker product factorization of K.

For spatially variant blurs, the situation is a bit more difficult. In fact, fast transform based decomposition methods
are no longer a viable approach. However, here we show that the SVD approximation based on a Kronecker product
factorization of IC can be extended to the case of space variant blurs. This work builds on ideas initially proposed by
Kamm & Nagy (1998).
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(1,1) (1,200) (1,400)
(200, 1) (200, 200) (200, 400)
(400,1) (400, 200) (400, 400 )

Fig. 2. Spatial variation of the PSF across the first image of the set used in the numerical experiments (see text). The pair
of numbers in the header of each panel indicates the coordinates of the pixels to which the displayed PSF corresponds. In
the intermediate pixels the PSFs are obtained through a linear interpolation of the displayed ones. Each PSF is given by a

two-dimensional Gaussian function with a dispersion of 12 pixels along the major axis and 4 pixels along the minor axis.

A.1. Space Invariant Blurs

Suppose the blur is spatially invariant, and let P be an image representing the PSF. Then it can be shown that if P

is decomposed as:

T
P= Z aybl
k=1

then the blurring matrix, /C, can be decomposed as

’C:iAk@)Bk-

k=1

Here the notation ® denotes Kronecker product, which is defined as

allB a12B alnB

a1 B a»pB --- a,B
AR B = . . .

anlB anzB annB

(A.2)
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Fig. 3. Original image, blurred version and blurred + noise version of the first image of the set (see text), and corresponding
mean PSF. The images are 400 x 400 pixels.

The matrices Ay and By, are defined by the vectors a; and by, respectively. In particular, if the center of the PSF is
located at pixel (4, j), then

— Zero boundary conditions imply A and By, are Toeplitz matrices:

a® . g®) b o b
Ay, = a%k) agk) and By = b%k) bgk) . (A.5)
B ag,k) bk L bg.’“)

— Similarly, for periodic boundary conditions, A and By, are circulant matrices.
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Fig. 4. Mean image {(m, n) (with D;(m,n) obtained using piecewise constant interpolation), MRNSD and Tikhonov deblurred
versions of {(m, n), and MRNSD deblurred version of the first image of the set (see text) for the image shown in Fig. 3. For the
MRNSD method the images shown are those obtained after 300 iterations of the algorithm, whereas for Tikhonov it is the one
with the smallest standard deviation of the true residuals; for the mean image and first image of the set the standard deviation
of the true residuals are, respectively, 0.028 (MRNSD) - 0.032 (Tikhonov), and 0.032.

— In the case of reflexive boundary conditions, Ay and By, are Toeplitz-plus-Hankel matrices:

k k
agk) oo a® a§+)1 cee at®
Ar=| o al® |+ ath) a® |, (A.6)
o .. g® o® a(®)

1
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Original Image
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Fig. 5. Original image, blurred version and blurred + noise version of the first image of the set (see text), and corresponding

mean PSF. The images are 400 x 400 pixels.

and
bg-k) ... bgk)

= k t . k
By, bik) . bg )|+

b8 . 0
m J

(k)
bivt

by

bix)

k
b

k - k
0,

The factorization of P can be computed using the SVD. In particular, it is possible to compute

r
P= E akukva,
k=1

(A7)

(A.8)

where oy > 09 > -+ > 0, > 0, and thus a; = /opu; and by = /o, v,. Using the SVD in this way, we obtain the
Kronecker product factorization of I given in equation (A.3) with the property that A; has more information than
A, etc., and similarly for By. In particular, in some measure, A; ® Bj is the best Kronecker product factorization of
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Mean Image Deblurred Mean Image (MRNSD)
»
X X
Deblurred Mean Image (Tikhonov) Deblurred Noisy Image n.1 (MRNSD)

X

X X

Fig. 6. Mean image ((m, n) (with D;(m,n) obtained using piecewise constant interpolation), MRNSD and Tikhonov deblurred
versions of {(m,n), and MRNSD deblurred version of the first image of the set (see text) for the image shown in Fig. 5. The
images shown are the ones with the smallest standard deviation of the true residuals; for the mean image and first image of the
set these are, respectively, 0.082 (MRNSD) - 0.088 (Tikhonov), and 0.109.

IC. This observation is important because we can exploit Kronecker product structure of matrices in our computation.
In particular, the SVD of a Kronecker product can be computed as:

AR B=(U,Z,VHoUZV]) = U, 0U) (. @) (V.2 V)T (A.9)

We do not need to explicitly form the big matrices (U, ® Uy), etc., because properties of Kronecker products allow
us to organize the computations so that we need only work with the smaller matrices U,, Uy, etc.

The above remarks suggest that an SVD approximation can be obtained by computing the SVD of A; ® B;. It is
possible, though, to incorporate some information from Ay, As,... and By, Bs,.... Following an approach outlined
in Kamm & Nagy (2000); Nagy et al. (2003), this can be done as follows:
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Mean Image

11

Deblurred Mean Image (MRNSD)

X’ X’
x’ X,

Deblurred Mean Image (Tikhonov)

Deblurred Noisy Image n.1 (MRNSD)

X

Fig. 7. Mean image ¢((m,n) (with D;(m,n) obtained using linear interpolation), MRNSD and Tikhonov deblurred versions of
¢(m,n), and MRNSD deblurred version of the first image of the set (see text) for the image shown in Fig. 5. The images shown
are the ones with the smallest standard deviation of the true residuals; for the mean image and first image of the set these are,
respectively, 0.076 (MRNSD) - 0.082 (Tikhonov) and 0.109.

— Let Ay = UQEGVZ and B; = UbEbVZ. We use U, ® U, and V, ® V, as the approximate singular vectors of
IC. The approximate singular values are obtained by computing the diagonal matrix:

2 =diag (U, @ Up) 'K(V, ® V)]

= diag

= diag

= diag

T

U, oU)T (Z(Ak ® Bk)> (Vo®Vy)

k=1

r

Y (U.@U) (A ® Bi)(Va @ V)

Lk=1 (A.10)

Y (ULTAV,)® (U{Bka)]
Lk=1

=) diag(U} A, V,) ® diag(Uj B;V)

k=1
— Thatis, K= (U, U)X(V, ® Vb)T .
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Original Image Blurred Image n.1

Blurred Image n.1 + Noise Mean PSF

10
201
30
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507
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701

20 40 60
Fig. 8. Original image, blurred version and blurred + noise version of the first image of the set (see text), and corresponding
mean PSF. The images are 400 x 400 pixels, but oly the central 360 x 360 pixels are shown (see text).

A.2. Space Variant Blurs

In the case of space variant blurs, a single PSF does not provide enough information to obtain a complete representation
of the matrix, K. In fact, one PSF provides only information about one column (or row) of XK. In order to get all N2
columns, we would need N2 PSFs, each one centered at a different pixel location. It would be extremely expensive to
to find all of these PSFs. So instead, we consider a simplifying assumption that the blur is locally spatially invariant
(this approach has been used in Boden et al. 1996; Faisal et al. 1995; Nagy & O’Leary 1998). Specifically, suppose
that the image domain is partitioned into p x ¢ rectangular regions, each with a PSF,

Py |- [Py,

Ppl - [ Ppq

Suppose the image has N x NN pixels, and define the dimensions of the ijth region as l; x m;, where Iy +--- 4+ 1, =
m1 + --- + mg = n. Further, let D;; be a {0,1} diagonal matrix representing the pixels in the ¢jth region. That is,
D;; = diag(di,...,dn), where dy = d(;_1)n++ = 1 if the point (s,?) is in the ijth region; otherwise, dy = 0. With this
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Mean Image Deblurred Mean Image (MRNSD)

Deblurred Mean Image (Tikhonov) Deblurred Noisy Image n.1 (MRNSD)

’. E

Fig. 9. Mean image ¢((m,n) (with D;(m,n) obtained using linear interpolation), MRNSD and Tikhonov deblurred versions of
¢(m,n), and MRNSD deblurred version of the first image of the set (see text) for the image shown in Fig. 8. The images shown
are the ones with the smallest standard deviation of the true residuals; for the mean image and first image of the set these are,
respectively, 0.036 (MRNSD) - 0.036 (Tikhonov), and 0.043.

notation, we represent the matrix /C as
» 4

K=Y > DK, (A.11)

i=1 j=1

where K;; is a matrix defined be the spatially invariant PSF P;;.
Now using the Kronecker product factorization for spatially invariant blurs described in the previous section, we
obtain (without loss of generality, we assume each of the PSFs has rank equal to r):

/4 q T
k=" D, ( AP @ Bg)) : (A.12)
i=1 j=1 k=1

where the matrices Asj) and B;cj ) are Toeplitz or Toeplitz-plus-Hankel matrices (depending on the boundary condi-
tions), as described in the previous section. We can simplify this expression by observing that each of the diagonal
matrices, D;; is separable, and can be written as:

D;; = ﬁi ® j)j , (A.13)
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where l
~ ~ ——
D, = diag(1,...,1,0,...,0), D, = diag(1,...,1,0,...,0)
I l2 m1 ma
N — ~ —  ——
D, = diag(0,...,0,1,...,1,0,...,0), D, = diag(0,...,0,1,...,1,0,...,0) (A.14)
Ip Mg
D, = diag(0,...,0,1,...,1), D, = diag(0,...,0,1,...,1).
Thus,
V4 q
k=>"%"Dj; <2A“’ @B“’)
i=1 j=1
P9 ~ ) ]
=" (Do Dy) (Z AP ®B§g>>
i=1 j=1 k=1
T p q
=333 (Dia? © DBY) (A.15)
k=1 i=1 j=1
r P ) L ]
- <ZD,.A§;)> ® | D;BY
k=1 =1 j=1
=) (A;® By),
k=1
where
P ~ . g ~ .
A=Y DAY and By=) D;BY. (A.16)

=1
Once Ay and By, are constructed, the approximate SVD of K is computed just as it was in the spatially invariant
case described in Section A.1.
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