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Abstract

In iterative image restoration methods, implementation of efficient matrix vector multiplica-
tion, and linear system solves for preconditioners, can be a tedious and time consuming process.
Different blurring functions and boundary conditions often require implementing different data
structures and algorithms. A complex set of computational methods is needed, each likely hav-
ing different input parameters and calling sequences. This paper describes a set of Matlab tools
that hide these complicated implementation details. Combining the powerful scientific comput-
ing and graphics capabilities in Matlab, with the ability to do object oriented programming and
operator overloading, results in a set of classes that is easy to use, and easily extensible.
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1 Introduction
Image restoration is an example of a linear ill-posed problem, which is often modeled as [4]
b=Ax+n. (1)

Here b is a vector representing the blurred image, A is a large, usually ill-conditioned matrix that
models the blurring operation, and n is a vector that models additive noise. The aim is to compute
an approximation of the vector x, which represents the image of the original scene. In most cases,
the blur is generally much more significant than the noise, and thus the emphasis is on removing
the blur.

Because of the large dimensions of the linear system, iterative methods are typically used to
compute approximations of x. These iterative methods include a variety of conjugate gradient type
methods [12], the expectation-maximization method (sometimes referred to as the Richardson-Lucy
method) [4], and many others [10]. Regularization can be enforced in a variety of ways, including
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Tikhonov [11], iteration truncation [12], total variation [32], [23], as well as mixed approaches [22].
Since any one iterative method is not optimal for all image restoration problems, the study of
iterative methods is an important and active area of research. One important issue, for example, is
the development of reliable stopping criteria. Although significant progress has been made, much
more work is needed; the purpose of this paper is to describe a set of software tools we have
developed that will facilitate research in these areas.

In this paper we consider iterative methods that have the following general form:

X( = initial estimate of x
for 7=0,1,2,...
e X;1 = computations involving x;, A4,
a preconditioner matrix, P, and
other intermediate quantities
e determine if stopping criteria are satisfied
end

The specific computational operations that are required to update x;;1 at each iteration depend
on the particular iterative scheme being used, but the most intensive part of these computations
usually involves matrix vector products with A and linear system solves with the preconditioner P.

Although efficient algorithms for these operations, in the context of structured linear systems
arising in image restoration, are fairly well known (see, for example [6]), specific implementation
details depend on the blurring operator as well as on the type of boundary condition being used.
These issues dictate the structures of A and P, and in particular, which of several fast algorithms
should be used for the matrix vector multiplications and preconditioner solves.

If we want to test an iterative method using a variety of blurring operators and boundary condi-
tions, and be able to use problems arising in both two and three dimensional imaging applications,
then we must have a complex set of computational methods at our disposal, each likely having
different input parameters and calling sequences. In addition, preconditioning for iterative regular-
ization methods requires the delicate choice of a “truncation” parameter that controls a tradeoff
between fast convergence and stability of the iterations (see [14, 15], as well as Section 3 for fur-
ther details). Even if we use a high level computing environment such as Matlab, prototyping and
testing (new) iterative algorithms can be very time consuming. In this paper we describe a set of
tools, which use Matlab’s object oriented programming capabilities [24], that can greatly simplify
this process. Our approach uses the power of operator overloading to hide the details from the
user; several examples are provided to illustrate the ease of using these objects. The code and data
for these examples may be obtained from our webpage [1]. These codes will be included as a small
subset of a more extensive Matlab package for ill-posed problems being developed by Hansen and
Jacobsen [17].

2 Matrix Vector Multiplications

In this section we consider matrix vector multiplication with the “blurring” matrix A. The blur
can come from a variety of sources, such as atmospheric turbulence, out of focus lens, and motion
blurs. Typically the blur is described mathematically with a point spread function (PSF); that
is, a function that specifies how points in the image are distorted. In some cases a functional
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representation of the PSF is known, but in most cases it is constructed experimentally from the
imaging system by generating images of “point sources”. What constitutes a point source depends
on the application. For example, in atmospheric imaging, the point source can be a single bright
star [19]. In microscopy, though, the point source is typically a fluorescent microsphere having a
diameter which is about half the diffraction limit of the lens [9]. In this paper, along with the image
that is to be restored, we assume that we are given an image of one or more point sources. It is
this PSF image that will be used to construct the matrix A. Therefore, in the remainder of the
paper we will call A a psfMatrix.

The structure of the psfMatrix A, and therefore the implementation details of matrix vector
multiplications, depends on several factors. In particular, we will need to classify the blur as either
spatially invariant or spatially variant, and we will need to know what kind of boundary condition
is to be used.

2.1 Classifying blurring functions

One necessary piece of information we need to know is whether the blur is classified to be spatially
invariant or spatially variant:

Spatially invariant means that the blur is independent of position. That is, a blurred object
will look the same regardless of its position in the image.

Spatially variant means that the blur does depend on position. That is, an object in an
observed image may look different if its position is changed.

To illustrate the difference in these types of blurs, Figure 1 shows an original scene containing
the same object repeated in various regions of the image, along with examples of distorted images
caused by spatially invariant and spatially variant PSFs.
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u u u u ¥ 8 B B §u = B

Original Scene Invariant Distortion Variant Distortion

Figure 1: Example of spatially invariant and spatially variant distortions.

2.2 Boundary conditions

Images are shown only in a finite region, but points near the boundary of a blurred image are
likely to have been affected by information outside the field of view. Since this information is
not available, for computational purposes, we need to make some assumptions about the boundary
conditions. In image processing, one of three common assumptions is usually made:
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e Periodic boundary conditions imply that the image repeats itself endlessly in all directions.
That is, we assume the image X has been extracted from a larger image which looks like:

X X X
X X X
X X X

e Zero boundary conditions imply a black boundary, so that the pixels outside the borders of
the image X are all zeros. That is, we assume the image X has been extracted from a larger
image which looks like:

o O O

0
X
0

S O O

e Reflerive boundary conditions imply that the scene outside the image boundaries is a mirror
image of the scene inside the image boundaries. That is, we assume the image X has been
extracted from a larger image which looks like:

Xre Xr Xpe
X X X
Xre Xr Xpe

where X, is obtained by “flipping” the columns of X, X, is obtained by “flipping” the rows
of X, and X, is obtained by “flipping” the rows and columns of X.

Given the boundary condition, and the classification of the blur, we are ready to describe the
structure of the psfMatrix, A.

2.3 Spatially invariant psfMatrix

In many applications, the PSF is assumed to be, or is approximated by, a spatially invariant model,
since computations are generally easier to implement than for spatially variant blurs. If we assume
that the blur is spatially invariant, then the PSF is represented by the image of a single point
source. In this case, the structure of A depends on the boundary condition:

e Periodic boundary conditions imply that A is a block circulant matrix with circulant blocks
(BCCB) [2].

e Zero boundary conditions imply that A is a block Toeplitz matrix with Toeplitz blocks
(BTTB) [14, 20, 31].

e Reflexive boundary conditions imply that A is a sum of a BTTB matrix, a block Hankel
matrix with Hankel blocks (BHHB), a BTHB matrix, and a BHTB matrix [28].

In the first case, matrix vector multiplication is done using the two dimensional discrete Fourier
transform. All BCCB matrices can be written as:

C = F*AF,

where F is the two-dimensional discrete Fourier transform matrix, F* is the complex conjugate
transpose of F, and A is a diagonal matrix containing the eigenvalues of C. Moreover, using
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properties of the matrix F it is not difficult to show that the eigenvalues of C can be obtained by
computing a two-dimensional FFT of the first column of C. Thus, computing y = C'x we use:

y =F'AFx
or, we can think of this as:
y = ifft2D(££t2D(c) . ¥ £££2D(x)),

where c is the first column of C, ££t2D(-) and ifft2D(-) denote the fast Fourier transform and its
inverse, and .* is element-wise multiplication.

In the second case, matrix vector multiplications are done by embedding A into a larger BCCB
matrix, padding outside the borders of the image with an appropriate number of zeros, and then
using FFTs. The amount of padding depends on the extent of the PSF. For very large problems,
the codes use memory efficient methods called overlap-add and overlap-save, which partition the
image domain into regions based on the size of the PSF. In linear algebra terms, the approach is
equivalent to exploiting sparsity (bandedness) of the matrix A; see [25] for further details.

The third case is similar to zero boundary conditions, except that the values that are padded
around the outside of the image are obtained by reflecting the pixel values from the inside of the
image boundaries.

2.4 Spatially variant psfMatrix

A generic spatially variant blur would require a point source at every pixel location to fully describe
the blurring operation. Since it is not possible to do this, even for small images, some approxima-
tions must be made. One such approach is to simply approximate by a spatially invariant blur,
which can be done by using a single point source, or by averaging several point sources. Although
this approach often works well, in some cases substantially better resolution can be obtained by
using a more sophisticated model of the blur [3]. In this paper, we consider a large class of spatially
variant PSFs which have the property that in small subregions of the image the PSF is essentially
spatially invariant. We use an interpolation approach to piece together the invariant PSFs in each
domain. In linear algebra terms, the matrix has the following structure:

p
A=Y D;A;
i=1

where A; are BTTB, except for those corresponding to the border, where the boundary conditions
come into play, and D; are diagonal matrices satisfying >~ D; = I. Piecewise constant interpolation
implies that the kth diagonal entry of D; is one if the kth point is in region i, and zero otherwise.
Linear interpolation was also considered in [26], but numerical experiments revealed very little
improvement in resolution of the restored images. Therefore we only implement piecewise constant
interpolation.

2.5 The psfMatrix class

From the previous section we see that the kind of information needed to construct a psfMatrix,
as well as the implementation details of matrix vector multiplications, vary depending on the type
of blur and boundary condition. For computational purposes, we therefore define a psfMatrix
object, which can be described as a structure containing five fields:
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o psf is an object used to standardize the definition of a point spread function. The specific
details of this object are not important, but it contains, in particular, the PSF images.

e matdata is the actual data needed to do the matrix vector multiplications. It contains the
eigenvalues of the BCCB matrix in which A is embedded.

e type is a character string that indicates if the blur is invariant or variant. The type is
determined by the number of PSFs used to construct A; if only one PSF is used, then the
type is set to invariant, otherwise it is set to variant.

¢ boundary is a character string indicating the type of boundary condition being used.

e transpose is an integer flag that indicates if the matrix has been transposed. For spatially
variant problems, the algorithms for implementing Az and ATz are different, but no data
movement is needed. This flag, therefore, simply indicates which algorithm is to be used.

The syntax used to create a psfMatrix can take one of several forms, including:

e A = psfMatrix(PSF);

e A = psfMatrix(PSF, boundary) ;

e A = psfMatrix(PSF, center);

e A = psfMatrix(PSF, center, boundary);
where

e PSF is either an array containing a single PSF image, or a cell array containing one or more
PSF images. Further details about this cell array are provided below.

e boundary is a character string indicating the desired boundary condition. Choices are ’zero’,
‘periodic’ or 'reflexive’. If one is not specified, the default is to use zero boundary conditions.

e center is either an array specifying the pixel location of the point source for a single PSF
image, or it is a cell array containing the pixel locations of point sources for one or more PSF
images. If one is not specified, the default is to use the pixel location(s) of the maximum
entry in the PSF(s).

Although more detailed examples of using a psfMatrix in iterative methods are given in Section
4, it may be useful to take a quick look at how easy it is to set up and use a psfMatrix.

Example 2.1. Constructing a psfMatrix for a spatially invariant problem only requires that we
are given an array containing a PSF image. If this array is denoted as PSF, then the following
statement will construct A using zero boundary conditions:

>> A = psfMatrix(PSF);

Alternatively, if we want to use one of the other boundary conditions, we can construct A using
one of the following statements:
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>> A = psfMatrix(PSF, ’reflexive’);
>> A = psfMatrix(PSF, ’periodic’);

Example 2.2. Constructing a psfMatrix for a spatially variant problem requires that we are
given a cell array containing PSF images in various regions of the (blurred) image domain. The
dimension of the cell array, and the size of the PSFs in each cell, are both assumed to be the same
as the region partitioning of the image. That is, for example, if the image is partitioned into 6 X 6
regions of size k X k each, and a PSF is taken from each region, then we store all of the k x k PSF
images in a 6 x 6 cell array. If this cell array is denoted as PSF, then we can use any of the same
statements used in the previous example to construct A.

Example 2.3. By overloading the * operator, matrix vector multiplications with A can be written
as:

>> b = A * x;

Here it is assumed that x is an array containing an image, and the result, b, is an image having
the same dimension as x. For example, suppose PSF and x are the images shown in Figure 2, and
we compute:

>> Al = psfMatrix(PSF);

>> bl = Al * x;

>> A2 = psfMatrix(PSF, ’periodic’);
>> b2 = A2 * x;

>> A3 = psfMatrix(PSF,’reflexive’);
>> b3 = A3 * x;

Then the images b1, b2 and b3 are shown in Figure 3.

x PSF

Figure 2: True Image and Point Spread Function

Example 2.4. Once the psfMatrix, A, is constructed, then we are ready to use a truncated
iteration approach for computing a regularized solution. If, however, we want to use an iterative
method to compute a Tikhonov regularized solution, then a little more work needs to be done.
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Zero Boundary Periodic Boundary Reflexive Boundary

Figure 3: Example of different boundary conditions.

When using Tikhonov regularization, we want to compute a solution of the damped least squares

problem:
A | b
Y B

where the regularization operator, L, is usually chosen to be the identity matrix or differentiation
matrix. In most cases, L can be thought of as a psfMatrix, where the “PSF” is the convolution
kernel for the operator. For example, when using the identity matrix, the corresponding “PSF” is
simply the scalar 1, and when using the two-dimensional (discrete) Laplacian, the corresponding
“PSF” is the array:

min = min ||Ax — b||2,

2

0 -1 0
-1 4 -1
0 -1 0

The psfMatrix class can easily be used to construct the matrix for the above damped least squares
problem. In particular, given the PSF image, PSF, and a regularization parameter, lambda, the
following Matlab statements will construct the damped least squares matrix, Ahat, for use in
iterative methods:

>> A = psfMatrix(PSF);
>> L = psfMatrix(1);
>> Ahat = [A; lambdaxL];

If we want to use the Laplacian for regularization, we instead use:

>> A = psfMatrix(PSF);
>> L = psfMatrix([0 -1 0; -1 4 -1; 0 -1 0]);
>> Ahat = [A; lambdaxL];

Further examples given in Section 4 show how to use the psfMatrix class in iterative methods,
but first we need to discuss preconditioning.
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3 Preconditioning

Preconditioning is often used with Krylov subspace iterative methods, such as conjugate gradients
[5], to accelerate the rate of convergence; that is, to reduce the number of iterations needed to
compute a good approximation of the solution. Preconditioning is often presented in the context
of solving linear systems. Suppose we are to use a conjugate gradient method to solve Ax = b.
The standard approach to preconditioning is to construct a matrix, P, that satisfies the following
properties:

e It should be relatively inexpensive to construct P.
o It should be relatively inexpensive to solve linear systems of the form Pz = w.

e The preconditioned system should satisfy P~'A ~ I in the sense that the singular values of
P~1A are clustered around 1.

The first two requirements are related to the additional computational costs of preconditioning;
constructing P is a one time cost, where as linear system solves with P (and with P? for non-
symmetric problems) are required at each iteration. The last requirement determines the speed of
convergence; more singular values clustered around one, as well as tighter clusters, usually implies
faster convergence.

For ill-posed problems, we must incorporate regularization, and therefore this standard approach
may need some modifications. In the case of Tikhonov regularization, we simply apply the standard
approach outlined above to the linear system Ax = b where

e(a) +[3)

However, in the case when regularization is enforced by truncating the iterations, the situation is
a bit more delicate. This is explained in more detail in the following subsection.

3.1 Preconditioned iterative regularization

For ill-posed problems, such as image restoration, the matrix A is severely ill-conditioned. If P is
a good approximation to A, then P is likely to be very ill-conditioned. In this case, inaccuracies
in the data will be highly amplified with the initial linear system solve with P. To see this more
clearly, suppose we were able to compute the singular value decomposition (SVD) of A:

A=UxvT
where U and V are orthogonal matrices, and ¥ is a diagonal matrix. Consider the following:

e For well-posed problems, the ideal preconditioner would be P = A = UXVT, and thus
solutions of Pz = w are given by:

z=VY UTw

For ill-posed problems, though, it is well known that this approach will substantially amplify
noise and other data errors in w. In this case the iterative method has little hope of recovering,
and it is very unlikely that a reasonable approximation of the solution will be computed.
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e We could use the idea of a truncated SVD (TSVD) to regularize the preconditioner solves;
that is, we could compute solutions of the form

z=VEUTw,

where Xf :diag(ail, cers U_l—k,O, ...0). The problem with this approach is that the precondi-
tioner is singular, and therefore we cannot guarantee that z # 0, even when w # 0. The

preconditioned conjugate gradient method will break down if z = 0.

e An alternative approach proposed in [15] is to construct a preconditioner of the form P, =
U, VT, where &, =diag(o1,...,0k,1,...1). In this case, we simply compute solutions as:

z=VS'UTw.

To understand why this last approach works, we need to understand a little about truncated
iteration regularization. It can be shown (see [13]) that the early iterations of the conjugate
gradient method filter out components of the solution corresponding to the small singular values of
the matrix. That is, the early iterations tend to reconstruct mostly the good part of the solution,
and noise components of the solution are filtered out. It is this part of the iteration that we want
to accelerate. At some point, though, the noise components start to be reconstructed, and the
iterations begin to be corrupted with noise; this part of the iteration we do not want to accelerate.

For preconditioned conjugate gradients, it is the singular values of the preconditioned system
P~1A that we must consider. By clustering all of the singular values around one, we no longer
have the information to distinguish between the signal and noise subspaces. However, if we use the
preconditioner P;, then the preconditioned system has the form:

PlA=VAVT,

where A =diag(1,...,1,0%41,.-.,0,). In this case, the large singular values (i.e., those correspond-
ing to the signal subspace) are clustered at one, and are well separated from the small singular
values (those corresponding to the noise subspace). In this special case, one iteration computes a
regularized solution.

One final point about this preconditioning approach needs to be addressed: How do we choose
the cutoff parameter, 77 As with deciding the cutoff parameter for TSVD regularization, there is
not one best approach. The three most popular approaches that have been used in the literature
include:

e Picard Condition: The index where the Fourier coefficients level off indicates where the ran-
dom errors start to dominate the right hand side, so the magnitude of the eigenvalue corre-
sponding to this index is the truncation parameter. See [15] for more details.

e L-Curve: The corner of the L-curve gives a good balance of the solution size and residual
size, so the 7 that corresponds to the corner is the truncation parameter. See [18] for more
details.

e Generalized Cross Validation (GCV): We assume that a solution computed on a reduced
set of data points should give a good estimate of missing points. The GCV method finds a
function of 7 that measures the errors in these estimates. The minimum of this GCV function
corresponds to the truncation parameter. See [18] for more details.
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We remark that proper choice of the truncation parameter is important. If chosen too small, the
iterations will be too corrupted with noise, and it will be impossible to compute a good solution.
If chosen too large, then very little preconditioning is done, and convergence speed will not be
improved. QOur main goal is to compute a good approximation of the solution, so we should be
conservative when choosing 7; that is, we should carefully avoid choosing parameters that are too
small.

Of course if it is feasible to compute the SVD of A, then we do not need to use an iterative
method. But the discussion in this section does give us the basic idea of how to precondition
ill-posed problems: We should attempt to construct a preconditioner that clusters large singular
values around one, and leaves small singular values alone.

3.2 Preconditioners for Image Restoration

As we saw in Section 2, the matrices that arise in image restoration are highly structured, involv-
ing circulant, Toeplitz and Hankel matrices. Preconditioning such matrices has been thoroughly
investigated in the literature; see the survey paper [6] and the references therein. Moreover, many
of these approaches have been applied to image restoration [15, 26].

Although a variety of approaches to preconditioning have been proposed, the most popular is
to use circulant approximations, and that is the approach we consider in this paper. But it should
be noted that, in principal, many of the other fast transform based preconditioners can be used as
well.

For spatially invariant blurs, our approach is to approximate the psfMatrix, A, with a BCCB
matrix. Two popular approximations include:

min||A — P||r and min|lA— P|;

where subscript F' denotes the Frobenius norm, and where the minimizations are done over all
BCCB matrices, P. It is very inexpensive to construct these preconditioners; see [6, 7, 8, 30] for more
details. We remark that for spatially invariant blurs, using periodic boundary conditions implies
that A is a BCCB matrix, and therefore in this case A = P. Therefore, a BCCB preconditioner
for spatially invariant blurs (with zero or reflexive boundary conditions) is essentially a psfMatrix
with periodic boundary conditions.

For spatially variant blurs, each PSF requires its own preconditioner. In this case, as with
invariant blurs, the preconditioner for any given PSF is (equivalent to) a psfMatrix with periodic
boundary conditions.

An important property of BCCB matrices is that their spectral decomposition is easy to compute
using FFTs. With this spectral decomposition, we can easily construct preconditioners for both
the damped least squares problem in Tikhonov regularization, as well as for truncated iteration
regularization:

e For Tikhonov regularization, we use the approach described in [12]:
x x 2 y2a 2\ ?
P=FAF =F (|Aal+ N|ALP) T F,

where Py = F*AoF and Py = F*ApF are, respectively, the BCCB approximations to A and
L.
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e For truncated iteration regularization, we use the approach outlined in the previous subsec-
tion, except we replace the SVD of P with its spectral decomposition.

3.3 The psfPrec class

In this subsection we define a psfPrec object that will construct data and information needed to
solve linear systems with the BCCB preconditioner, P. A psfPrec can be described as a structure
containing three fields, very similar to psfMatrix:

e matdata is the actual data needed to do linear system solves; that is, it contains the eigen-
values of P.

e type is a character string indicating if the blur is invariant or variant.
¢ transpose an integer flag that indicates if P has been transposed.

The syntax used to create a psfPrec can take one of several forms, including;:

e P = psfPrec(A, b);

e P = psfPrec(A, b, tol);

e P = psfPrec(A, b, ’help’);
where

e A is a psfMatrix, or, in the case of Tikhonov regularization, a concatenation of psfMatrix
objects. (See below for some examples.)

e b is the blurred image to be restored. This input parameter is needed only because the
psfPrec codes utilize the size of b.

e tol is the truncation tolerance for the preconditioner. Eigenvalues below tol are replaced by
the value one. If tol is not specified, then the default is tol = 0; that is, no truncation is
used.

e If *help’ is specified, a truncation parameter will be chosen using the GCV method. In
addition, diagnostic plots (the GCV curve, Picard condition, and L-Curve) will be displayed
to help the user determine if GCV has chosen an appropriate value for tol.

Example 3.1. Constructing a psfPrec only requires that we are given a psfMatrix and its right
hand side b. If this psfMatrix is denoted as A, then the following statement will construct P using
a tolerance of zero:

>> P = psfPrec(4,b);

However, if we want to specify a particular value for the tolerance, we can construct P using the
following statement:

>> P = psfPrec(A, b, tol);
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Alternately, if we want the tolerance chosen for us by the GCV function, we can construct P using
the following:

>> P = psfPrec(A, b, ’help’)

Using *help’ produces a plot with some information about the chosen truncation tolerance. In the
next section we provide a specific example to show how this information can be used to determine
if an appropriate tolerance has been found.

Example 3.2. To construct a psfPrec for Tikhonov regularization, we concatenate A and
lambda*L, where A and L are psfMatrices. The following will construct P:

>> P = psfPrec([A; lambdaxL], b)

Example 3.3. We have overloaded the \ operator, so linear system solves with P can be written
as:

> z =P \ w;

4 TIterative Methods using psfMatrix and psfPrec

Now that we’ve gathered the tools together, it’s time to consider some iterative methods for solving
Ax = b with a psfMatrix A. For instance, consider the preconditioned conjugate gradient method
for least squares problems (PCGLS) [5]:

Given: Matrix A, preconditioner P, initial guess, xg

Set r =b — Axg, s = P~T(ATr), and v = |[s]|3;
fork=1,2,...

if(k==1),set p=s;

otherwise compute 8 =7 / v5q and p =s + 3 * p;

t=P 'p;
q=Axt;
a=7/llql3;

X=X+taxt;

r=r—ax*q;

s=P T(ATr);

Yold =7, 7 = [[r][3;

determine if stopping criteria are satisfied

end_

We note that during each iteration there are two matrix-vector multiplies and two preconditioner
system solves. With the psfMatrix and psfPrec classes, a Matlab implementation of an iterative
method like this is straightforward. In particular, with the * and \ operators overloaded, a Matlab
implementation to compute s, for example, can be done as:

s=P'\ (A r)
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As mentioned previously, our efficient implementation of these operations makes a computation
such as this relatively fast.
We have implemented several iterative methods, including:

e CGLS and PCGLS: For use on nonsymmetric problems, or when Tikhonov regularization is
used. CGLS is the conjugate gradient method for least squares problems without precondi-
tioning; see [5].

e MR2 and PMR2: These are minimum residual type methods (unpreconditioned and precon-
ditioned), for use on symmetric problems; see [12, 14].

¢ MRNSD and PMRNSD: These are iterative regularization methods that can be used to
enforce nonnegativity in the computed solution; see [21, 27].

The implementations are similar, requiring the user to specify, at the very least, a matrix A,
a right hand side vector b, and an initial guess, x0. If a preconditioned version is used, then
a preconditioner, P, must also be specified. Additional inputs include a maximum number of
iterations and a stopping tolerance.

In the following examples (for simplicity) we use only spatially invariant PSFs, but the exten-
sion to the variant case is straightforward (in terms of command-line entries, there is no obvious
difference to the user). For the 2-dimensional examples, we use a set of test data, shown in Figure
4, which was developed at the US Air Force Phillips Laboratory, Lasers and Imaging Directorate,
Kirtland Air Force Base, New Mexico. The images are from a computer simulation of a field exper-
iment showing a blurred image of a satellite and the corresponding PSF, as taken from a ground
based telescope. This data has been used widely in the literature for testing algorithms for ill-posed
image restoration problems; see, for example [29].

True image PSF Blurred image
Figure 4: Satellite test data.

This test data, along with the following examples, can be obtained by downloading the software
from our web page [1], and changing to the directory ./RestoreTools/Examples/. If you do not
start Matlab while in this directory, then you should first run the script startup.m so that the
search paths are properly set.

Example 4.1. The following code solves Ax = b under zero boundary conditions with an unknown
truncation tolerance for preconditioning. The blurred image b is used as the initial guess, and the
prescribed number of iterations is 15.
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>> load satellite

>> A = psfMatrix(PSF);
>> P = psfPrec(A, b, ’help’);
>> x0 = b;

>> x = PCGLS( A, P, b, x0, 15);

Using the string *help’ in constructing the preconditioner produces a plot shown in Figure 5. The
truncation tolerance for the preconditioner was chosen as the minimum of the GCV plot, which
corresponds nicely with the corner of the L-curve, and with the flat part of the Picard condition
plot, indicating a good tolerance. The computed solution, x, is shown in Figure 6.

GCV function L-Curve

GCV(K)
norm of solution
=
S,

107° 10" 10° 10°

norm of residual

Default preconditioner tol. has been chosen
by finding the min of the GCV function:
tol = 0.015624

O shows where this default tolerance lies on
each plot. It should be:
*on, or near, the corner of the L-curve
| *at a point where Fourier coeff. start
to level off on Picard condition plot

10 If either is not the case, you may want to
10 10 choose a different tolerance

Figure 5: Plot produced when using ’help’ in psfPrec.

Example 4.2. In this example, we use Tikhonov regularization,
= min || Ax — b|z,

][]

with A = .00023 and L the identity matrix. The number of iterations is 35, and b is the initial
guess.

min

>> load satellite

>> A = psfMatrix(PSF);

>> L = psfMatrix(1);

>> lambda = .00023;

>> Ahat = [A; lambdax*L];

>> bhat = [b; zeros( size(b) )];

>> P = psfPrec(Ahat, b);

>> x0 = b;

>> x = PCGLS(Ahat, P, bhat, x0, 35);
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Because we used Tikhonov regularization in this example, we used the default tolerance, 0, for the
preconditioner. The regularization parameter, A, was chosen through experimentation; we do not
address the topic of choosing Tikhonov regularization parameters in this paper. The computed
solution, x, is shown in Figure 6.

Example 4.3. The satellite data was used in [14], where it was shown that algorithms for sym-
metric indefinite matrices, such as MR2 and PMR2, could be used by constructing a symmetric
approximation to the psfMatrix. This can be done easily with our tools as follows:

>> load satellite

>> A = psfMatrix(PSF);

>> As = (A + A%)/2;

>> P = psfPrec(As, b, ’help’);
>> x0 = b;

>> x = PMR2(As, P, b, x0, 15);

The solution, x, is shown in Figure 6.

Example 4.4. As a last 2-dimensional example, we use a method that enforces nonnegativity at
each iteration, PMRNSD (21, 27]. This can be done as follows:

>> load satellite

>> A = psfMatrix(PSF);
>> P = psfPrec(A, b, ’help’);
>> x0 = b;

>> x = PMRNSD(A, P, b, x0, 10);

The solution, x, is shown in Figure 6.

In the next example, we work with a 3-dimensional test image. Our true, undistorted image,
denoted in the following example by x_true, is a size 128 x 128 x 27 MRI of a human brain, available
in the Matlab Image Processing Toolbox. To produce b, we build a 64 x 64 x 14 Gaussian PSF
using the function psfGauss, then convolve it with the MRI image. We then add 1% Gaussian
noise to the result. Shown in figure 7 are 2-dimensional slices of the test data.

Example 4.5. Observe that the commands for this 3-D PCGLS restoration are fundamentally
the same as those used in example 4.1, where we used PCGLS to deblur a 2-dimensional image.

>> load mri
>> x_true = double(squeeze(D));
>> PSF = psfGauss([64 64 14]);

>> A = psfMatrix(PSF);

>> b = A*x_true;

>> n = randn(size(b));

>> n = 0.01*n*norm(b(:))/norm(n(:));
> b =Db + n;

>> P = psfPrec(A, b, 0.01);

>> x0 = b;

>> x = PCGLS(A, P, b, x0, 25);
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Iterative reg. (PCGLS) Tikhonov Regularization

Tterative reg. (PMR2) Tterative reg. (PMRNSD)

Figure 6: Reconstructions of the blurred image using various algorithms.
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One layer (slice) of the solution, x, is shown in Figure 7.

It should be noted that in this example, unlike those presented for the 2-dimensional image,
a truncation tolerance was specified for the preconditioner. This was necessary because the GCV
function initially produced 0.0 as the recommended truncation tolerance, which in turn produced
an ineffective preconditioner (this was obvious from the GCV, L-curve, and Picard condition plots
(not shown) that were displayed when the ’help’ option was invoked). We selected the value 0.01
to correspond with the noise level, but in practice, further experimentation might lead to a more
appropriate choice.

True Image Blurred, noisy image PCGLS restoration

Figure 7: MRI data. The slice shown corresponds to layer 15 in the 3-D image.

5 Concluding Remarks

Hansen’s Matlab package, Regularization Tools [16], has been very influential in research on algo-
rithms for ill-posed inverse problems. In particular, the toolbox contains several test problems and
analysis tools that are often used in research papers, and the work has been heavily cited in the
literature. Regularization Tools, though, was designed mainly for small scale problems, where the
coeflicient matrix, A, can be constructed explicitly, and where it is possible to compute an SVD
of A. In its current form, it is not possible to directly use the toolbox on an application such as
image restoration, since explicit construction of the matrix A is usually not feasible; an average size
problem involving images with 256 x 256 pixels implies A would have dimension 65536 x 65536.
Iterative methods can be used effectively, but efficient implementations of the basic kernels, such
as construction of a preconditioner, matrix vector multiplications, and preconditioner solves, can
be tedious and time consuming. In this paper we described a set of software tools that can easily
be used in iterative image restoration methods. Using an object oriented design means that with
very little work, a wide variety of problems can be solved, including ones with spatially invariant or
spatially variant blurs, with different boundary conditions, as well as for two and three dimensional
images. It is our hope that this work will help facilitate research in image restoration, and more
generally, in research efforts on iterative algorithms for large scale ill-posed inverse problems.
Finally, we remark that for separable blurs (such as a Gaussian PSF), the psfMatrix can be
represented as a Kronecker product, and thus direct methods such as the singular value decomposi-
tion (SVD) can be used. Although it is not discussed in this paper, the current version of our codes
allows for some limited Kronecker product computations. For example, if A is a psfMatrix, then
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svd(A) exploits Kronecker product structure to compute an SVD of A (if the PSF is not separable,
then a separable approximation is computed). In future work we plan to include several additional
tools and algorithms that exploit the Kronecker product structure of separable blurs. Updates of
this work will be posted on our webpage [1].

Acknowledgments: We are very grateful to Per Christian Hansen and Michael Jacobsen for many
helpful suggestions during the development of the codes.
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