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Abstract. We consider the simultaneous deblurring of a set of noisy images whose point spread functions are
different but known and spatially invariant, and the noise is Gaussian. Currently available iterative algorithms
that are typically used for this type of problem are computationally expensive, which makes their application for
very large images impractical. We present a simple extension of a classical least-squares (LS) method where the
multi-image deblurring is efficiently reduced to a computationally efficient single-image deblurring. In particular,
we show that it is possible to remarkably improve the ill-conditioning of the LS problem by means of stable
operations on the corresponding normal equations, which in turn speed up the convergence rate of the iterative
algorithms. The performance and limitations of the method are analyzed through numerical simulations. Its
connection with a column weighted least-squares approach is also considered in an appendix.
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1. Introduction

An important problem in image processing is the simul-
taneous deblurring of a set of observed images (of a fixed
object), where each image is degraded by a different spa-
tially invariant point spread function (PSF). For example,
data obtained by the Large Binocular Telescope (LBT).
This instrument consists of two 8.4m mirrors on a com-
mon mount with a spacing of 14.4m between the centers
(Angel et al. 1998). For a given orientation of the tele-
scope, the diffraction-limited resolution along the center-
to-center baseline is equivalent to that of a 22.8m mir-
ror, while the resolution along the perpendicular direc-
tion is that of a single 8m mirror. A possible way to ob-
tain an image with an improved and uniform spatial res-
olution is to simultaneously deconvolve the images taken
with different orientations of the telescope. Another ex-
ample is the multi-frequency observations of the Cosmic
Microwave Background (CMB) obtained from satellites
such as PLANCK. In fact, although some other physical
components are present at the microwave frequencies, the

Send offprint requests to: R. Vio

images taken at high galactic latitudes are expected to be
almost entirely dominated by the CMB contribution in a
large range of observing frequencies (e.g., see Stolyarov et
al. 2002). Since the PSFs corresponding to the images ob-
tained at the various frequencies can be quite dissimilar,
simultaneous deblurring can be useful for improving the
extraction of CMB information from the data.

Although a vast literature on the classical problem of
single-image deblurring is available, much less has been
published on multiple-image deblurring. An excellent gen-
eral review is Bertero & Boccacci (2000b). In addition,
Tegmark (1999) provides some material more directly re-
lated to CMB studies. But one of the more serious lim-
itations of the methods currently available is that, al-
though able to provide satisfactory results, they are quite
expensive in terms of computational requirements. Thus,
these methods may be quite difficult to use for the very
large images (~ 10%® — 10® pixels) expected from LBT
and PLANCK observations. It is clear that more efficient
methods must be developed; the aim of this paper is to
provide one such approach.
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In Sect. 2 we formalize the problem and propose an ef-
ficient solution in Sect. 3. Some of its possible limitations
are considered in Sect. 4. In Sect. 5 we study its perfor-
mance through numerical experiments, and also compare
it to that of other methods currently available in the lit-
erature. Finally, Sect. 7 closes with some final comments
and conclusions.

2. Formalization of the problem

Suppose one has p observed images, g;(z,y), j =
1,2,...,p, of a fixed two-dimensional object fo(z,y), each
of which is degraded by a different spatially invariant blur-
ring operator. That is,

gj(z,y) = // Kj(x — ',y —y') fo(a',y")da'dy', (1)

where, for each j, K;(z,y) is a space invariant PSF.

The image restoration problem of interest is to find
an estimate f(z,y) of fo(z,y) given the observed images
{9;(z,y)} and the known PSFs {K;(z,y)}.

In practice, the experimental images are discrete N x NV
arrays of pixels (for simplicity, we assume square images)
contaminated by noise. Therefore model (1) has to be re-
cast in the form

N—1

gj (man) = Z

m',n'=0

Kj(m_ml7 n_nl)fO(mla nl)+w] (m7 n)7

(2)
where w;(m,n) is additive Gaussian white noise. For the
moment, we assume constant standard deviations across
images: oy; = 0y-

If the central peak (i.e., support) of each PSF is much
smaller than the image, and if the object does not have
structures near the image boundaries, then the convolu-
tion product in Eq. (2) can be well approximated by cyclic
convolution. As is well known, such an approximation is
quite useful since it permits rewriting Eq. (2) as

gj(man) = Kj(man)fo(man) + UA}]' (man)a (3)

where the symbol “ ~ 7 denotes the Discrete Fourier
Transform (DFT).

One approach to compute an estimate of fy is to pose
the image restoration problem as a least-squares (LS)
problem, which is equivalent to a maximum likelihood ap-
proach in the case of white Gaussian noise. In order to
outline the LS approach, it is helpful to use matrix-vector
notation: Eq. (2) can be rewritten as

9, =A;fo+wj, (4)

where the arrays g, f, and w; are obtained by column
stacking g;(m, n), fo(m,n), and w;(m,n), respectively. A;
is the block-circulant matrix defined by cyclic convolution
with the jth PSF. The LS estimate f can then be ex-
pressed in the form:

P
f=argmin ) | A;f - g, ()

i=1

It is not difficult to see that f is the solution of the normal
equations

p p
D ATAf=) Ajg;. (6)
i=1 i=1

where Af denotes the transpose of the block-circulant ma-
trix Aj. The DFT of both sides of Eq. (6) provides

Fom,n) STIE (m, )P = 3 K3 (m,n);(m,n) = d(m, n),

j=1 7j=1

(7)
with symbol “ * 7 denoting complex conjugation. This
equation shows that the multi-image LS deblurring prob-
lem (5) is equivalent to classical one-image LS deblurring
where the “observed” image is g(m,n) = J(m,n) and the
PSF is K(m,n) = Y5_, |K;(m,n)|”. As is well known,
the direct LS estimate given by the inverse DFT of

f(m,n) = ¥, K; (m,n)g;(m,n)
| >, 1K (m,n)|?

can be very unstable. For white noise, the mean square
error (MSE) of (8) is

(8)

1

[IF = Foll”] wmzmzj o) P 9)
The quantities K ;(m,n) can be very close to zero at high
frequencies because the PSFs are almost band-limited in
practice. Consequently, the MSE can be very large, which
indicates that the LS estimate is unstable. The main task
of any deblurring method consists of stabilizing the solu-
tion by somehow limiting the values of such terms. Various
methods have been proposed in the literature (e.g., see the
review by Bertero & Boccacci 2000b). For example, the

Tikhonov estimate £*) is defined as

p
F® = argmin | S A;F —g,;I> +ullfIP |, (10)

j=1

where p is a positive scalar called the regularization pa-
rameter. The additional penalty term (weighted by u) has
the effect of limiting the energy of f. In fact, it is possible
to see that

Zj R; (ma n)gj (m7 n)
pt X5 1K (m, )2

where it is evident that the parameter p smooths out the
influence of the smallest values of K j(m,n). If both the
numerator and the second term in the denominator are
computed and stored, then for each value of x4 the compu-
tation of £ requires N? divisions + N2 sums + one two-
dimensional DFT. This means that the Tikhonov method
is computationally efficient, but it is not always flexible
enough to allow the implementation of constraints such
as positivity of the solution.

f(“)(m,n) = ) (11)
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Iterative methods provide an alternative methodol-
ogy that exploits the semiconvergence property of iter-
ative inversion algorithms and can be easily implemented
with many different types of constraints on the solution.
Two examples (which provide constrained positive solu-
tions) are the Projected Landweber (PL) method and
the Iterative Space Reconstruction Algorithm (ISRA) (see
Bertero & Boccacci 2000b). But, although flexible, these
methods are expensive from the computational point of
view, especially in situations of slow convergence (for each
iteration, a couple of two-dimensional DFTs is required).

3. A more efficient approach

The main limitation of the methods mentioned in the pre-
vious section is that they are based on the normal equa-
tions (7). The resulting deblurring problem is much more
ill-conditioned (i.e., the PSF is much broader) than im-
plied by each of the models (2) because the coefficients
K(m,n) in Eq. (7) are squared. The most important
consequence is that the convergence of the iterative al-
gorithms can be remarkably slowed with obvious conse-
quence on the computational cost. However, by multiply-
ing both sides of Eq. (7) by a function Kj;,(m,n), we can
rewrite Eq. (7) in the form

~

Ky (m,n)f(m,n)

 Gie(myn) + X, K3 (m,n) /K3, (m,n)]g; (m, n)
- 1+ Y, [1K (m,n) 2/ | K, (m,n) 2]

= {(m,n),

(12)
where

A~

Kj,(m,n) = max[K;(m,n), Ka(m,n), ..., Ky(m,n)].
(13)
Here the operator max[ ] extracts the element in the ar-
ray with the largest modulus, and jo is the value of the
corresponding index j. In the case that two or more PSF's
whose DFTs, for a given frequency (m,n), have the same
modulus, it is sufficient to choose one of the K j(m,n) ac-
cording to a rule that preserves the symmetry of the DFT
of a real PSF. As already noted for model (7), model (12)
is also equivalent to a classical LS deblurring, but now the

“observed” image is ¢((m,n) and the PSF is K, (m,n).
By construction, K jo(m,n) is the PSF whose energy
distribution is maximally spread in the Fourier domain
and therefore it corresponds to a PSF whose energy dis-
tribution is maximally concentrated in the spatial domain.
This means that {(m,n) can be considered a sort of de-
blurred version of ¥(m,n) (see Fig. 1). In other words,
the conditioning of system (12) is much better than that
of system (7) (this is because K}, (m,n) is not obtained by
squaring the coefficients K j(m,n)). The important point
is that this result has been obtained through stable op-
erations. From these considerations, improvements in the
computational costs are to be expected. In addition, by

Least Squares PSF Mean PSF

78 78
98 98
118 118
-
138 . 138
158 158
178 178
78 98 118 138 158 178 78 98 118 138 158 178

Fig. 1. Comparison between the PSF corresponding to Eq. (7)
(left panel) with that corresponding to Eq. (12) (right panel)
for the numerical experiments presented in Sect. 5.

0.4

—— Mod. Hanning
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Fig. 2. Slice comparison of the two-dimensional classical
Hanning and rectangular windows with the modified Hanning
window (N, = 20).

formulating the problem in terms of single-image deblur-
ring, there is a gain in flexibility as standard deblurring
algorithms can be used.

In Appendix A, it is shown that {(m, n) is equivalently
obtained by transforming the LS problem (5) into a col-
umn weighted LS problem.

4. Two potential problems

Although simple and potentially very effective, the proce-
dure presented in the previous sections has two potential
drawbacks.

The first concerns the statistical properties of the noise
component of {(m,n). In particular, even if the original
noise w; is white (i.e., a process with flat spectrum), the
noise component of ((m,n) has a power-spectrum pro-
portional to |Kj,(m,n)[*/ 3=, |K;(m,n)|*. This is a direct
consequence of having used the normal equations (7) to
solve the LS problem (5) and may have deleterious effects
on automatic methods for stopping the iterations or es-
timating the regularization parameters since they assume
that noise is white. For example, in our simulations the
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Original Image PSF of the First Image

Mean Image Mean PSF

First Blurred Image First Blurred Image + Noise

Deblurred Mean image Deblurred First Image

7\

Fig. 3. Original image, blurred version and blurred + noise
version of the first image of the set (see text) and corresponding
PSF. The images are 256 x 256 pixels.

Mean Image Mean PSF

Deblurred Mean image Deblurred First Image

Fig.4. Mean image ((m,n) and corresponding PSF for the
image shown in Fig. 3, deblurred version of {(m,n), and de-
blurred version of the first image of the set (see text). The
deblurring was done with CGLS. The images shown are the
ones with the smallest standard deviation of the true residu-
als; for the mean image and first image of the set these are,
respectively, 6.57 x 10”2 and 8.67 x 1072

generalized cross validation (GCV) method (which may be
used to estimate the optimal value of p in the Tikhonov
approach, see Vogel 2002) consistently produced values
that were too small.

The second problem concerns edge effects and can be
serious for images containing important details near their
borders. In this case the circulant approximation used in
model (4) is not appropriate and edge effects are to be ex-
pected. In particular, the mean image ¢(m,n) of Eq. (12)
may have no relationship with the true image. We have

Fig.5. Mean image {(m,n) and corresponding PSF for the
image shown in Fig. 3, deblurred version of {(m,n), and de-
blurred version of the first image of the set (see text). The
deblurring was done with MRNSD. The images shown are the
ones with the smallest standard deviation of the true residu-
als; for the mean image and the first image of the set these are
5.92 x 1072 and 8.49 x 1072, respectively.

to stress that this kind of problem is unavoidable and is
shared by any other method. Its classical solution is the
windowing of image g to reduce edge discontinuities.

Vio et al. (2003b) show that a remarkable reduction of
the edge effects in deblurring operations, that causes little
distortion in the final result, can be obtained if, instead
of g, weuse o =g - h (“ - 7 denotes element wise multi-
plication) and h is a modification of the classical Hanning
window

025 x ax B, 0<m,n < Ny;
025 xaxf, N—Ny<m,n<N;
1 otherwise.

h(m,n) = (14)

The parameters a = [1 — cos(mmw/Ny)] and 8 = [1 —
cos(nm /N, )] are chosen so that the pixels in the central
subimage are not modified and the image has continuous
first derivatives at the edges (see Fig. 2). This window ap-
proaches the classical two-dimensional Hanning window
as N, — N/2 and tends to the rectangular window as
N, — 0. The parameter N,, thus determines the filter-
ing characteristics, in particular the frequency pass-band,
of the window. Its “optimal” value depends on many fac-
tors such as the noise level, the form of the PSF and the
specific realization of the process. For a Gaussian PSF,
simulation results (Vio et al. 2003b) show that values of
three or four times the dispersion of the PSF provide rea-
sonably good results. The only unavoidable consequence
of the procedure is that a border of thickness N,, has to
be removed from the final deblurred image.

According to these results, 6(m,n) should permit the
use of (12) also in situations where the circulant approx-
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Mean Image

Mean PSF

First Blurred Image

First Blurred Image + Noise

Deblurred Mean image

Deblurred First Image

Fig. 6. Original image, blurred version and blurred + noise
version of the first image of the set (see text) and corresponding
PSF. The images are 256 x 256 pixels.

imation for the blurring operator is not appropriate. We
test this via numerical simulations.

5. Some numerical experiments

We present the results of some numerical simulations to
show the flexibility and reliability of the methodology pre-
sented above. Figs. 3-8 show the deblurring results for an
extended object and a set of point-like objects. We have
chosen these particular examples since, being non-smooth
functions, their restoration is a difficult problem. Eight im-
ages are available for each object. In each case the PSF is
a bidimensional Gaussian with dispersion along the major
axis set to twelve pixels, and to four pixels along the mi-
nor axis. Their inclinations take equispaced values in the
range 0°—160°. Gaussian white noise is added with a stan-
dard deviation of 2% of the maximum value of the blurred
images. Two deblurring methods have been used: a clas-
sical conjugate gradient method for LS problems (CGLS)
(Bjorck 1996), and a modified residual norm steepest de-
scent method (MRNSD) that can be used to enforce non-
negativity of the solution (Nagy & Strakos 2000). For
comparison, the deblurring of the first image of the set
(that with the PSF with major axis inclined at 0°) is also
shown. In every case the improvement due to the use of
the eight images is evident.

The two examples just presented do not suffer edge
effects. The objects are in the center of the images and
their borders show only “dark sky”. A more difficult ex-
ample is provided by images with details near their bor-
ders since in this case the circulant approximation for the
blurring operator is incorrect. In order to show the results
obtainable in this case, we consider observations of the
Cosmic Microwave Background (CMB) (e.g., see Vio et
al. 2003a). Although the PSFs considered in this work
are different from those typical of CMB observations, we

Fig. 7. Mean image {(m,n) and corresponding PSF for the
image shown in Fig. 6, deblurred version of {(m,n), and de-
blurred version of the first image of the set (see text). The
deblurring was done with CGLS. The images shown are the
ones with the smallest standard deviation of the true residu-
als; for the mean image and the first image of the set these are
6.09 x 10™2 and 6.17 x 1072, respectively.

Mean Image Mean PSF

Deblurred Mean image Deblurred First Image

Fig. 8. Mean image {(m,n) and corresponding PSF for the
image shown in Fig. 3, deblurred version of {(m,n), and de-
blurred version of the first image of the set (see text). The
deblurring was done with MRNSD (1000 iterations). The im-
ages shown are the ones with the smallest standard deviation
of the true residuals; for the mean image and the first image
of the set these are 5.52 x 10~ and 6.02 x 103, respectively.

have chosen this example because the CMB signal is ex-
pected to be the realization of a stationary stochastic pro-
cess covering the whole sky. It represents one of the most
unfavourable situations in the deblurring of astronomi-
cal images. Figs. 9-12 show that, despite the difficulty of
the problem, the application of the windowing procedure
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Original Image

PSF of the First Image

First Blurred Image + Noise

Fig. 9. Original image, blurred version and blurred + noise
version of the first image of the set (see text) and corresponding
PSF. The images are 340 x 340 pixels. Noise of S/N = 2.

Mean Image Mean PSF

Deblurred First Image

Fig.10. Mean image ¢{(m,n) and corresponding PSF for the
image shown in Fig. 9, deblurred version of {(m,n), and de-
blurred version of the first image of the set (see text). The
deblurring was done with the classical Tikhonov method and
the windowing procedure explained in the text (N, = 30 pix-
els). The images shown are the ones with the smallest standard
deviation of the true residuals that for the mean image and the
first image of the set are 0.40 and 0.52, respectively.

presented in Sect. 4 can provide good results. The exper-
iments have been carried out under the same conditions
as the previous ones, with the difference that two differ-
ent levels of noise have been tested (2% and 10% of the
dispersion of the blurred signal), and the method used
in the deblurring is the classical Tikhonov approach. The
CMB maps have been simulated as described in Vio et al.
(2003a). Again the results are reasonably good.

Original Image

PSF of the First Image

First Blurred Image + Noise

Fig. 11. Original image, blurred version and blurred + noise
version of the first image of the set (see text) and corresponding
PSF. The images are 340 x 340 pixels. Noise of S/N = 10.

Mean Image Mean PSF

Deblurred First Image

Fig. 12. Mean image ¢{(m,n) and corresponding PSF for the
image shown in Fig. 11, deblurred version of {(m,n), and de-
blurred version of the first image of the set (see text). The
deblurring was done with the classical Tikhonov method and
the windowing procedure explained in the text (N, = 30 pix-
els). The images shown are the ones with the smallest standard
deviation of the true residuals that for the mean image and the
first image of the set are 0.35 and 0.48, respectively.

Our examples have shown that the use of ((m,n) cou-
pled with standard deblurring algorithms can remarkably
improve the results. However, it is still necessary to check
the effective gain in computational cost. Figs. 13 and 14
show that the convergence rate of the MRNSD algorithm
applied to {(m,n) is faster than that of the PL or ISRA
methods applied to ¥(m,n) (the cost per iteration of each
method is essentially the same). We remark that MRNSD
did not perform very well when applied to the more ill-
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Deblurred Mean Image — MRNSD Method Deblurred Image - PL Method

Deblurred Mean Image — MRNSD Method Deblurred Image - PL Method

Deblurred Image - ISRA Method

Deblurred Image - ISRA Method
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Fig. 13. Deblurred images, corresponding to the image shown
in Fig. 3, obtained through the MRNSD method applied to
¢(m,n) , and the PL, and ISRA methods applied to ¥(m,n).
The images shown are the ones with the smallest standard
deviation of the true residuals that are 5.92 x 1072, 5.39 x
1072, and 5.63 x 1072 respectively. The convergence curves
for each method is also shown: MRSND converges after 346
iterations, whereas both PL and ISRA do not converge after
1500 iterations.

conditioned problem involving ¥(m,n). This is not too
surprising since MRNSD is essentially a steepest descent
method, which is known to have poorer convergence prop-
erties for more ill-conditioned problems. It has been shown
in Nagy & Strakos (2000) that preconditioning can dra-
matically increase the convergence rate for MRNSD, but
it is a nontrivial process to choose an appropriate precon-
ditioner, especially for severely ill-conditioned problems;
see Nagy & Strako§ (2000) for further details.

Furthermore, to check that this result is not due to
the kind of algorithm used, Figs. 15, and 16 compare the
convergence rate when the PL and ISRA methods are ap-
plied to both {(m,n) and ¥(m,n). Again, it is evident that
the use ¢(m,n) can improve the convergence rate of the
algorithms.

6. Extension to images with different noise levels

So far we have assumed that the noise level is the same
in all the images (0, = 0y), a condition that allows the
combination of different images to provide the most inter-
esting results. Moreover, this requirement is often satisfied
in practice. For example, with LBT the images taken at
different orientations of the telescope are expected to be
characterized by the same noise level.

The extension of the method to images with differ-
ent noise levels is straightforward. If the different o,,, are
known, one may account for the different variabilities by

200 400 600 800
Number of Iterations

1000

Fig. 14. Deblurred images, corresponding to the image shown
in Fig. 6 obtained through the MRNSD method applied to
{(m,n) , and the PL, and ISRA methods applied to ¥(m,n).
The images shown are the ones with the smallest standard
deviation of the true residuals that are 5.52x 1072, 6.05x 1072,
and 5.69 x 102 respectively. The convergence rate for each
method is also shown: none of the methods converged before
1000 iterations.

0.45

— {(m,n) + PL
Z(m,n) + ISRA

! - PL

1 — - ISRA

Relative Norm of the True Errors

0.25 L .
0 500 1000 1500

Number of Iterations

Fig. 15. Convergence rate, corresponding to the image shown
in Fig. 3, for the PS and ISRA methods applied to both {(m,n)
and 9(m,n).

changing equation (5) to

f=argmin ) || (A;f —g;)/ou, |,

(15)
j=1
or, alternatively,
P
f=argminy_[|A;f -0 (16)

=1
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Fig. 16. Convergence rate, corresponding to the image shown
in Fig. 6, for the PS and ISRA methods applied to both {(m,n)
and 9(m,n).

where A; and ©; represent, respectively, the matrix A;
and array g; with their elements divided by o,;. The rest
of the procedure remains as described in Sect. 3. For ex-
ample, Eq. (13) becomes

l€j0 (m,n) = max[l@l(m,n),lég(m,n), ... ,l@,,(m,n)],
X (17)

where Kj(m,n) = Kj(m,n)/oy,.

7. Concluding remarks

We have considered the problem of simultaneously deblur-
ring a set of images of a fixed object blurred by different
space-invariant PSFs. Although currently available meth-
ods seem to provide good results, they are comptutation-
ally expensive. We have developed a method, based on a
LS approach, to efficiently transform a multi-image de-
blurring problem into a single-image one. This approach
provides substantial savings in computational require-
ments and can be implemented using standard currently
available numerical algorithms. These conclusions are con-
firmed by our numerical experiments.

But despite these encouraging results, some questions
are still open. In particular, regularization parameter se-
lection methods (such as GCV for the Tikhonov approach)
have to be extended to deal with the correlated noise com-
ponent of the mean image. This is especially important for
the deblurring of random fields where the statistical prop-
erties of the field are more important than a particular
realization.

Another question is the generalization of the proposed
method to non-Gaussian noise. For example, for Poisson
noise good results have been obtained with the maximum-
likelihood estimate

p N-1

f:argmaxz Z [g;(m,n)In(A; -f)—A; -f], (18)

7j=1 m,n=0

where ¢ - 7 denotes element-wise multiplication (Correia

& Richichi 2000; Bertero & Boccacci 2000a).

Acknowledgements. We thank Prof. M. Bertero (Universitd di
Genova) for useful discussions.

Appendix A: Multi-Frame Deblurring and
Weighted Least-Squares

In this appendix the multi-frame deblurring problem pre-
sented in the previous sections is shown to be related to
(column) weighted LS.

In the multi-frame deblurring problem, we consider the
LS problem (we omit regularization, but this can be easily
incorporated into the discussion):

Ay gi
Ay g

min |- .2 (A.1)
Ap 9p 1 ly

Assuming each Aj; is block circulant, and can be diago-
nalized by the unitary Fourier transform matrix, then this
problem can be transformed to the equivalent LS problem:

Ay 9,
A | . |G

min _2 f- .2 (A.2)
Ay 9 11l

where A; = diag A\, A% ... A{) is a diagonal matrix
containing the eigenvalues of the matrix A; (i.e., this is
just the DFT of the PSF, or in the notation of the main
text K ;).

Now, following the arguments in Sect. 3, let &; =

max {/\Ej)} ,1=1,2,...,N. Define the diagonal matrix:
1<j<p

A = diag(d1,02,...,0n), (A.3)
and consider the (column) weighted LS problem:
AATY 9
A A | 9.
min . Af—| . (A4)
A,AT gp 11,
We will write this LS problem as:
min || DAF g ||, (A.5)
where
AAT?
A A
D= ] (A.6)
A,A7!
The normal equations version of this LS problem is:
A*D*DAf = A*D*g, (A7)
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or, equivalently,
D*DAf = D*§, (A.8)

where D* is the complex conjugate transpose of D.

Now, observe that D* D is perfectly well conditioned,
and thus can be easily inverted. To see this, note that for
all 4, there exists jo = jo () such that

s =a", and NP2 AG. (A9)
The ith diagonal entry of D*D is
|)\(J) |2 _ ‘)\Z(J) |2

Z
|9: 2 J?éjo

and thus each diagonal entry of D* D can be bounded by

RO (A.10)

|/\(J) |2
1<Z|5|2 <p. (A.11)

Thus D* D is perfectly well conditioned.

Since D*D is perfectly well conditioned, there is no
danger in transforming the normal equations given in
equation (A.8) to

Af = (D*D) 'D*§, (A.12)

which is equivalent to Eq. (12).

A vast literature is available on column weighted LS;
see, for example, Golub & Van Loan (1996), Lawson &
Hanson (1995), and Bjorck (1996).
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