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Abstract

SALES, M. T. Extremal and probabilistic problems in order types. Dissertation
(Masters) - Institute of Mathematics and Statistics, University of Sdo Paulo, Sdo Paulo,
2018.

A configuration is a finite set of points in the plane. Two configurations have the same
order type if there exists a bijection between them that preserves the orientation of every
ordered triple. A configuration A contains a copy of a configuration B if some subset of A
has the same order type of B and we denote this by B C A. For a configuration B and a

integer IV, the extremal number
ex(N,B) = max{|A|: B¢ A C [N]?*}

is the maximum size of a subset of [IN]? without a copy of B. We give an upper bound for
general and convex cases.

A random N-set is a set obtained by randomly choosing N points uniformly and in-
dependently in the unit square. A configuration is n-universal if contains all order types
in general position of size n. We obtain the threshold for the n-universal property up to
a loglog factor, that is, we obtain integers Ny and N; with loglog N1 = O(loglog Ny) such
that if N > N; (N < Np), then a random N-set is n-universal with probability tending
to 1 (tending to 0). We also determine a bound for the probability of obtaining a random

set without a copy of a fixed configuration.

Keywords: combinatorial geometry, probabilistic method, order types, combinatorics.



Resumo

SALES, M. T. Problemas extremais e probabilisticos em o-tipos. Dissertacao (Mes-
trado) - Instituto de Matemaética e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2018.

Uma configura¢do é um conjunto finito de pontos no plano. Duas configuragdes possuem
0 mesmo o-tipo se existe uma bijecao entre elas que preserva a orientacao de toda tripla
orientada. Uma configuracao A contém uma cépia da configuracao B se algum subcon-
junto de A possui o mesmo o-tipo que B e denotamos este fato por B C A. Para uma

configuracao B e um inteiro IV, o niimero extremal
ex(N,B) = max{|A| : B¢ A C [N]*}

é o maior tamanho de um subconjunto de [N]? sem uma cépia de B. Neste trabalho,
determinamos cotas superiores para o caso geral e para 0 caso convexo.

Um N-conjunto aleatorio é um conjunto obtido escolhendo N pontos uniformemente
e independentemente ao acaso do quadrado unitario. Uma configuracao é m-universal se
contém todos os o-tipos de tamanho n. Determinamos o limiar da propriedade de um N-
conjunto aleatorio ser n-universal a menos de erros da ordem de log log, isto é, determinamos
inteiros Ny e N1 com loglog Ny = O(loglog Np) tais que se N > N (N < Np), entdo o N-
conjunto aleatério é n-universal com probabilidade tendendo a 1 (tendendo a 0). Também
obtivemos cotas para a probabilidade de um conjunto aleatério nao possuir determinado

o-tipo.

Palavras-chave: geometria combinatdria, métodos probabilisticos, o-tipos, combinatoria.
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Chapter 1

Introduction

Combinatorial geometry is the branch of combinatorics concerned with the study of
combinatorial properties of geometric objects. Most questions in this area are intuitive
easy-to-understand problems about arrangements of simple euclidean objects like points,
lines and circles. For instance, what is the maximum number of incidences between n points
and n lines? What is the minimum number of unity balls needed to cover a box of a given
volume?

These questions have been studied for more than a century, mainly because of the devel-
opment of combinatorics. However, only in the last decades, with the increasing development
of computer technology, the area had gained great attention. Today combinatorial geometry
is one of the most active and largest areas in combinatorics.

One of the most frequent objects of study in this field are finite configurations of points
in the plane. By configuration we mean a set of points in the real plane. Usually, in the
combinatorial context, what differs one configuration from another is not their euclidean
metric properties, but instead its arrangement of points and lines in the plane. For instance,
it does not matter if the diagonals of a convex quadrilateral are perpendicular or not, however
it matters if the four points that we are looking at are convex or not. This leads us to the
natural feeling that configurations of points should be classified by their arrangements of
lines. Such a classification exists and is called the order type of a configuration.

Two configurations are said to be of the same order type if there is a bijection between
them which preserves the orientation of each ordered triple. This is clearly an equivalence
relation and therefore order types are equivalence classes of configurations in the plane.
One can also notice that this definition is basically the same as realizable oriented matroids,
which there exists a vast literature on it (see [4], [5], [27]). We also refer the reader to the
recent monograph of Eppstein [8].

We shall study combinatorial aspects of order types. Past research was done in this
direction. For instance, Kérolyi, Solymosi and Toth [22, 23] studied order types in the
context of generalizing the Erdés—Szekeres theorem [9] and Nesetril and Valtr [25, 26] studied
Ramsey-type problems. In this thesis we will focus on extremal and probabilistic problems

concerning order types.



A configuration A contains a copy of order type B if there exists a subset of A with same
order type of B. When there is no danger of confusion, we write B C A to mean that order
type A contains a copy of order type B.

Given an order type B of n points in general position, we let
gr(B) =min{N € N: B C [N]*},

that is, the minimum grid size N such that there exists a copy with order type B in [N]%.
Inspired by the graph-theoretic concept of extremal number, let ex(N, B) be the maximum
integer m such that there exists a subconfiguration of [N]?, of size m, without a copy
of B. We establish a subquadratic upper bound on ex(N, B) that depends only on the
paramter gr(B).

Theorem 1.1. Let B be a configuration of n points in general position. Then
ex(N, B) <4N*™",

where n = 1/3nlog(3 gr(B)).

In order to prove Theorem 1.1 we will study another problem of independent interest.
Given a configuration B of n points and « > 0 a real number, let f(B, a) be the minimum
integer m such that there exists a configuration A of m points in the plane such that every a-
proportion of A contains a copy of B, that is, every X C A with |X| > «|A| contains a copy
of B. Let f(n,a) = max{f(B,«a) : B is in general position} be the maximum of f(B, )

over all order types of size n in general position. We give upper and lower bounds for f(n, a).

Theorem 1.2. Let « < 1/2 and n > 3. Then

n2

m < f(n’a) < n2n10g(1/a)_

On the probabilistic side, we will study problems related to the following random process.
Given an integer N > 0, we construct a set U C [0,1]? by randomly choosing N points in
the unit square uniformly and independently. We will often call U a random N-set. This
random process is well known and was already used in other combinatorial problems (see
for instance [7]). The problem of computing the probability that U has a certain order type
is not well understood. Valtr [34] computed the probability of a random set being convex,
but we do not know much more about the other cases. One of our goals is to provide bounds
for general order types.

Given an integer n > 0, a configuration A is n-universal if A contains a copy of every
order type of size n in general position. Our first probabilistic result gives the threshold for

the n-universal property up to a loglog factor.



Theorem 1.3. There exist positive real numbers ¢1 and co such that the following holds.
Let N > 0 be an integer and U a random N -set. Then,

)

1, if N>22""
lim P(U is n-universal) = .
nee 0, if N <2¥°",

The second result is a superexponential upper bound for the probability of obtaining a

random set without a copy of a fixed order type.

Theorem 1.4. For every configuration B, there exists a number ¢ := ¢(B) such that for

every sufficiently large N the following holds. If U is an N-random set, then

P(B ¢ U) < (;)N

This thesis is organized in the following way. In Chapter 2 we discuss preliminary results
on order types that will be helpful for our work. Section 2.1 contains results on the space of
realizations of order types. Some of these results are original and fundamental to the rest of
the work. Section 2.2 introduces some transformations in the real plane that preserve order
types and Section 2.3 solves Chazelle’s encoding problem, that is, the problem of finding
the minimum grid that contains all order types of a given size.

Chapter 3 is devoted to solving the two extremal problems presented above. Section 3.1
is on the study of the density problem in the plane (Theorem 1.2) and Section 3.2 is about
the study of the density problem in the grid (Theorem 1.1). In Chapter 4 we study the
probabilistic model presented in this introduction. Bounds for the probability of a general
order type and Theorem 1.3 are given in Section 4.1. The proof of Theorem 1.4 is presented

in Section 4.2. Throughout the work, we do not try to optimize the constants.



Chapter 2

Preliminary Results

In this chapter we will introduce some important concepts for our work. Denote by [n]
the set of integers {1,2,...,n}. Given two functions f,¢g : R — R, we say that f(z) =
O(g(z)) if and only if there exist some constants C' > 0 and x such that f(z) < Cg(x) for
every x > xo. Also we say that f(z) = o(g(x)) if and only if for every € > 0 there exists a x
such that f(z) < eg(x) for every & > xy. When there exist constants ¢; and ¢z and g such
that c1g(x) < f(z) < cag(x) we say that f(z) = O(g(x)). Now we proceed to introduce

basic properties about order types.

2.1 Order types

Given three points z = (z1,72), ¥ = (y1,y2), 2 = (21, 22) € R? let

1 r1 T2 1
oy =5 v 1.
zZ1 zZ9 1

be the signed area of the triangle xyz. Also let

-, ifx <0
sgnz = < 0, ifx=0
+, ifx>0

be the sign function of the real numbers.
Define y : (R?)3 — {—,0,+} as a function that sends an ordered triple of points in
the cartesian plane to the sign of their corresponding signed area. In other words, for an

oriented triple (z,y, 2) € (R?)? we have

x(x,y, z) = sgnlzyz].

Definition 2.1. A configuration of n points in the plane is an n-subset A C R%2. We say
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that two configurations A and B have the same order type, and denote by A =2 B ( A is
isomorphic to B), if there exist a bijection v : A — B such that

X(@,y,2) = x(u(x),0(y),1(2)), Va,y,z €A,

i.e., if L preserves the orientation of every ordered triple in A3.

Definition 2.1 says that having the same order type is an equivalence relation and there-
fore one can partition the set of configurations into equivalence classes. We call the equiv-
alence class of a configuration A as the order type of A. Notice that Definition 2.1 allows
configurations not in general position, i.e., configurations with three or more collinear points.
So, there exists order types not in general position.

A more geometric approach for defining order types can be given as follows: Consider
the directed straight line ﬁ/ passing through the points = and y, in this order. This straight
line divides the plane into two open half-planes, H™ and H~, the half-planes on the left and

right side of the straight line, respectively. A simple application of linear algebra gives us

+, ifze HT
x(7,y,2) = 0, ifzezy -
-, ifze H™

Given a configuration A of n points, one can uniquely characterizes its order type by
counting the number of points on the left or right side of every straight line determined
by A. More precisely, let M := M[A] = (m;;) be the matrix of entries in A x A such
that m;; is the number of points on the left side of the directed straight line a) for i #£ j
and m;; = —1 for i = j. If two configurations A and B are isomorphic, then there exists
bijection ¢ : A — B such that M[A] = M[.(A)]. In other words, if two configurations have
the same order type, then there exists a bijection which preserves the number of points on

each side of a line. The converse is also true.

Proposition 2.2 ([14], Theorem 1.8). Two configurations A and B have the same order
type if and only if there exists a bijection ¢ : A — B such that M[A] = M[.(4)].

This approach has the advantage of connecting the definition of order types with the
notion of classifying configurations by its arrangements of points and lines, which from
a practical point of view, makes it easier to identify different order types. For instance,
consider the configurations in Figure 2.1. A convex quadrilateral and a triangle with an
interior point. Although these two configurations have the same number of points, they do
not have the same order type. One can see that by noticing that the convex quadrilateral
has only two lines that divides the configuration in one point to the left and one to the
right (dashed lines) and a triangle with an interior point contains three such lines. Then by
Proposition 2.2 they have different order types. We can also see, by the same proposition,
that all convex n-gon have the same order type and we call this equivalence class as the

convex order type.
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Figure 2.1: Two configurations of size 4.

A very natural questions is to ask the number of distinct order types of size n. A first
try would be to use the natural estimation given by Definition 2.1. Since an order type
is uniquely determined by the orientation of ordered triples and there are only 3 choices
for every ordered triple, we obtain there are at most 3(2) distinct order types. A suprising
result is that this estimation is actually very far from the true. Goodman and Pollack [15]

showed that the number of distinct order types is almost exponential on n.
Theorem 2.3 ([15]). There are 2*71°87+0(M) distinct order types of size n.

In general, we will represent order types by their elements and consider any relation
between order types by its representatives. Thus for configurations A and B, we say that A
contains a copy of B if A contains an actual subset X of the same order type of B. When
there is no danger of confusion, we denote this relation by B C A. For example, a configu-
ration B contains a copy of a convex 5-gon if there exists a subset of B that it is isomorphic
to a convex 5-gon.

For a configuration B of size n, let
Bl ={Ac ®R*)": A= B}

be the set of ordered n-tuples in R? isomorphic to B, i.e., the set of realizations of the order

type of B in (R?)". Here we abuse the notation and identify an ordered n-tuple with its

underlying configuration. That is, an ordered n-tuple A = (aq,...,a,) is isomorphic to B
if the underlying set {a1,...,a,} is isomorphic to B.

Given an ordered n-tuple A = (ay,...,a,) in (R?)" we can define the vector y  : ([g]) —
{—,0,+} as

xa(i, j k) = x(ai,a5,ar), V1<i<j<k<n.

This definition allows us to characterize an order type by its possible labelings. In fact, for
a configuration B, let By,..., By be all the possible ordering of its points. Then the order
type of a configuration B can be characterized by the vectors xp,, for 1 <7 < nl. That is,
if a ordered n-tuple A is such that x4 = xp, for some 4, then A = B.

Although all definitions so far include configurations not in general position, in the text
we will work almost only with order types in general position. The main observation of this

section is that the set of realizations of an order type in general position is open.
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Proposition 2.4. Let B be a configuration of n points in general position. Then T'[B] is
open in R?".

Proof. Let x1,...,xm be the distinct vectors for all possible orderings of B, with m < n!
(Although we have n! possible orderings, some of them may generate the same vector). For
an ordered configuration A = (ay,...,a,) € (R?)" we have that A = B if and only if there
exists t € [m] such that x4 = x;. It follows that

r(B = J{A e B)": xa =l
t=0

Thus if we prove that {A € (R?)™ : xa = x:} is open for every 1 < t < m, then we are

done.
Let ® : (R?)" — {—,O,—|—}([gl) be the function given by ®(A) = xa. Since B is a
configuration in general position, it follows that x:(4,j,k) = + or x:(i,j,k) = — for dis-

(]
tinct 4, 7,k € [n] and 1 < ¢t < m, which means that x; corresponds to an open set in R(%),

Thus {A € (R®)" : xa = x¢} = ® !(x¢) is the preimage of an open set. Since x is, by
definition, a polynomial with 6 variables, we obtain that y is continuous and therefore ® is
also continuous. Finally, using that preimage of continuous function in a open set is open,
we obtain that {4 € (R?)": ya = x;} is open. O

Next we explore two related results: The first one shows that we can approximate the
probability of obtaining an order type in a continuous set by the probability of obtaining it
in a discrete set. The second one uses geometric properties to compute how much we can

perturbate a configuration B without changing its order type.

2.1.1 Probabilistic approximation

In this subsection we study how to approximate the probability of an order type in a
unit square by its probability in a grid. Consider the process described in the introduc-
tion, i.e., a n-random set U is a set obtained by choosing randomly and independently n
points in [0,1]2. The same process could be discretized by replacing the unit square by
the [m]?: For every integer m let Vj,, be the n-random set obtained by choosing uniformly
and independently n points in the grid [m]?. The next lemma shows that we can compute
probabilities in U by V,,.

Lemma 2.5. Let U be an n-random set in [0,1]? and for every integer m, let V,, be an

n-random set in [m]?. Then for any configuration B of n points, the following equality holds

P(U = B) = 1511 P(Vtrn = B)
A remark is that P(U = B) always exists. In fact, P(U = B) = f[o yjze Ipdp = w(B),
where B = ([0,1]2)" N T'[B] is all the possible ordered n-tuples isomorphic to B in the unit
square and p is the Lebesgue measure defined in R?”. There are two possible cases: If B

is in general position, then by Proposition 2.4 the set B is an intersection of a open and a
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closed set, therefore is Lebesgue measurable. If B is not in general position, one can show
(Corollary 2.7) that B is a subset of a set of measure 0 and is also Lebesgue measurable. This
proves the existence of the probability. Our intention is to show more, that B is measurable
in terms of Riemann integrals.

We will follow the approach in [31]. Given a bounded set C let R be a rectangle such

that C C R. The next theorem is a well-known result in multidimensional real analysis.

Theorem 2.6 ([31], Theorem 3.9). The function 1¢ : R — R is Riemann integrable if and
only if the boundary of C' has measure 0.

Theorem 2.6 gives us a characterization of integrable indicator functions by the measure

of the boundary of its set. Fortunately, we know how to calculate the measure of 0B.

Corollary 2.7. Let B be a configuration with n points, not necessarily in general position,
and let B = ([0,1]2)" NT[B]. Then the indicator function 15 : ([0,1]*)" — R is Riemann

integrable.

Proof. Let C be the set of all configuration of size n not in general position inside [0,1]2.
We claim that C has measure 0. By the previous observation, we know that u(C) =
P(U € C) for an n-random set U. Given a triple {x,y,z} € (g), let E,, . be the event
that x,y, z are collinear. Since a straight line has measure 0 in the euclidean plane, we
obtain that P(E,, .) = 0 for every {z,y,z} € (g) Therefore, an union bound argument
shows that

WC) =PUeC)S Y P(E.y.) =0
{z,y,2}€(5)

If B is not in general position, then B C C. Therefore, u(B) < p(C) = 0 and 1p is
Riemann integrable by Theorem 2.6, since p(0B) < p(B) = 0. Now if B is in general
position, note that OB is contained in the union of the borders of I'[B] and ([0, 1]?)™. It is
easy to show that 1(9([0,1]%)") = 0. In the proof of Proposition 2.4 we proved that I'[B] is
a union of preimages of open sets of a continuous polynomials ®. Those preimages are of
the form O = {4 € (R?)" : x4 = xc} = ® 1 (xc) for some ordered n-tuple C' isomorphic
to B. Since preimage of a closed set of a continuous function is closed, we obtain that 0O is
the preimage of the border of the open set defined by the image of x¢o. However the border
of the image of y¢ corresponds to the image of configurations D such that for some i, j, k,
we have xp (i, j, k) = 0. That is, the preimage of the border corresponds to a union of order
types not in general position, which implies that 0O C C. Since I'[B] is a union of such O’s,
it follows that p(OT'[B]) =0 and u(B) = 0. O

A partition of [0,1]¢ is a collection P = (Py,...,Py), where each P; is a partition of
intervals of [0,1]. Let P; partitions [0,1] into 0 = ag; < a1; < --- < a,; = 1. Thus P
partitions [0, 1] into 15 . . . tq rectangles Py of the form [a;, —1.1, @iy, 1] X -+ X [@i,—1.4, @iy.d)-

Define the oscillation of a function f : [0,1]? — R in a rectangle B as

w(f, B) = sup f(a) — inf f(z).

z€B zEB
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One characterization given in [31] of f being Riemann integrable is that for every ¢ > 0

there exists a partition P such that

S Wl Pou(P) <=

Iefti]x - x[ta]

Given a rectangle B, let

diam(B) = sup [l — |
z,yeB
be the diameter of B. The next theorem is a technical result that shows that the last

characterization holds for every partition with sufficiently small rectangles.

Theorem 2.8. Let f : [0,1]¢ — R be a Riemann integrable function and € > 0. Then
there exists § > 0 such that any partition P of [0,1]% with diam(P;) < §, for every I €

[t1] x -+ X [tq], satisfies

S w(f Pu(Pr) <e.

I€ty]x X [tq]

Proof. Since f is Riemann integrable, there exists a partition ¢ such that

Y w(f.QNmQy) <

JE[r1] XX [rq]

| ™

Consider any partition P of [0,1]? such that diam(P;) < §. Fixed a rectangle Py of P there
are two possibilities: Either there exists a rectangle Q; of @ such that P C @y, or Py
intersects two or more rectangles of ). In the first case, by the definition of oscillation, we
obtain w(f, Pr) < w(f,®@s). In the second case, we use that w(f, Pr) < 2M, where M =
SUpgeo,1ye |f(2)]- Let P1 be the collection of rectangles satisfying the first case, and let Py

be the collection of rectangles satisfying the second case. Thus,

Yo w POuP) < > w(f,QuP) + Y 2Mu(Pr)

Ie[t1]x X [tq] PrePy Prep;
< 3w, Q@) +2M Y p(Pr)
PrePy PrePy
g
<g+2M Y u(Pr).
PreP2

Therefore we only need to estimate the volume of all rectangles in Ps.

Write @ = (Q1, .. .,Qq) where Q; partitions [0,1] into 0 = bg; < by ; < --- < b, ; = 1.
Every rectangle in P, intersects at least one hyperplane of the form [0,1] x --- x {b;;} X
.-+ % [0,1]. Then it makes sense to estimate the volume of all rectangles intersecting such a
hyperplane. Since diam(Py) < d, any side of P; measures less than §. Thus, the volume is

less than 6. Because are 7 + - - - +rg points b; ; and therefore r1 + - - - +r4 hyperplanes, we
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obtain
ST ulPr) <8+ ).
PrePsy
Taking § = m’ we have
S Wl PP < c42M Y Py <t =
’ =2 272

Ie[tl]X---X[td] PrePs

Now we are able to prove Lemma 2.5.

Proof of Lemma 2.5. For every m € N, let P™ = (P/™,..., PJ") be a partition of [0, 1]?7,
where P/ ={0,1/m,...,(m —1)/m, 1} for every 1 <i < 2n. Thus, every rectangle in P™
is a hypercube of sides 1/m with diameter \/3/ m. Theorem 2.8 and Corollary 2.7 yields
that

Igdy = lim 1g(ar)u(Pr),
[ = i 3 ,

I€[m]?n

for any choice of a; inside the rectangle P;*.
On the other hand, for every integer m let G,, be the set of centers of the m x m grid

of size 1/m, i.e.,

20—1 25—1 .
Gm{( 2m’ Qm)lgl,jém}

The probability P(V,, & B) is equal to the probability of choosing uniformly and inde-
pendently n points of the set G,,. Write V,,, = {x1,...,2,} with z; € G,,, and let z =
(21,...,2,) € [m]?". Tt turns out that x is the center of some hypercube in P. Thus,

P(Vm=B)= > 1g(cr)u(Py),

1€[m]2n

where c; is the center of the hypercube P;*. Then by the previous paragraph,

P(U = B) :/ Igdp = lim 1g(cr)p(Pr*) = lim P(V,, = B).
[0,1]2n m— o0 Ie%% I m—00 m

2.1.2 Geometric lemma

Another consequence of I'[B] being open, for B in general position, is that for every
configuration A & B there exists a small neighbourhood in each point of A such that any

transversal is also in T'[B], i.e, isomorphic to B. This leads to the following natural definition.
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Definition 2.9. A configuration X is an e-perturbation of Y, if there exists a bijection v :
X =Y such that ||x — o(x)|| < € for every x € X. For ordered n-tuples U,V we say that U

is an e-perturbation of V' if ||u; — v;|| < € for every 1 <i <n.

One can use Definition 2.9 to restate the definition of I'[B] being open. Indeed, T'[B] is
open if for every A € I'[B], there exists € := £(A) > 0 such that every e-perturbation of A
is in T'[B]. That is, every e-perturbation of A is isomorphic to A

Our main lemma in this subsection gives an estimate on the size of €. For a configura-
tion X define A, (X) as the minimum area of a triangle with vertices in X. This value
will be positive because B is in general position.

Amin(X) )_

Lemma 2.10. Let X C [0, L]? be a configutation in general position. Then every (W

perturbation of X is isomorphic to X.
The proof relies on the following geometric fact.

Proposition 2.11. Let ABC be a triangle and | a straight line. Define d(P,l) as the
minimum distance from a point P to l. If h is the minimal height of ABC, then

max{d(A,1), d(B.1), d(C,1)} >

| >

Proof. Fix a direction and consider all lines in this direction. Out of all these lines, there
are two of them [y, [5, each one touching a vertex of ABC, such that the gap between them
contains ABC'. It is not hard to see that the optimal line, in the fixed direction, which

minimizes the desired function is the line equally spaced to 1 and Iy (see Figure 2.2).

Figure 2.2: The optimal line in a fixed direction (dashed)

Then it follows that for any line [ in the fixed direction, max{d(4,1), d(B,1), d(C,1)} >
d(ly,12)/2, where d(l1,l2) is the distance between lines [; and lp. It remains now to prove
that d(ly,l2) > h. Suppose without loss of generality that I; and ls touch vertices A and B,
respectively, and that C' is on the half upper plane defined by the line passing through A
and B. Moreover, suppose that B and C' are not in the same half open plane determined
by the perpendicular line s to l1,ls passing through A. We can divide into two cases:

Case 1: B is on s.

If B is on s, it follows that d(l;,ls) = [(AB). Since the minimum height is less than or
equal the length of any side of ABC' we are done.
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Case 2: B is on the lower half open plane determined by s.

Let P be the intersection of s with Iy and D the foot of the altitude from vertex A
(Figure 2.3). It is evident that ZABD < ZABP. Using this and that ABD and ABP share
the same hypotenuse, we obtain d(l1,ls) = AP > AD > h.

Figure 2.3: B is on the lower half plane of s

O

Proposition 2.11 allows us to show that any sufficient small perturbation of a triangle

maintains the signed area. This is sufficient to prove Lemma 2.10.

Proof of Lemma 2.10. Let € = A‘zi‘i\‘/%x) and write X = {z1,...,z,}. Let Y = {y1,...,yn}
be an e-perturbation of X, ie., a configuration of points such that ||z; — y;|| < € for
all 1 <4 <n. Our aim is to show that sgn[z;z;x,] = sguly;y;yx] for every 1 < i,5,k < n,
therefore X = Y. Since X is in general position, this is exactly the same as proving
that [x;x;24)[yiy;ys] > 0 for every 1 < 4,5,k < n. Suppose that it is not true. Then
there exist 1 < 4,7,k < n such that [z;z;x][y;y;y%] < 0. We may assume without loss of
generality that [z1z223][y1y2y3] < 0.

Fort € [0,1] and 1 <4 < 3, let z;(t) = (1—t)x;+ty;. This continuous curve represents the
straight line trajectory from point z; = 2;(0) to point y; = z;(1). Consider the continuous
function ¢ : [0,1] — R given by

o(t) = [m13223][21 (1) 22() 23(¢)].

Since [x12223) # 0, we have ¢(0) = [z17223]% > 0 and ¢(1) = [z12923][y1y2y3] < 0. Thus,
by continuity of ¢, there exists to € (0, 1] such that ¢(tg) = 0.

This means that [z1(t0)z2(t0)z3(to)] = 0, or in other words, that z1(to), z2(to) and z3(to)
are collinear. Let [ be the line passing through these three points. An easy calculation shows
that

d(wi, 1) < lzs = zi(to)l| < [los —will <&, 1<i<3.
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By Proposition 2.11 we have h/2 < min{d(z1,1), d(x2,1), d(x3,1)} < &, where h is the

minimum height of xyxox3. Thus,

h- s llo — 2]l Lhv2
Buin(X) < [forasas) = stz ol L2
Anin (X)
LV2

Hence, we obtain ¢ > , which is a contradiction. O

2.2 Transformations preserving order types

In the last section we discussed a little about the space of realizations of an order type
in general position being open (Proposition 2.4). This led to the observation that any small
perturbation of a configuration does not change its order type and we were able to estimate
how much we can perturb (Lemma 2.5). However, these perturbations are only local and do
not give us information when the configurations are far from each other. Thus it is necessary
to find other ways to preserve an order type. In this section we will study two families of

transformations that have this property.

2.2.1 Affine transformation
An affine transformation T : R? — R2 is given by

T(x) = Az +b, YzcR?

where A is a non-singular 2 x 2 real matrix and b € R2. Types of affine transformations

includes homothety, stretching and translation.

Figure 2.4: A homothety

Affine transformations preserve ratio between area of triangles. One can see that by
noticing that

[T(z)T(y)T(2)] = det(A) - [zyz], Vz,y,z € R%
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Indeed, writing that

A= ¢ b], a,b,c,d € R,
c d
we have

(T(z))r (T(x))2 1 ary +bry crp +dry 1

1 1

T@THTE =5 (W) @@ 1| =y |ap +by en+dy 1

(T(2)1 (T(2)2 1 az1 +bzg cz1+dzg 1

L r1 To 1 c 0

=l w1 0| = det(A)[zys].

21 Z92 1110 0 1

Therefore, if x,y, z,u,v,w € R?, then

[T(@)TW)T(2)] _ det(A)fzyz] _ [zyz]

[T(uw)T(0)T(w)]  det(A)[uvw]  [uvw]’

We say that an affine transformation T is positive if det(A) > 0. Otherwise, we say
that T is negative. Another important observation is that positive affine transformations

preserve order types.

Proposition 2.12. If T : R? — R? is a positive affine transformation, then for every
configuration X we have that T(X) = X.

Proof. Let X = {x1,...,2,} C R? be a configuration of size n and write T'(z) = Az + b
for A non-singular and b € R?. We want to prove that 7(X) = X or that
X(T (), T(x;), T(xr)) = x(@i, x5, 26), YV1<4,5,k<n.
However, this is true since
X(T (i), T(x;), T(xx)) = sgn[T(2:)T(x;)T (xx)] = sgn(det(A)[zizjax]) = sgnlriz;vy],

for det(A) > 0. O

2.2.2 Projective transformation

Given two points x,y € R3, we say that x ~ y if and only if there exists A € R such
that z; = Ay; for every 1 < ¢ < 3. The relation ~ is an equivalence relation and then it
makes sense to define the quotient R3/ ~. This quotient is called the real projective plane
and is usually denoted by RP2. By this definition, points and lines in the projective plane
are the quotient of lines and planes passing through the origin in R3, respectively. Also
points and lines are represented in RP? by triples in R? and a line [a, b, c] in RP? passes
through a point [z,vy, 2] € RP? if ax + by + cz = 0.
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One can view the projective plane as the real plane plus an extra line, which is called the
infinity line. In fact, there exists a bijection between the points of the form [a, b, 1], a,b € R
with the real plane R2. The infinity line consists of all points of the form [a,b,0] and
therefore it is the quotient of the plane z = 0. One of the major differences created by
adding the infinity line is that in projective geometry every two lines intersect in a point
and the intersection of parallel lines occurs in the infinity line. For a more detailed and
precise introduction we suggest [30] and [32].

A projective transformation S : RP?2 — RP? is a transformation given by

ailr a2 ais T1
S([x1, 72, 23]) = |ao1 age a3 |2

az1 asz2 as3 zs3

where A = (a;;) is a non-singular matrix. That is, a projective transformation is the quotient
of a linear transformation in R3.

Projective transformations preserve incidence. They send concurrent lines to concurrent
lines, collinear points to collinear points and intersections to their corresponding intersec-
tion. However, they do not preserve ratio between lengths and areas. A visual example
of such transformations can be found in Figure 2.5. In Figure 2.5 we have a projective
transformation that sends plane P to plane . This transformation also sends the square

in P to a convex quadrilateral in Q).

Figure 2.5: A projective transformation
The immersion i : R? < RP? of the real plane in the projective plane given by
i(v,y) = [v,y,1], Va,yeR

allows us to consider the real plane as a subset of the projective plane. With this in mind,

we consider affine transformations as a particular case of projective transformation. In fact,
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given an affine transformation 7 : R? — R2,

o=l |

where the 2 X 2 matrix is non-singular and a, b, ¢,d, e, f € R. Then the projective transfor-
mation S : RP2 — RP? given by

e

f

] =(axz+cy+ebr+dy+f), Va,y€eR,

a ¢
S([x1,me,z3]) = |b d f| |z2| = [ax1 + cx2 + ex3, bxy + dxy + frs, 3]
0 0

sends points of the form [z, y, 1] to [az+cy+ e, bx +dy + f,1] and points of the form [z, y, 0]
to [ax + cy, bx + dy, 0]. That is, restricet to the real plane is the affine transformation 7" and
sends the infinity line to itself.

We will be interested in projective transformations that send configurations in the real
plane to configurations also in the real plane. Since our definition of order type deals with
arrangement of points and lines and projective transformations preserve incidence, it is
natural to consider them as good candidates to preserve order types. Unfortunately, this
is not always true. The next proposition shows that every four points general position
in R? C RP? can be sent to the unit square in R?> ¢ RP2. The unit square is the square
in RP? whose vertices are [0,0,1],[1,0,1],[1,1,1],[0,1,1].

Proposition 2.13. For every four points in general position in the real plane, there exists

a projective transformation that sends them to the unit square.

Proof. Le A, B,C, D € R? be four points in general position and let P, Q) be the intersection
of AB with CD and AD with BC, respectively. Consider a projective transformation S;
that sends the line PQ to the infinity line. This is always possible, since the line PQ) and
the infinity line are subspaces of rank 2 in R3.

Note that the configuration A’ = S1(A4), B’ = S1(B),C’ = 51(C), D’ = S1(D) is in the
real plane, because A, B, C, D do not belong to the line PQ. Let P’ = S1(P) and Q' = S(Q)
be the corresponding points to P and @ in the infnity line. Since S; preserves incidence,
we obtain that A’B’ and C’D’ intersect on the infinity line. Therefore, A’B’ || C'D’.
Similarly, we obtain A’D’ || B'C" and A’B’C'D’ is a parallelogram. Consider now the
affine trasnformation 7' that sends B’ — A’ to (1,0), D' — A’ to (0,1) and A’ to (0,0).
Then, T sends A’B’C’D’ to the unit square (Here we consider A’, B',C’, D' as points in R?).
Let S be the projective transformation that when restricting to the real plane is the affine
transformation 7. Thus S o Ss is a projective transformation that sends ABCD into the

unit square. O

As a consequence, Proposition 2.13 implies that for every convex quadrilateral and tri-
angle with an interior point, there exists a projective transformation sending one to another.
Although the last result shows that not every projective transformation preserves order

types, we could still hope that the converse is true, that for every pair of isomorphic con-
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figurations there exists a projective transformation sending one to another. However, this
is also not the case. One can notice that the space of configurations obtained by projective
transformations of a fixed configuration X is connected, but there exists order types with
space of realization disonnected. For instance, in [35] N. White provides a configuration X
of size 42 such that T'[X] is disconnected.

Despite this fact, we shall construct a family of order types such that for every pair
of configurations, there exists a projective transformation sending one to another. This
construction will be helpful later to obtain a lower bound for the Chazelle’s encoding problem

(see Lemma 2.21).

Definition 2.14. A order type X = {x1,xa,...,2,} with n > 4 is said to be constructible
if {x1,x2, 23,24} are in general position and for 4 < i < n, x; is the intersection point of

exactly two previous lines xpxq and x,x,, for 1 <p,q,r,s <i.

For instance, by Definition 2.14 every configuration with 4 poinst in general position is
constructible and the configuration in Figure 2.6 is also constructible. However, a convex
pentagon is not constructible. In general, for n > 4 every constructible configuration with n

points is not in general position.

L6

T4

Z3

I Zs
T2

Figure 2.6: A constructible configuration

As we said previously, constructible order types are a family of examples of order types
such that for every two isomorphic configuration there exists an projective transformation

connecting them.

Proposition 2.15. Let X and Y be isomorphic constructible configuration. Then there

exists a projective transformation S such that Y = S(X).

Proof. Let X ={x1,...,2,}, Y ={y1,...,yn} and suppose that

X(xlaxmmk):X(ymy]ayk), V1 SZ,],kSTL

Since X and Y are constructible, they are determined only by the first four points {z1, ..., 24}
and {y1,...,¥4}. Thus we just need to prove that there exists a projective transforma-
tion sending {x1,...,24} to {y1,...,y4}. Because these two sets of points are in general

position, then by Proposition 2.13 there exists projective transformations Sx,Sy send-
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ing {z1,...,24},{91,...,ysa} to the unit square, respectively. Thus the projective transfor-
mation S = S;l oSx sends X to Y. O

We already stated that projective transformations does not preserve the ratio between
areas of triangles or lenghts of sides. However, they preserve the cross ratio between these
measures. Given three points z,7, 2 € R? we can extend the concept of signed area of zyz
by

NN
<
[
<
V]
<
w

[zyz] =

Definition 2.16. Given five points in the projective plane [z],[y], [2], [u], [v] € RP? we define
the cross-ratio area of these points by

[zyz][zuv]

CR{els [, [2]: [l o)) = e

where x,y, z,u,v are representatives in R3.

Note that CR is well defined on RP?. In fact, suppose that we choose other representa-
tives 2’ ~ x, ¥ ~y, 2’ ~ z, u' ~ u, v ~ v. Thus, there exists Az, Ay, A\, Ay, Ay € R such

that o' = Az, ¥/ = A\yy, 2/ = Az, v = Ay, v/ = A\yv and then it follows that

non o o oy - Y EE YT (A Ay Az [zyz]) (A Adudo [zuv])
CR([l‘ ]7 [y ]a [Z ]7 [U’ ]a [’U ]) [w’y’u’][m’z’v’] - ()\mAyAu[ny])()\zAzAv[«'EZ'UD
_ wyz]lruv] 2 A Tul. o
= yulen] CR([z]; [y]; [2], [u], [v])

If the points are in the real plane, we can always choose a representative of the form [a, b, 1]
with a,b € R, and in this case the cross-ratio area is exactly the cross ratio area between
triangles xyz, xuv, xyu, x2v.

Definition 2.16 is similar to the definition of cross-ratio for four points in a line. Let A, B,C, D

be four points in a line, then we can define their cross-ratio as

AB-CD
[A,B,C,D] = —————.
AC - BD
The next proposition shows that cross-ratio area is preserved by projective transformations.

Proposition 2.17. Let S be a projective transformation and [z], [y], [2], [u], [v] € RP? points
in the projective plane. Then it follows that

CR([; [yl [2]; [ul, [v]) = CR(S([2]); S([y]), S([2]), S([u]), S([v]))

Proof. Let A be the non-singular 3 x 3 matrix that defines the projective transformation S,

i.e., A is the matrix such that S([z]) = [Az] for every z € R3. Then by a simple calculation
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we obtain

CR(S([=]); S([yD), S([=D), S([u]), S([v])) = CR([Az]; [Ay], [A2], [Au], [Av])

_ [Az Ay Az|[Az AuAv] _ det(A)?[zyz][ruv]
[AzAyAu][AxzAzAv]  det(A)?[xyu][xzv]
[xyz][zuv] 2. ATl T

For a configuration X in the real plane, let

CR(X) = max CR(i; xj, Tk, 1, Tm),

Ti\Tj,Th,TL,Tm €X

be the cross-ratio of X. For an order type X we let

CR(X) = inf CR(Y),
Y~X
be its cross-ratio. One immediate consequence of Proposition 2.17 is that if a projective
transformation preserves the order type of a configuration, then it also preserves its cross-

ratio.

2.3 Chazelle’s encoding

A consequence of Theorem 2.3 is that we can store all order types of size n in O(nlogn)
bits. However, it seems difficult to store this information in O(nlogn) bits without losing
the geometric and combinatorial properties of order types. Interested in such a problem, B.
Chazelle proposed the question of finding the minimum size of a grid that contains all order

types in general position of size n. Let
gr(n) = max{gr(B) : B order type of size n}.

be the grid size parameter for the integer n.

Note that we shall only consider order types B in general position since there exists order
types not in general position with no rational realization. That is, there exists an order
type with no configurations with only rational coordinates (see [19], p.33). The problem
of determining gr(n) is known as the Chazelle’s encoding problem and it was solved by
Goodman, Pollack and Sturmfels [13]. They showed that gr(n) is double exponential, which
is quite unexpected.

Theorem 2.18 ([13]). There exist positive real numbers ¢; and ca such that for every

sufficiently large n the following holds,

921" < ar(n) < 922"
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In this section, we show their proof of Theorem 2.18. The proof is divided into two
parts (Lemmas 2.23 and 2.25). In the first part, we exhibit an order type with gr parameter
double exponential in n. In the second part, we use a result of algebraic geometry to provide

an upper bound.

2.3.1 The lower bound

We start by giving an overview of the proof. First we construct a constructible (Defini-
tion 2.14) order type C such that its cross-ratio is double exponential in the size of C, this
is the content of Lemma 2.19. However, the order type C' will not be in general position.
In order to solve that, we use a method developed by Sturmfels and White [20] to create
an order type B in general position called scattering (Lemma 2.21). By Proposition 2.22
we obtain that the cross-ratio of B is as big as the cross-ratio of C. Finally, we provide
a relation between cross-ratios and the grid parameter, which will imply our lower bound.

Now we give more details.

Lemma 2.19. For every integer r, there exists a constructible order type C of size 3r + 8
with CR(C) > 2%".

Proof. Consider the configuration Xy = {1, 2, 3,24} in the projective plane, where z; =
[1,0,0], 22 = [0,1,0], 23 = [1,0,1] and x4 = [0,1,1]. The configuration X, is in general
position since no three points are collinear. We construct Xg by adding 4 new points in Xj.

These new points are defined as follows

x5 = [0,0,1] = [1,0,0][1,0,1] N[0, 1, 0}[0, 1, 1],

Te = [la L, 1] = [17070][03 1a 1] N [O’ 1a0][1a07 1},

a7 =[1,—1,0] = [1,0,1][1,1,0] N [1,0,0][0, 1,0],
[

xs = [2,0,1] = [1,1,1][1,—1,0] N [1,0,1][1,0,0].

Now note that from [1,0,0], [0, 1,0], [1,0,1], [0,1,1], [1,—1,0] and [a,0, 1] we can con-
struct the point [a2,0,1]. This is done by constructing

[07 a, 1] = [avov ]-M]-a 71,0] n [O’ 170} [07 ]-7 1]7
[a,—1,0] = [a,0,1][0,1,1] N [1,0,0][0, 1,0],
[a?,0,1] = [0, a,1][a, —1,0] N [1,0,0][1,0, 1],

as shown in Figure 2.7.
Thus we can define recursively 3r + 8 points in the following way. For every 1 <t <r,

we have

T3p46 = T3(4—1)48T7 N TaZg = Ty1—1)4s8[1, —1,0] N [0,1,0][0, 1, 1],
T3p47 = T3(—1)48%T4 N X172 = T3(,—1)4s8(0, 1,1] N [1,0,0][0, 1, 0],

T3t48 = T3t46T3e47 (N T123 = T3i46Z3e4+7 N [1,0,0][1,0,1].
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[0‘1,0]2

[0, a,1]

[a2,0,1] [1,0,0]

Figure 2.7: Constructing [a?, 0, 1].

Let X3,45 be the configuration obtained by these 3r 4+ 8 points. A simple induction using
the contruction of Figure 2.7 shows that Xs,4s contains the points x4 = [0,1,1], 25 =
[0,0,1], z3,48 = [22",0,1], 23 = [1,0,1] and x; = [1,0,0]. Then we can estimate the

cross-ratio of Xg,1g by

_ [mazsasrys)[zarsa]
[4x523] (X423 4871]

CR(X3r48) > CR(2z4; x5, T3r48, T3, L1)

1 1/lo 1 1 o 1 1/]o 1 1
=(0 0 1/]1 0 1//]0 0 1|[22" 0 1|=22
22" 0 1/]1 0 Ol (1 0O 1/|1 0 0

Finally, let s be a line in RP? such that s contains no points of X3, . The projective
transformation S : RP? — RP? that sends s to the infinity line, sends X3, g to a config-
uration C in the real plane. We claim that every configuration A isomorphic to C is such
that CR(A) > 22". Indeed, since X3,,g is determined by its first four points and projec-
tive transformations preserve incidence we have that the order type of C' is constructible.
Thus, by Proposition 2.15, there exists a projective transformation 7' : RP? — RP? such
that A = T'(C). By Proposition 2.17, we obtain

CR(A) = CR(T(C)) = CR((T 0 )(X3r48)) = CR(Xa,45) > 2%,

therefore CR(C) > 22". O

The order type C obtained in Lemma 2.19 is not in general position. In order to obtain
a order type in general position we will use a method developed by Sturmfels and White [20]
called scattering. The method basically consists of replacing every point of a constructible
order type by four points such that the original point is contained in the convex hull of the

new ones.

Definition 2.20. A scattering of a point x € R? is the process of replacing x by four
points x1, Ta, T3, T4 such that x is in the convex hull of {x1,x2,23,24}. We say that a

configuration Y is scattered from X if Y is obtained from X by scattering some of its points.
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We say that an order type Y 1is scattered from X if for every configuration A =Y, there

exists a configuration B = X such that A is scattered from B.

o -9

Lo
°o--¢
Figure 2.8: Scattering of a configuration

Figure 2.8 shows a scattering of a configuration. The white points are the points of the
original configuration that were replaced by scattering. The next lemma shows that for
every constructible order type X we can always create an order type X’ in general position

by this process.

Lemma 2.21. Let X be a constructible order type of size n. Then there exists an order

type X' in general position, of size 4n — 12, scattered from X.

Proof. Write X = {x1,...,z,}. We will construct a sequence of order types Y,,, Y;,_1,..., Y}
in the following way. Let Y,, & X. For every 4 < i < n — 1, we construct an order type Y; of
size 4n—3i scattered from Y; 1, by replacing =;; with new points @;11, Ziy1,2, Zit1,3, Tit1,4
such that x;4; is in the interior of the convex hull of those points. The order type Y; also
has the property that any collinear triple of points is in {x1,...,2;}.

In order to do that, consider the configuration Y11 = {Z1,...,®i+1, Tit2,1,---s-- -, Tna}-
Since X is constructible and i + 1 > 4, we have that z;11 is the intersection point of two
lines z,x,Nxrxs for 1 < p,q,7,5 <i. Let Y; be the configuration obtained by replacing x;1
with

Tit+1,1 = Ti+1 +€1(Tp
Tit1,2 = Ti41 — €3

(
(
Tiy1,3 = Ti41 — 55(%
(

— Tq)
Tp — Tq)
— Zq)
Tit1,4 = Tit1 +e7(Tp — q)

where €1,...,eg > 0 are small enough such that x(2iy1;,y,2) = x(Tit1,y,2) for ev-
ery 1 < j <4 and {y,z} C Yiy1 \ {wit1} such that {z;11,y, 2} are not collinear. Also
we choose €1, . .., s in such a way that every line determined by the set {®j+1,1,...,Zit1,4}
does not intersect any point of Y;. This can be done, for instance, by choosing &1 > e5 >
oo > eg. If x(wi41,y,2) = 0, then because €1,...,e5 are all greater than zero we have

that x(zit1,5,9,2) # 0, for 1 < j < 4. This implies that every collinear triple in ¥; does



2.3. CHAZELLE’S ENCODING 23

not contain x;41,1,...,%it1,4 as a element and therefore by induction every collinear triple
of V; isin {x1,...,2;}. It remains to prove that the order type Y; is scattered from Y; i,
that is, for every configuration A Y}, there exists a configuration B = Y;,; such that A is
scattered from B.

We define a function ¢ : T'[Y;] — (R?)#73=3 in the following way. Let A € T[Y]]
and ap, g, Gr, Gs, Git1,1, Gi+1,2, Gi+1,3, Gi+1,4 € A be the points corresponding to x,, x4,
Tr, Ts, Tit1,1, Tit1,2, Tit1,3, Tit1,4 € Y;, respectively. Define ¢(A) as the configuration
obtained by removing a; 1,1, @i+1,2, @i+1,3 and a;41,4 from A and adding the point a;; =
apaq Naras. First note that A is scattered from ¢(A). Indeed, because A = Y; we have
that {a;+1,1,...,ai41.4} is a convex quadrilateral and apaq, aras intersects in its interior.
Therefore {ait1,1,--.,ai+1,4} is a scattering of a;41.

Now we claim that ¢(A) € T'[Y;+1]. Let ¢ : Y; — A be a bijection such that x(z,y,z) =
x(e(x), t(y), L(2)) for every (z,y, z) € Y. Then since that x(z;+1,9,2) = x(air1.1,t(y),(2)) =
o= x(ait1.4,(y), t(2)) for every y,z € Yip1 \ {zit1} such that {z;y1,y,2 # 0} are not
collinear and a;41 is in the interior of {a;111, ..., Gi+1,4}, we obtain that x(a;11,t(y),(2)) =
X(@iv1, 9, 2). If x(2i41,y,2) =0and y, 2 € Y;11 \ {41}, then {z;41,y, 2} are collinear. By
Definition 2.14, this implies that y, z are on the lines z,x4 or z,x,. Therefore ¢(y), ¢(z) are on
the lines apaq or asa,, which yields x(ait+1, t(y), ¢(z)) = 0. Thus the function 7 : Y;11 — ¢(A)
defined by i(z;+1) = a;+1 and i(y) = ¢(y) for y € Yip1 \ {x;41} is such that

X(SL‘, Y, Z) = X(Z($)7 Z(y)v Z<Z))7 Vz,y,2 € Vi,

and ¢(A) 2 Y;y1. This concludes that Y; is scattered from Y;i1.

Finally, let X’ = Y,. By induction, we obtain that a collinear triple in X’ only contain
points of {x1,z2,x3,24}. However, the subconfiguration {x1, z2, 23,24} is in general posi-
tion. Therefore, X’ is in general position. Also because scattering is transitive, we obtain
that X’ is scattered from X and X’ has size n + 3(n — 4) = 4n — 12. O

The next proposition shows that scattering configurations only increases its cross-ratio.

Proposition 2.22. Let z, y, z, u, v € R? such that y, z, u, v are collinear. Consider
the twenty points {x;}1<i<a, {Yiti<i<a, {Ziti<i<a, {wit1<i<a, {vi}1<i<a obtained by scat-

tering x, y, z, w, v. Then there exists 1 < 1i,j,k,l,m < 4 such that
CR($7 Y,z,u, U) S CR(x’H y]7 ey UL, ’Um)-

Proof. First note that because y, z, u, v are collinear, we have that

[zyz]lzun]  Jy—2|-lu—v] _

CR(x; y? Z? u’ v) = [y’ Z’ u? v]

[zyullzzo]  Jy—ul- |z —v]

where [y, z,u,v] is the cross-ratio between these four points. This is a consequence of the

fact that zyz, ryu, ruv and zzv have the same height. Therefore, the cross-ratio does not
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depend of x and we obtain that
CR(z;y, z,u,v) = CR(z;y, 2,u,v), VI1<i<A4.

Another important observation is that we can compute the cross-ratio only using the angles
determined by x. Let 0., 0y, 0yu, 0., be the angles determined by the lines zy with xz, zu
with zv, zy with zu and xz with xv, respectively. Thus,

[zyz][zuv]  (Jz —y|- |z — 2[sin,.)(|z — u| - |x — v]sinby,)

CR(@;y, 2,u,v) = [zyul[zzv]  (Jo —y| - |2 — u|sin,,)(|z — 2| - |2 — v|sinb,,)

sin 6, sin 0,

 sinf,,sind,,’
Fix the point x1. Suppose without loss of generality that y, z, u, v are in the order shown
in Figure 2.9. Since y is in the convex hull determined by y1, y2, ys, ¥4, there exists a choice
of y; that increases 6,., 0,, and a choice of y; that decreases 0., 6,,. It turns out, by

a quick computation, that one of those choices does not decrease the ratio sin 6./ sinfy,.

Therefore, for the chosen j, we have

CR(SL‘l;y,Z,UqU) < CR(Il;yj7Zauav)'

Figure 2.9: Choosing y;

Fixing y; and repeating the process for z,u,v we can choose zy, u;, vy, such that
CR(xa Y,z,u, ’U) < CR(xh Yj, 2, U, ’U) < CR(xl; Yjs Zk, UL, ’Um)a

which concludes the proof. O
Now we are able to provide a lower bound for gr(n).

Lemma 2.23. For n > 240, there exists an order type B of size n such that

gr(B) > 22",
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Proof. The proof now is just a compilation of the previous results. Consider the order
type C of 3r 4+ 8 points obtained by Lemma 2.19. By Lemma 2.21, there exists an order
type B in general position, of 12r + 20 points, such that B is scattered from C.

Let X = B be a configuration of order type B. Since B is scattered from C, there
exists a configuration Y = C such that X is scattered from Y. However, as we already
saw in the proof of Lemma 2.19, there exists a projective transformation S : RP? — RP?
such that ¥ = S(X3,48). Let z = S([0,1,1]), y = S([0,0,1]), z = S([2¥",0,1]), u =
S([1,0,1]), v = S([1,0,0]) be the corresponding points in Y. By Proposition 2.17, we obtain
that

CR(Y) > CR(z;y, z,u,v) = 22",

Also y, z, u, v are collinear because projective transformations preserve incidence. Therefore,

by Proposition 2.22, there exists points z;, y;, 2k, Ui, Um € X such that
CR(X) > CR(zs;yj, 2k, U1, V) > CR(z;y, 2, u,v) = 22"

Thus, by the generality of X, we obtain CR(B) > 22",
Now let M = gr(B) and suppose that X 2 B is a configuration isomorphic to B with
vertices in [M]?. Then it is possible to estimate CR(X) by the grid. Indeed,

CR(X)= max
Therefore,
M > CR(X)Y* > CR(B)"/* > 22"~

and we are done by setting r = 75(n — 20).

2.3.2 The upper bound

For the upper bound we will use the following result by Grigor’ev and Vorobjov [18] on

solutions of simultaneous inequalities of a semi-algebraic set.

Theorem 2.24 ([18], Lemma 10). Suppose the polynomials hy,..., hy € Z[Xy,...,X,)
satisfy the bounds deg(h;) < d and all coefficients are smaller in absolute value than M.
If W is any connected component of the semi-algebraic set defined by the system hy >
0,...,hg > 0, then W intersects the ball in R™ of radius R = exp((log M + logk)(d™™))

centered at the origin for some natural number q that does not depend on hy, ..., h.
As a consequence we can prove the following result.

Lemma 2.25. There exists a positive constant ¢ such that for sufficiently large n the fol-
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lowing holds. If X is an order type of size n, then it follows that
gr(X) <227,

Proof. Let X be an order type of size n. Our goal is to describe the set I'[X] as a semi-
algebraic set as in Theorem 2.24. However, the space I'[X] is defined as a union of systems
composed by strict inequalities. Nevertheless, one can circumvent this issue by considering
a smaller subset of T'[X].

Fix an ordering X = (1, ..., 2,) and consider the subset W = {A € R?" : x4 = xx} C
I'[X]. Note that the set W is represented by a system of the form

X(ai;aj7ak¢) = X(xiaxj7xk)7 vahajaak S A7

where these functions assume values {—, +} when the indices are distinct. In other words,

we can represent W by a system of (g) strict inequalities given by
hijk(ai,aj,ak)>0, V1§i<j<k§n,

where h;j, € Z[X1, ..., Xg) are polynomials such that |h;;, (2, y, 2)| = |[zyz]| for z,y, 2 € R%
Therefore, by the definition of x, h;;i is a polynomial with 6 variables, maximum absolute
value of a coefficient 1 and degree 2.

Now let W be the set of solutions of the following system
hijk(ai,aj,ak)ZL V1§i<j<k§n,

for the same polynomials defined earlier. Note that a solution to this system is a solution
to the previous one. That is, W C W’. Therefore we can use Theorem 2.24 to obtain a
configuration A € W C W C I'[X] with bounded size. Indeed, by Theorem 2.24, we have
that W intersects a ball centered at the origin of radius
R= e(logM+logk)(d2q”) < €3~22q" logn 223‘1”

for sufficiently large n. This implies that there exists a configuration A = X inside [- R, R]*.
By doing a translation, we can actually assume that A is inside the [0,2R]? square. Also
because A C W, we have that

llaiajar]| = [hijr(as, aj, ar)| > 1,

and therefore Ay (A) > 1, where Anin(A) is the minimum area of a triangle in A.
Consider the configuration obtained by a dilation A’ = {2R-a : a € A}. Since dilation is
an affine transformation, we have that A’ = A. Also note that A C [0,4R?] and Ay (A7) >
4R2. Therefore, by Lemma 2.10, every (@)—perturbation of A’ is isomorphic to X. Since
V2
2

every point in R? is at distance less than from a lattice point, there exists a configuration
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in [[4R?] + 1)? isomorphic to X. Thus we conlude that
o7an

gr(X) <4R*+2 <5R? <227,

for sufficiently large n O



Chapter 3

Extremal Results

We study now extremal aspects of order types. One of the main topics in extremal
combinatorics is to study how large or small a collection of finite objects satisfying certain
property can be. There are many examples of objects and properties that can be studied in
this way. For instance, one of the major theorems in the field is the Erdés-Stone theorem
[11], which determines the maximal number of edges in a graph G without containing a fixed
subgraph H. In this work, our objects will be order types in general position and from now
on, unless otherwise stated, we assume that all configuration and order types are in general
position. We are interested in two different extremal questions.

The first one deals with the minimal size of configuration such that every dense subset

contains a copy of a fixed order type.

Definition 3.1. Given two configuration A, B € R? and a real number o > 0, we say
that A —, B if and only if for every X C A with |X| > alA|, there exists a subset Y C X
such that B 2 Y. In other words, A —, B if and only if every a-proportion of A contains
a copy of B.

Let « = 2/3 and B be the order type of a triangle with an interior point. Then Figure 3.1
is an example of configuration A such that A —, B. The reader is invited to check that
every subset of size 6 of A contains a triangle with an interior point.

Figure 3.1: Configuration A

For an order type B of n points and a real number a > 0, let

f(B,a) =min{|A| : A —, B},

28
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be the minimum size of an configuration such that every a-proportion contains a copy of B.
Also let

f(n,a) = max{f(B,«) : B order type with n points}

be the maximum of f over all order types of size n. A natural problem is to estimate those
two functions.

For instance, if B is a convex n-gon, then f(B,«) = [2]. In fact, if A is a configuration
such that A —, B, then every a-proportion of A contains a copy of B. Therefore a|A| >
|B| = n and we obtain that f(B,a) > [Z]. Now let C' be a convex [Z]-gon. Then every a-
proportion of C' is convex and has size at least n. Therefore C' —, B and f(B,a) < [2].
In Section 3.1 we shall explore more on this problem, providing general bounds and also
studying some specific configurations.

The second problem deals with the maximal subset of the grid without containing a copy

of a fixed order type. For an order type B and an integer N let
ex(N, B) = max{|A|: B ¢ AC [N]*},

be the maximum size of a subset of [N]? without a copy of B. The natural question is to
determine bounds for ex(N, B).
For instance, if N = 3 and B is a triangle with an interior point, then Figure 3.2 shows

a subset with 8 points without a copy of B. This proves that ex(3, B) = 8.

Figure 3.2: ex(3,B) =8

In Section 3.2 we shall give a general bound for the extremal number of a configuration
and a sharper bound for the convex case. We also draw a connection between these two

extremal problems, showing that ideas on the first one can be helpful to the second one.

3.1 Density problem in the plane

Now we give a proof of Theorem 1.2. We divide the proof into two lemmas, which
correspond to the upper and lower bound. The proof of the upper bound is based on
the observation that order types admit blow-ups, while the lower bound is based on the
corresponding graph problem studied by Brown and Rédl [6]. At the end, we provide a
family of configurations which shows that the asymptotic behavior of f as a function of n

depends on «.
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3.1.1 The upper bound

In section 2.1 it was shown that the space of realizations of an order type in general
position is open (Proposition 2.4). In particular, for every configuration B there exists €
such that every e-perturbation of B is isomorphic to it. This remark allows us to show the

existence of blow-ups of configurations.

Definition 3.2. A configuration'Y is a k-blow-up of a configuration X of size n if Y can be
partitioned into sets Y =Y, U---UY, with |Y1| = --- = |Y,| = k such that every transversal
is isomorphic to X, i.e., every set {y1,...,ynt C Y, with y; € Y;, is isomorphic to X.

A configuration Z is a Y -blow-up of X if Z can be partitioned into sets Z = Z3 U---U

Zn with Z7 =2 ... 2 Z, 2Y such that every transversal is isomorphic to X, i.e., every

set {z1,...,2n} C Z, with z; € Z;, is isomorphic to X.

Given a configuration X, there is an easy way to construct blow-ups from it. Let € be a
positive real number such that every e-perturbation of X is isomorphic to X and choose Zj,
as any k-subset of B.(xy), the open ball of radius e centered at xy. Then Z = Z; U---U Z,
is a k-blow-up of X. Moreover, if we choose Z; as a configuration isomorphic to Y, then Z
is a Y-blow-up of X. This is always possible because any positive affine transformation

preserves order type and therefore we can choose a copy of Y inside any open ball.
Figure 3.3: A blow-up

Figure 3.3 shows an Y-blow-up of X when X is a convex pentagon with a point in the
center and Y is a triangle with an interior point. Although Y-blow-ups of X always exist
for any X and Y in general position, they are not uniquely determined. In fact, in order to
have such a blow-up Z = Z; U---U Z,, we are only interested in the orientations of triples
that are contained entirely in Z; or have intersection at most one with Z;. Thus we are free
to choose the orientation between triples that has intersection of size 2 with Z; and obtain
non-isomorphic Y-blow-ups of X. With this in mind, define X ® Y as the set of all order
types that are Y-blowups of X. Note that an element of X ® Y has | X| - |Y| points.

We extend this notation to products of more than two elements. Let X1,..., X, € R?

be d configurations of sizes nq,...,ngq, respectively. We define ®f:1 X, inductively over d.
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If d = 2, then ®?:1 X; is just X7 ® X5. For d > 2, we define ®?:1 X, as the set of
order types Y such that there exists a partition ¥ = Y; U---UY,, with Y; € ®?=2 X,
for every 1 < k < nj, and such that every transversal is isomorphic to X;. Note, by the
definition, that ®f:1 X, contains nq - - - ng points. It turns out that those extended product
are helpful to provide upper bounds for f(B, «).

Lemma 3.3. Let B be a configuration of sizen > 2 and 0 < o < 1. Then,
f(B,a) < nlnles/a)]

Proof. Let A € ®?:1 B for a fixed d. We claim that for every a > 0 if X is an a-proportion
of A, then X contains a S-proportion of B with

n d—1
ﬁ:max{l,a(nl) }

The proof is by induction on d. If d = 1, then A & B and any a-proportion of A

contains an a-proportion of B. For d > 1, let X be an a-proportion of A. By definition, the
configuration A have a partition A = A;U- - -UA,, such that Ay, € ®f;11 Bforeveryl <i<mn
and such that every transversal is isomorphic to B. If X contains one element of each A;,
then X contains a copy of B and 8 = 1. Otherwise there exists at least one index k such

that X N A, = (). Then by an averaging argument, there exists an index j # k such that

X1
(n—1)

alAl an

X NA;| > > |45

n—1 n-—1

Therefore, XNA; is an *%-proportion of A;. Since A; € ®f;11 B, there exists, by induction,

n—1

a subset Y C X N A; C X such that Y contains a S-proportion of B with

(2 () Yol

Note that the inequality 1/t?> < 1/t holds for ¢t > 1. Thus, by integrating the inequality,

we obtain

1 1+x 1 14z 1
1-— :i/ 3dp</1 —dt = log(1 + x),
1 t 1 t

for x > 0. Applying the last inequality for x = 1/(n—1), we have that log n—log(n—1) > 1/n.
Let d = [nlog(1l/«)]. Thus, any a-proportion of an element of ®f=1 B contains a beta-
proportion of a copy of B with

log(1/a)

d—1 _log(/o) __
— 1 log n—log(n—1) _ 1
B=a n S am—1) n _n ’
n—1 n n—1 n

which implies that it actually contains a copy of B. Since any configuration in ®;i:1 B

has n? points, we obtain the desired bound. O
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3.1.2 The lower bound

For the lower bound we use the Erdés—Szekeres theorem. Let ES(n) be the minimum
integer N such that any configuration of size N in general position contains n points in
convex position. Erdds and Szekeres proved in [9] that ES(n) always exists and in [10] they
proved that ES(n) > 2772+ 1 and conjectured this to be sharp. A recent breakthrough due

to Andrew Suk [33] asymptotically solves the conjecture.

Theorem 3.4 ([33]). For n sufficiently large, the following holds
22 41 < ES(n) < 2O lowm),

The lower bound of ES(n) is particularly interesting for us. It shows that there exists
an order type of size 2”2 that does not contain n points in convex position. Of course, if
one take a subset of this configuration it still does not contain n points in convex position.
Thus, there exists an order type of size N that does not contain [log N'|+2 points in convex

position. Let En be this order type. The following proof is based on [6].

Lemma 3.5. Forn >3 and a < 1/2 the following holds. If B is a configuration in general

position of size n, then

n2

20alogn < f(B,a).

Proof. Let B be a configuration such that B is a union of two sets B = By U By with By &
Efy, /21 and By a convex |n/2]-gon. There are several ways that one can combine By and Bj
to form an order type B. This ways depends on the orientation of triples intersecting both By
and By. Choose an arbitrary combination as the order type of B. We claim that B satisfies
the statement.

Let A be a configuration such that A —, B. We construct a set X by repeatedly
removing convex sets of size |n/2] from A and adding them to X. Let X; C A be a convex
set of size |n/2] inside A. Such a set must exist because A contains at least one copy of B.
Suppose the sets Xi,..., X} are already defined and now we want to define Xj4q. If the
set A\ (Uf:1 X;) contains |n/2| points in convex position, then let X1 be this |n/2]
points. Otherwise stop and let X = Ule X;. Since A is finite, this process eventually
terminates and we end up with a set X = X; U---U Xy C A for some integer d, where X;
is a convex set of size |n/2| for every 1 <i < d.

By the construction of X, the set A\ X does not contain |n/2] points in convex position.
Then A\ X does not contain a copy of B and, by hypothesis, it is less than an a-proportion
of A. This implies that

[ X| = [A] = |A\ X[ > (1 = a)[A] = a4],

which is true for & < 1/2. Thus X is an a-proportion and it contains a copy of B.
Now we do a little refinement. Let d’ be the minimum integer such that X; U---U Xy is

an a-proportion of A and set X’ = X7 U---UXg. Since any X; has size |n/2], a calculation
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shows that

ol A| <X < alA| + [n/2] < alA|+ & = a4+ 5 T <ala|+ S|4 = 224,

a n
2 «
which is true because a|A| > n.

By hypothesis, X’ contains a copy of B and in particular a copy of Ef, /2. We claim
that |X; N Epy, /91| < logn + 2, for all 1 <4 < d' This is a consequence from the fact that
any subset of a convex set is also a convex set and that the biggest convex subset in Efy, /9
has size less than log[n/2] + 2 <logn + 2. Thus,

n &
[ﬂ = Bz = Y _|1Xi N Epyya| < d(logn +2),

i=1

which implies that

, 1 n
> ogn 72 3]
logn+212

Therefore we can estimate the size of X’ and consequently of A by

2 2
D U 1 [y Ly S
3a 3a L2 3a(logn+2) | 4 20alogn
giving the desired lower bound for n > 3. O

3.1.3 A family of configuration with polynomial bounds

Now we study a particular family of configurations that have polynomial bounds in n
and 1/a. These configurations were introduced by Kérolyi and Solymosi [22]. For an
order type B and an integer N > 0. Let ES(B, N) be the maximum integer m such that
there exists a configuration of m points in general position without a copy of B and a
copy of a convex N-gon. In their work they proved that there exist order types B such
that ES(B,N) = 2¥=2 which is of the same order of ES(N). However, they provided
examples of B such that ES(B, N) has polynomial bounds on N. These examples are

special cases of the following family of order types.
Definition 3.6. Let d > 1 be an integer and K = (k1,...,kq), L= (l1,...,lq) with k; > 2,
l; >3, for 1 <i<d be ordered sets of integers. We define the order type

G ={ai;: 1<i<d, 1<j<k}U{b;:1<i<d 1<j<l}

as the order type such that a11...01,5,021...641 .04k, 15 a conver (ki + --- + kq)-gon
listed in clockwise order, b;1 = @i, iy, = ait1,1 and b1 ...b;;, s a convexr set on the
interior of the triangles a; i, —1b;1b;1, and b; 1b; 1,a;41,2, where all indices are taken modulo
d.

It follows from the definition that G}i(,L has ki +---+kg+ 11 +---+ 15— 2d points. The
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assumption that b; 1 ...b;;, are inside the triangles a; r,—1b; 1b;;, and b; 1b;,a;41,2 assures

us that the order type of G;lg ;, is unique and well defined.

Figure 3.4: A configuration G%473),(4,5)

Another important observation is that any subset of a G%L is a G%,yL, for some d' < d
and ordered sets K’, L' of size d’. We will prove that f (G;lq 1, @) is at most quadratic in

both parameters n and 1/«. In order to do that, we need the following lemma.

Lemma 3.7. Let A = A U---UA,, be a partition of a finite set A such that |A1| = -+ = |A,|
and a > 0 a real number. Then for every X C A with |X| > «|A|, there are at least an/2
sets A; such that | X N A;| > §[A].

Proof. Define I = {i € [n] : | X NA;| > §|A;]}. We want to estimate the size of I. This can
be done by noticing that

alAl <X =Y 1X N4 =YX N4+ X N4
i=1

el i¢I

< rad+ 0 = Al ),

- 2
iel i¢l

Therefore,

<n «
2
|I|>1_g>§n.

O

Theorem 3.8. Let GL;{,L be the order type with parameters d > 1, K = (ki,...,kq),
L=(l1,...,lq). Then the following holds,

f(G(Ii(,Lva) < [%—‘ : [QJL

o o
where k = ki + -+ + kg and | = maxi<;<q{l;}.

Proof. We will construct a configuration A such that A —, G% ;- Because of the observa-

tion that subsets of order types in the family of Definition 3.6 are also in the family, it is
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natural to consider A as a member of this family. In fact, let A = G‘Ii;hLl with d; = f%],
K'=(2,2,...,2) and L' = ([Z],[2],...,[2]). One can see that A has

21 21 2k 2k 21
v (2o [E) a2 (]2
Q@ « Q@ Q@ Q@
points.
We will prove that A —, B, where B = G, | with dy = k, Ky = (2,...,2) and
Lo=(l,...,1). Let A= A3 U---U Ay, be a partition of A such that

as in the Definition 3.6. This partition makes sense because every element in Kj is 2 and
therefore all the points of A are contained in some A;. Let X be an a-proportion of A. By
Lemma 3.7, there exists at least §d; sets A; with | X N A;[ > §[A;|. Consider I C [di] a
subset of size k < §d; such that every i € I satisfies | X N A;| > §]A;| and for every i € I
consider a set B; C A;NX of size [ < §|A;|. It is not difficult to verify that ByU---UBy, = B
and that B C X.

Now the theorem follows from the fact that G%L C B. Infact, if B = B1U---UBj, is the
partition described in the paragraph above, then one can find a copy of G?{) 1, in the following
way. Consider a partition G%’L =G U---UG,, with m <k, where each G, is an a; ; with
2<j<kyorad{b.. b} Nowembed G; inside B;. Because |G;| <I; <[ =|B;| and
B; is convex this embedding is always possible and, by the definition of B, it is a copy of
G‘;(’L. Therefore, G‘}(’L C Band A —, G%L. O

The following is a quick corollary of the previous theorem.

Corollary 3.9. Let G‘}CL be an order type with n points. Then,

8n?
f(G% p,a) < PR

Proof. Because G% | has (ki + -+ ka) + (L + -+ 1) —2d = n and k; > 2, [; > 3, for
every 1 < 4,5 < d, we have that k = k1 + -+ kg <nandl <1 +---+1, < n < 2n.
Therefore, we obtain by Theorem 3.8 that

F(@sne) < [2] ]

[e%

< —.

21 8n?
7—‘ - a2

«

O

One can notice in Lemma 3.5 that the condition o < 1/2 was needed. This suggests
that the asymptotic behavior of some configurations may depend on the value of a. We
will show that some configurations described in Definition 3.6 has asymptotic behavior on

n depending on «.
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Theorem 3.10. For every n there exists a configuration B of n points such that

(B.a) = O4(n), ifa>1/2
0.(n*?),  ifa<1/2
Proof. Let B = G% ; be a configuration of n points, where d = |/n|, K = (|n/2] +
2,2,2,...,2)and L = (ly,...,1g) with I; € {L@L L@J +1}. We claim that this configura-
tion B satisfies the statement.

First notice that B = B; U By where By = G, | withdy =d, Ky = (2,...,2), Ly =L
and By is a convex |n/2]-gon. Suppose that a > 1/2 and let ¢ > 0 be a real number such
that @ = 1/2 + ¢. Consider a configuration A = G%/,L/ with d' = [4] , K" = (M, 2,...,2),
L' = ([g}, e [@D and M = [g] : [@] We can also notice that A = A; U Ay where
Ay = G%LL& with dy = d', Kf = (2,...,2), L} = L’ and Ay is a convex M-gon. We will
prove now that A —, B.

Let X be an a-proportion of A and X; = X N Ay, Xo = X N Ay. Because |41| = |Ag]| it
follows that | X1| > €] A4|. In fact,

1 1
alAl = (5 +e)lA] < 1X| = [Xa| + [ Xa| < [ X[ + S|4

Therefore | X1| > €|A| > 2¢|A;]. In a similar way we can also prove that | X2| > 2¢|Az|. Now
as in the proof of Theorem 3.8 a 2e-proportion of A; contains a GK/ L with dy = edy > d,
Kl = (2, ) and L, = (|/n],...,|[v/n]). However, because L\FJ +1 < |/n], we have
that Bl C G 2, L, C X1. A 2e-proportion of Ay contains a convex set of size 2eM > 2 >
[n/2]| and then By C X,. Using the uniqueness of Definition 3.6, we obtain that B C X

Computing the number of points of A we obtain

4n 4n

f(B»O‘)S‘A|:2M§§:m~

Using the trivial lower bound made in the introduction of this chapter we obtain that
f(B,a) > n/aand f(B,a) = 04(n).
If a« < 1/2, then we can apply Theorem 3.8 to obtain that

<[] [2].

« (0%

Using that k = k1+- - -+kqg = [n/2]+2(|v/n]+1) < nand | = maxj<;<ql; = L P+l < /n
we have that

4n3/2
2

f(B,a) <

(0%

For the lower bound we use exactly the same proof as that in Lemma 3.5. The only
difference here is that B; is not the order type provided by the Erdés—Szekeres construction.

Instead By, = Gféh 1, as described above. It is possible to see that By does not contain a
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convex set of size 24/n. This happens because in order to construct a convex set we can
either pick at most two vertices from each b; ; ... b; ,, or pick vertices of only one b; 1 ...b; ;.
Now consider A such that A —, B and an a-proportion X’ consisting of the union of d’
convex |n/2]-gons Xi,..., Xy exactly as in Lemma 3.5. Because B C X', we have that
B; C X'. Therefore,

dl
n - . . ’
[51=1Bil =) IXinBi| <2d'v/n

i=1
and we have

nl/2
d>—.
= 4

Using now that X’ was constructed such that |A| > 52| X’| we conclude that

3/2

|2

2
Al > 2 x| = 2% n
| |*3oz| | 3o = 150’

which proves that f(B,a) = 0,(n%/?).

3.2 Extremal number for the grid

For a configuration B of n points and a real number a > 0 define
No(B,a) =min{N € Z: [N]* =, B}

as the minimum integer N such that an a-proportion of [N]? contains a copy of B. As in

the definition of f(B,a) we can also define
No(n,a) = max{No(B,«) : B is an order type of size n}

as the maximum over all values of No(B, «) for |B| = n. First we notice that the problem
of finding bounds on ex(N, B) is closely related to finding bounds on Ny(B,a). Indeed,
if N > No(B,a), then by the definition we have that [N]? —, B. Thus we can define a
inverse function ag(N, B) as the smallest real number ag > 0 such that N > Ny(B, ).
Because any ag-proportion of [N]? contains a copy of B, this gives the natural bound
ex(N, B) < agN2.

For instance, suppose that for a certain configuration B we obtain the bound

2
NO(B705) <

Qw‘ 3
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Thus in order to obtain a bound for ex(N, B) we could use o such that

This gives us

and taking oy = % we obtain that
ex(N, B) < agN? = n?/3N°/3,

One can derive lower bounds for ex(N, B) from lower bounds of Ny(B, «) in exactly the
same way done above. For this reason we will focus our attention for the rest of this section
on the Ny(B, «) problem. As we shall see, this formulation of the problem is close to the
f(B, «) problem, which will be helpful later.

We start by noticing that one can give bounds on Ny using the multidimensional Sze-

merédi theorem.

Theorem 3.11. ([12], [17], [24]) For alll > 2, d > 1 and o > 0. There exists Ny =
No(l,7, «) such that if X C [N]" with N > Ng and | X| > aN", then X contains a homothetic
copy of [I]", i.e., a set of the form z + j[l]” for some z € [N]|" and j > 0.

In our context, Theorem 3.11 basically states that for every N > Ny(gr(B),2,«) any
a-proportion of [N]? contains a homothetic copy of [gr(B)]?. Because [gr(B)]? contains a
copy of B and homothety preserves order types, we obtain that No(B, a) < No(gr(B), 2, a).

Theorem 3.11 was first proved by Furstenberg and Katznelson in [12]. Their proof was
based on arguments in ergodic theory and gives no bounds on Ny. Later, quantitatives proofs
were given by Gowers ([17]) and Nagle, Rédl, Schacht and Skokan ([28], [24]), independently.
These proofs rely on regularity lemmas for hypergraphs and because of that they provide
non-practical bounds on Ny and consequently on No(B, o). For instance, Gowers showed in
[16] a bound for » = 1 that is an exponential tower of height 6.

Our main intention in this section is to give an upper bound for Ny(B,«) that avoids
the multidimensional Szemerédi theorem. This is done by creating a relation between the

f(B,«) problem and the problem of embedding configuration in a grid of minimum size.

3.2.1 Averaging lemma

Our proof of Theorem 1.1 strongly relies on the open property of order types (Proposition
2.4). Basically, we are not looking for a homothetic copies of a given configuration as in
Theorem 3.11, but for a homothetic e-perturbation of a given configuration. This difference
enables us to find upper bounds for Ny using constructions in the real plane. The following

lemma is crucial to realize these ideas.
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Lemma 3.12. Letr > 0 be an integer and X C [N|" with | X| > aN". For any configuration
A C [N]", there exists an z € Z" such that [(A + z) N X| > F|Al.

In other words, Lemma 3.12 says that for a configuration A € [N]? and an a-proportion
X, there exists a translation of A, that is, a copy of A in [N]? such that X is an a/4-

proportion of this copy. Figure 3.5 exemplifies the content of the lemma.

A+ 2z

A X

Figure 3.5: Averaging Lemma

As we can see there is a translation A+ z of A such that the intersection of X with A+ 2

is relatively big. The proof of this lemma is just an application of the averaging method.

Proof of Lemma 3.12. Consider the set Z = [—-(N — 1), N]" N Z". We will choose z € Z
uniformly at random and estimate the size of [(A+ z) N X|. Let W be the random variable

counting the size of |(A + z) N X|. By the linearity of expectation we have

E(W) =) Pxe(A+2)).

rzeX

For every point # € X, there are exactly |A| elements z € Z such that x € A+ z. In

fact, x € (A + z) implies that z € x — A and because x — A has size |A| and is a subset of

Z the result follows. This means that P(x € (A4 2)) = % for every z € X. Therefore,

Al IX]- Al oNTIA]
= — = > =
EW=2 121~ 121 > vy oM

zeX

and, by the definition of expectation, there exists a z € Z such that [(A+2)NX| > E(W) >
3 Al O

Lemma 3.12 allows us to give bounds on Ny depending on configurations A related to

the density problem in the plane.
Theorem 3.13. Let B be a configuration and o > 0. If A is a configuration such that
A =41 B, then No(B, ) < gr(A).

Proof. Let N = gr(A) and X be an a-proportion of [N]2. Thus, by Lemma 3.12 there exists
a copy of A such that X N A is an a/4-proportion of A. Using that A —, /4, B we have that
BC XNACX and [N]?2 -, B, which finishes the proof. O
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The last theorem gives us a method to obtain lower bounds on Ny. First we obtain a
configuration in the plane such that A —,/, B and then we embed this configuration in a
grid gr(A). The problem to find small configurations A in the plane was already studied in
the previous section. Now we will focus on embedding these configurations in reasonably

grids.

3.2.2 Blow-up embedding

In this subsection we will study bounds for embedding a configuration in the grid. In
particular the configuration that we are interested in is one such that A — /4 B. In Lemma
3.3 we saw that the configurations A € ®?=1 B are good candidates. One possible approach
is to use Theorem 2.18 to obtain an upper bound for gr(A) based upon the size of |A|.

Consider the configuration A € ®Zl:1 B, with d = [nlog(4/a)]. Lemma 3.3 assures us
that A — /4 B and then No(B,a) < gr(A). To estimate the size of the grid we use Theorem
2.18, which gives gr(A) < 22! for a fixed constant ¢ > 0. Since A € ®;i=1 B has n? points,
we obtain that

2n log(4/a)

No(B,a) <22 :

for sufficiently large n. This already gives a mouch better upper bound comparing to
the bound by the Szemerédi’s theorem. However, we can further improve it. Notice that
configuration A arises after iterated blow-up constructions over B. If we can emulate this
contruction on the grid, then it is expected that we can bound gr(A4) by gr(B). We will

prove that this is indeed the case.

Lemma 3.14. Given configurations X and Y, there ezists a configuration A € X @ Y

satisfying the following conditions
(i) gr(A) < 8gr(X)*gr(Y),

.. 1 B . . .
(it) Bvery ;—~— NG perturbation of A is in X @Y.

Proof. Lemma 2.10 will be of great importance. By the definition of gr(X), there exists
some copy of X inside the [gr(X)]? grid. For simplicity assume that X is exactly this copy.
The open property assures us that there exists € such that every e-perturbation of X is
isomorphic to X. Moreover, because X is embedded on a grid, we have Ap;,(X) > 1/2.
Thus by Lemma 2.10 with L = gr(X) — 1, every (
to X.

For an integer k > 0, consider a homothety that dilates X to a copy X’ which is k times
greater than X. It is easy to see that X’ can be embedded in a [k - gr(X)]? grid and that
every (ﬁr(x))—perturbation of X’ is isomorphic to X. Let X’ = {z1,...,2,} and for
every x; € X’ let X; be the open ball centered at z; of radius ﬁr()()' We know that for
every configuration Z = {z1,..., 2z, } with z; € X;, the congruence Z = X holds. Our task

m)—perturbation of X is isomorphic

is to embed a copy Y; of Y inside each X; N[0, L]? (We are assuming that the grid is inside
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On W

Figure 3.6: X and its open balls

the [0, L)% square). Then by the definition of blow-up, the configuration A = Y; U---UY,,
will be an element of X @ Y.

To embed a copy of Y inside each X;, each X; N[0, L]? must contain a grid of size at least
gr(Y). Because the point x; could be on the border of [0, L]?, the region X; N[0, L]? could

be in the worst case a quarter of a circle. By Pythagoras theorem, every quadrant of an

open circle of radius r centered at a point of the grid contains a grid of size ”2/5. Thus each
4gr(X) Taking k = 8 gr(X) gr(Y), each X;N[0, L]?
contains a grid of size 2gr(Y). Since 2gr(Y) > gr(Y) + 2, it is possible to embed a copy Y;

X;N0, L]? contains a grid of size at least

of Y in each X, in a way that every 1-perturbation of this copy is inside X;. In particular,
every o Y)f -perturbation Z; of Y; is inside X;. By Lemma 2.10, we have that Z; £ Y
and we conclude that ZyU---U Z, € X ® Y. Thus, we obtained an element A € X @ Y
inside a grid of size k - gr(X) = 8 gr(X)?gr(Y) such that every W -perturbation is in
X®Y. O

The condition (#7) in the lemma will be important later in Section 4.2. Iterated applica-

tions of Lemma 3.14 provides the following result.

Theorem 3.15. Given a configuration X and an integer d > 1, there exists a configuration
Ae ®Zl:1 X satisfying the following conditions

(i) gr(A) <8 'gr(X)* 1,

(ii) Every T2 -perturbation of A is in ®l 1 X.

( )
Proof. The proof is by induction on d. For d = 1, the statement is true. Now suppose that
the theorem is true for every k < d. Let A’ € ® 1 ! X be a configuration satisfying the
statement for d — 1. By Lemma 3.14, there exists a configuration A € ®i:1 X such that

gr(A) < 8gr(X)?gr(A’) < 8gr(X)?- 8972 gr(X)*17% = 897" gr(X)*~".

The lemma also says, if we read the proof, that there exists a partition A = A; U---U A,
such that every A; = A’ and such that the following holds. If Z = Z; U---U Z,, is an
1-perturbation of A such that Z; is an 1-perturbation of A;, then every transversal of Z

is isomorphic to X. In particular, taking a W—perturbation Z =7Z1U---UZ, of A
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we obtain by the induction hypothesis that every Z; € ®f;11 X and every transversal is
isomorphic to X. Therefore, Z is an element of ®?=1 X. O

3.2.3 Extremal number estimates

Theorem 3.15 allows us to obtain an element A € ®?:1 B with gr(A) bounded by gr(B).

This is enough to give the following general bound.

Theorem 3.16. Given ¢ > 0, there exists ng such that for every configuration B with

n > ng points the following holds,

L(gr(B) —1) < No(B,a) < (3 gr(B))?’”lOg(‘l/a).

va

Proof. The lower bound follows from the observation that a grid of size gr(B) — 1 do not

contain a copy of B and thus can not be an a-proportion of [Ng]?. This gives
(gr(B) — 1)* < alNg,
and thus,

Ny > %(gr(B) - 1.

For the upper bound we just have to combine all the results obtained in this section
so far. By Theorem 3.13 we have No(B,«) < gr(A) for A such that A —,,4 B. Choose
d = [nlog(4/a)]. By Lemma 3.3 we have that A — /4 B for every A € ®?:1 B. Therefore,
by Theorem 3.15, we have that

N()(B,Oé) < gr(A) < gd—1 gr(B)2d71 < (3gr(B))2d < (3 gr(B))Snlog(Al/a)'

An immediate consquence of the last theorem is the following corollary.

Corollary 3.17. There exist c1,co > 0 such that

22¢1”+%10g(1/a) < No(n,a) < 2202" log(1/a)
Proof. By Theorem 3.16 we have that

%@r(n) 1) < No(n, @) < (3gr(n))Prlost/a),

and the result follows using Theorem 2.18. O

Now we proceed to obtain bounds on ex(N, B). As outlined previously, our approach is

based on viewing the extremal problem as the inverse problem of the density problem.
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Proof of Theorem 1.1. Fix an integer N. We are interested in finding o such that
N > (3gr(B))*1ostt/0) > Ny (B, ap).

So we have

log N

3nlog(3gr(B)) ) =4nNTr.

ag > 4exp ( —
Taking ag = 4N " we obtain that [N]? —,, B and therefore ex(N, B) < agN? = 4N?77,
O

It is possible to give lower bounds for ex(N, B). The lower bound given in Theorem 3.16
can be translated as ex(N, B) > (gr(B) —1)2. This lower bound does not use the parameter
N. Another possible lower bound is the following one. Consider a grid [N]2. One can
see that the set consisting of the first (n/2 — 1) rows does not contain a configuration of
n points in general position. This is a consequence of the pigeonhole principle. Therefore,
because B is a configuration in general position, Ny has to satisfy the inequality aNZ >
(n/2 — 1) Ny, that is, Ny > % Translating this to the extremal number problem, we
obtain ex(N, B) > (n/2 — 1)N. However, we did not use anything about the order type B.
It would be interesting to find a lower bound that uses both parameters (see Chapter 5).

3.2.4 Convex case

Although the previous approach gives a general bound, we would like to study the
case where B is a convex set. In this case it is possible to give a much better bound for
f(B,a). Just notice that every subset of a convex set is also a convex set. As we saw in
the introduction, f(B,a) = [2] and this is attainable by a convex set. This suggests that,
in order to estimate Ny(B, ), it is probably much better to take A, in Theorem 3.13, as a
convex set than as a blowup of B. The next result confirms this observation. It is important

to state that a more precise result was proved by Jarnik [21].
Theorem 3.18. If B is a convex set of size n, then gr(B) = ©(n®/?).

Proof. Suppose B can be embedded in a grid of size N. Let B = {(z;,y;) : 1 < a5,y <
N, V1 <i<mn} be the coordinates of each point in the [N]? grid in a way that the points
(1,91),- -+, (n,yn) are in counterclockwise order. We define s; = gi% as the slope of
the line between points (z;,y;) and (z;41,yi+1). Of course, the indices are taken modulo n
and if z; = x;41 we define
0, if yiy1 —y: >0
si =140, ifyir1 -y =0-
—00, iy —y <0

For an index i, define 6; as the measure of the angle of the slope s;, i.e., 6; is the angle formed

by the lines (z;, y;)(N + 1,v;) and (x4, y;)(Ti41,¥i+1) in counterclockwise direction. We can
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divide the indices into 8 classes depending on where 6; belongs. Let Ty, = {i € [n] : @ <
0; < %’T}, for 1 <k < 8. Clearly [n] =Ty U---UTy, is a partition, then there exists an index
i such that |T;| > n/8. Because B is convex, we get that T}, consists of consecutive elements
of [n] and thus, by symmetry, we can suppose without loss of generality that T = [t] with
t>n/8.

The convexity of B and the definition of 77 ensure that 0 < s1 < -+ < s < 1. Our
task is to estimate the minimum size of a grid containing By = {(z;,y;) : ¢ € [t + 1]} C

B, this will give a bound on gr(B). The minimum square grid containing B; has size

max{x11 — T1,Ye+1 — Y1} + 1. Because ﬁ = 5; < 1 we have,
t t
Yt+1 — Y1 = Z Yi+1 — E Iz+1 = Tt41 — X1,
i=1 i=1

and then max{zsy1 — 21,¥t41 — 91} + 1 = 411 — 21 + 1. For each 4, write s; = §* with
a;, b; nonnegative integers such that ged(a;,b;) = 1. This means that y;1+1 — y; = ka; and

Tiy1 — x; = kb; for some positive integer k, then it follows that z;1; — x; > b; and

t—1
J)t+1—$1+122(l‘1+1 ) +1>by+---+b + 1.
=1

Therefore, estimating by + - - - + b, is enough to give a lower bound on gr(B).

For a fixed integer s, the number of different fractions £ with 0 < £ <1 and ged(r,s) = 1
is ¢(s) (See Appendix A). It is not hard to see that in order to minimize the sum Zle bi,
we have to take the fractions {Z : gecd(r,s) = 1,0 < r < 5,1 < s < x} as the slopes
for an appropriate value of x. The value of x must satisfy > . ¢(s) <t and the sum of

the denominators of this fractions is ) ., s¢(s). Theorem A.2 gives the right estimates to

proceed. Indeed, for sufficiently large n and = = &/ we have
4
ZSD —ac +O(:vlogx)<—x =t.
s<x
Thus,
1 54 Wt\/
gr(B) >by+---+b > ;ngo —x + O(x logx) > 71_2;3 = 256

The upper bound uses the same argument. Let ¢ be the smallest integer such that
h =3 ,<,¢(s) >n—1. We will construct a convex set of size h + 1. For this consider the
set of fractions S = {¢ : ged(a,b) =1,0<a <b, 1 <b<q} and let 53 <--- < s, be an
ordering of S. Denote s; = % with ged(a;, b;) = 1. Set z; = (1,1) and z;41 = 2; + (b;, a;),
for every 1 < i < h. The set {z1,...,25+1} is a convex set of size h + 1 > n inside a grid of
size 1 + by + -+ by.

Now we do an estimate similar to the lower bound. By Theorem A.2, for sufficiently
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large n we have

3 2
h=-—q¢*+ O(qlogq) > qu,

2
and
<™
V2
Finally,
h
2 3 3rhvh
r(B) <1+ b, =1+ sp(s) =1+ —=¢> +0(¢*lo < S < < 3mn3/2.
gr(B) < ; ;Iw() 4 (¢ gq)_wzq_Qﬁ_
Where we use that h = ¢(q) + >3-, () < p(n) +n < 2n. O

Combining the last theorem with Theorem 3.13 for A as a convex | 2 ]-gon and the lower
bound provided by Theorem 3.16 we obtain that
n3/2 n3/2
L < Ny(B,a) < cg——o,
a /g SN(B,a) s eimm
for B convex, c¢; and co constants and n sufficiently large. Therefore, for convex sets
No(B,a) = ©(n®/?). Translating this bound on Ny(B,a) to a bound on ex(N, B) we
obtain that ex(N, B) < cnN 4/3 for some constant ¢. Unfortunately, this is not sharp on N.
The reason why this is true, is because good bounds on ex(N, B) in terms of N depends on

good bounds on Ny(B, a) as a function of o and not as a function of n.
Theorem 3.19. If B is a convex set of n points, then ex(N, B) = 0,(N).

Proof. We claim that for every positive integer k, there exists a configuration A of k points
in general position such that gr(A4) < 2k. First we show that for p prime, there exists a
configuration A of p — 1 points such that gr(A) < p — 1. Consider the multiplicative group
Z,y . Standard results in algebra says that Z is cyclic and has at least one generator g € Zj,.
The set A = {(¢%,¢%") : 1 <i <p—1} C [p— 1]? is our natural candidate. Here we are
considering g* as g* (mod. p) if we think of g as an element of Z. For any three points

r = (9% 9%),y = (¢/,¢%) and z = (¢, g*!) it follows that

gi g2i 1
[zyz] = g7 g% 11=(¢"—¢)g" —9")g’ —9g') #0 (mod. p).
gt th 1

This means that [zyz] # 0 and consequently this three points are not collinear. Thus A is in
general position and is inside a grid of size p— 1. For general k, Bertrand postulate says that
there always exists a prime number between k and 2k. Then we can find a k < p < 2k such
that there exists a configuration A of p—1 points in general position with gr(4) < p—1 < 2k.
In particular, there exists a configuration A’ of k points such that gr(A4’) < 2k.
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The idea for the upper bound is to give another bound on Ny(B, «), one that is better
in the parameter . We will achieve this by finding a configuration A such that A —,,4 B

and gr(A) is linear. By the Erd3s—Szekeres theorem, it is reasonable to try configurations
92n+2
(03

in general position. Let A be a configuration in general position with |A| = [ | points.
Every -proportion X of A contains at least 22" points and by Theorem 3.4, we have that

X contains a convex set of size n. This means that A — /4 B for every A in general position

of size [22;+2]. The claim in the last paragraph says that there exists such A in general
position with gr(A) < 2[22”+2]. Then by Theorem 3.13 we have

[

22n+2 22n+4
No(B,«a) <gr(A) <2
o(Bra) < grl4) <21 <
For a fixed integer N > 0, pick oy = 22:\;4. Then
22n+4
No(B, 040) S = N,
Qg

and [N]? —,, B. Therefore ex(N, B) < qyN? = 22"*4N. For the lower bound we use the
observation that ex(N, B) > (n/2 — 1)N. O



Chapter 4

Probabilistic Results

In this chapter we study probabilistic results concerning order types. We are interested in
a particular random process already described in the introduction and in Subsection 2.1.1.
This process of choosing n random points in the unit square can be viewed as the most
natural way to generate an order type in the plane. Mainly because the random process
of choosing independently every orientation does not work well since there are choices of
orientations that are not realizable in the euclidean plane.

Of course, the very standard question is to determine the probability of obtaining a
certain order type by this process. For instance, in the convex case Valtr showed the following

result.

Theorem 4.1 ([34]). The set of n points chosen independently and uniformly from the unit

( (25:'3) )

In Section 4.1 we will provide bounds for the general case. Although these bounds are far

square is convex with probability

from optimal, they are good enough to determine the threshold of the n-universal property.

In Section 4.2 we deal with another problem. Given a configuration B of n points, what
is the probability of B being a subest of a N-random? Turns out that this probability gets
smaller as N tends to the infinity. As we shall see, by understanding this probabilities, we

can obtain strong bounds on the probability of hereditary properties.

4.1 Threshold for the n-universal property

We start with a definition.
Definition 4.2. A configuration X is n-universal if X contains all order types of size n

Figure 4.1 exemplifies a 4-universal configuration. Indeed, the order types of size 4 are

the triangle with an interior point and the convex quadrilateral. Both are included in this

47
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Figure 4.1: 4-universal configuration

configuration. Define
R(n) = min{|A| : A is n-universal}

as the minimum size of an n-universal configuration. Determine good bounds on R(n) seems
to be a hard problem (see Chapter 5). However, the probabilistic version of this problem is
simpler. Our aim in this section is to give a proof of Theorem 1.3, which basically says how
many points we have to choose in our random process in order to obtain an n-universal set
almost surely.

In order to prove this result, we have to give bounds for the probability of obtaining a
fixed order type. One possible approach is to use Lemma 2.5 and discretize the problem
of finding a probability in the unit square, to finding the probability in the integer grid.
However, here we have a more elegant, and perhaps insightful, way of computing this prob-
ability. For any configuration X, we denote Apax(X), Amin(X) as the areas of the largest

and smallest triangles in X, respectively.
Definition 4.3. Given a configuration X, we define

Amax(Y)

v(X) = inf{m

Y ¢ X},
as the infimum of the ratios between the areas of the largest and smallest triangles for every

configuration Y isomorphic to X.

The parameter v is well defined and v(X) > 1, for every configuration X. For instance,
if X is a convex quadrilateral we can show that v(X) = 1 and if X is a triangle with an
interior point, then v(X) = 3. Given an order type B and a random set U, both of n
points, our aim is to estimate P(U = B) using this new parameter v(B). Later we will find

a relation between v(B) and gr(B). This will provide bounds that depend only on gr(B).

4.1.1 The probability of a given order type

We divide the proof into two parts. The following is a well-known result in probabilistic

combinatorics.
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Proposition 4.4. Let A, B,C be three random points chosen independently inside the unit
square [0,1]? and let s > 0 be a real number. If A .= A(ABC) is the area of triangle ABC,
then the following holds,

P(A < s) < 167s.
Proof. Let b be the distance from A to B. For any small h, we have
Pz <b<az+h)<n(z+h)? —rz? = x(2zh + h?)

and taking h — 0, we obtain P(z < b < z + dz) = 2nzdz. Now suppose that the distance

between A and B is . Then in order to have A < s, the altitude of C' in relation to AB

4s
xr

must be at most % This means that C lies on a strip of width 22 and lenght at most the

diagonal of [0,1]2. As 0 <z < V2, we have

.
P(A < 5) s/ (V2

0 X

)(27z)dx = 167s.

Proposition 4.4 can be used to give an upper bound.

Lemma 4.5. Let U be the configuration obtained by choosing n points at random inside the

unit square [0,1]2. Then for any configuration B of n points the following holds,

P(U = B) < j;(g)

Proof. Let A be any configuration isomorphic to B inside [0, 1]2. By the definition of v(B)

and the fact that a triangle inside the unit square has area at most 1/2, it follows

Amax(A) < 1

<
V(B) o Amin(14) B 2Amin(A>
and we obtain that
Amin(A) < —
min ~ 2v(B)’

This means that any configuration isomorphic to B inside [0, 1]? has a triangle with area

at most ﬁ. Proposition 4.4 says that the probability of 3 random points having area at
most ﬁ is bounded by V?—g. Then by the union bound,

P(U 2 B) < P(Ain(U) < ) < (“) 8

The next lemma deals with the lower bound.
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Lemma 4.6. Let U be the configuration obtained by choosing n points at random inside the

unit square [0,1]2. Then for any configuration B of n points the following holds,

nlm

P(U~B) > 52 (B

Proof. Let A be a configuration isomorphic to B such that ﬁr“#"((ﬁ)) < 2v(B). This configu-
ration exists because of the definition of v(B). We claim that there exists a positive affine
transformation A’ of A inside [0,1]? such that Apac(A’) > 1/4. Let Pa,Qa be two points
of A that are at distance diam(A), that is, two points at the maximum possible distance.
Consider the positive affine transformation T that sends A to X = T(A) and P4, Q4 to the
points P = (0,1/2) and @ = (1,1/2). Because of the choice of P, Q) we have that X is inside

the two lines determined by z =0 and z = 1.

R

Figure 4.2: Stretching of X

There are two possibilities. The first one is that X is not entirely inside [0, 1]%. In this
case there exists a point R € X such that the distance of R and the line PQ is greater than
1/2. However, this implies that the area of PQR is at least 1/4. By a proper translation of
X we obtain a set A’ such that Ayay(A’) > 1/4. The second case is when X is inside [0, 1]2.
Then we consider an affine transformation (z,y) — (x, A(y— %)Jr%) for an appropriate A > 0.
This affine transformation will stretch X until some point touches one of the horizontal sides
of [0,1]2, while keeping the segment PQ fixed (Figure 4.2). Let R be the point touching
a side of [0,1]? and A’ be the final set. The triangle PQR has area 1/4 and therefore
Anax(4) > 1/4.

The important point about positive affine transformations is that they preserve ratio
about areas and order type (Proposition 2.12). Therefore, we have found a configuration A’

isomorphic to B such that

Amax(A) A11(111:((14/) 1
2v(B) > = >
V( )_ Amin(14) Amin(A/) o 4Amin(A/),
that gives
Apin(4") > !
i ~ 8v(B)’

This bound on the minimum area of A’ allows us to apply Lemma 2.10 and obtain a region
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with positive area such that all configurations are isomorphic to B. Write A’ = {a1,...,a,}

and let A} be the intersection of the open ball centered at a; of radius W and [0, 1]2.
Lemma 2.10 says that every (W)—perturbation of A’ is isomorphic to A’. Therefore,
every transversal of A7 U---U A/ is isomorphic to B, that is, if Y = {y1,...,yn} is such

that y; € A} for every 4, then Y = A’ = B. Thus, we can bound the probability by
P(U = B) > P(U is a traversal of A]U---UA!) =nlu(A})...u(A)).

Because some points of A’ can be on the border of [0, 1]? we can only assure that u(A%) >

%(Su(é)ﬁ)Q and it follows that,

n

T " nlw
~ B) > n! - )
PU=B) zn (512V(B)2> 51270 (B)2n

4.1.2 Relationship between v(B) and gr(B)

The two lemmas in the previous subsection give upper and lower bounds on P(U = B)
in terms of v(B). However we still do not know much about this parameter v(B). The next
lemma shows that this parameter is closely related to gr(B), the minimum size of a grid

containing a copy of B.

Lemma 4.7. For any configuration B the following holds,

grl(f ) < u(B) < ex(B)2.

Proof. By the definition of gr(B), there exists a copy of B inside [gr(B)]?. Let A be this
copy. Because every point of A has integral coordinates, we have Apyin(A) > 1/2. On the
other hand, every triangle inside [gr(B)]* has area at most half of the area of [gr(B)]?. Thus

v(B) < Amax(4)

< 7Amin(A) < gr(B)%

For the lower bound consider the configuration A’ as in Lemma 4.6 , i.e., a configuration
A’ = B such that A’ C [0,1]%, Apin(4) > Wlm. A homothety of ratio N = [8v(B)]
centered at the origin sends A’ to a configuration X = B such that X C [0, N]?, Apin(X) >

%. Now the argument is similar to the one in the proof of Lemma 2.25. Inside the [0, N]?

there exists a grid of size N + 1 and every point inside [0, N]? is at distance at most @ to

a point of this grid. Lemma 2.10 says that every ( -perturbation of X is isomorphic

N
soe)ve)
to B and a simple computation shows that

N  [8v(B)] Q
Sv(B)V2  8v(B)V2

Y

5

This means that there exists a configuration Y that is isomorphic to B and have integral
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coordinates. Therefore, we obtain
gr(B) < N+1=[8v(B)]+1<8vr(B)+2<10v(B),

where we use that v(B) > 1. O
Combining the results so far, we obtain the following bound on P(U & B).

Corollary 4.8. Let U be the configuration obtained by choosing n points at random inside

the unit square [0,1]2. Then for any configuration B of n points the following holds,

<P(U=B) < (g)gf?;)

nla™

5127 gr(B)"

O

This result is far from being sharp. The gap between the upper and lower bound can be
noticed in the convex case. Indeed, Theorem 3.18 gives that gr(B) < 37n3/? in this case and
thus by Corollary 4.8 we obtain P(U 2 B) < en®/? for some constant ¢. This do not provide
any information since en®/? is much larger than the obvious bound P(U = B) < 1. However
the last corollary can be useful if gr(B) grows much above exponential. For instance, this
is the case for the configuration B constructed in Subsection 2.3.1. Lemmas 2.23 ad 2.25

show that for this configuration there exist c¢1, co > 0 constants such that

con

22" < gr(B) < 22

Therefore, another corollary of our work is the following.

Corollary 4.9. There exist constants c1,ca > 0 such that the following holds. For every n

sufficiently large, there exists an order type B of n points such that
2_2c1n S P(U ~ B) S 2_2C2n7

where U is the random set obtained by choosing n points independently inside the unit square.

O

4.1.3 Proof of Theorem 1.3

Now we give a proof of the n-universal treshold theorem. The proof is a simple application

of the second moment method and of Corollary 4.8.
Proof of Theorem 1.3. Theorem 2.18 gives us constants b; and bs such that

bin
22

< gr(n) <2777,
for every n sufficiently large. Let ¢; = b1/3 and ¢3 = 3by. Let U be the random set obtained
by choosing N points uniformly and independently inside the unit square. First we prove

the O-statement, that is, we prove that if N < 22", then limy, oo P(U is n-universal) = 0.
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For every n sufficiently large, let B, be the configuration of n points of Subsection
2.3.1 such that gr(B) > 221" By Corollary 4.8, the probability of an n-random set being
isomorphic to B, is

len/Q

pbB, = P(V = Bn) < 2-

Let Xp, be the random variable counting the number of copies of B, inside U. By linearity

of expectation, we have

E(Xp,)= Y PS=B,)= (N)an.

n
ScU,|S|=n
Markov’s inequality gives us that

_gbin/2 gein

P(Xp, >0)<E(Xp,)<N'pp, <2"*'" .2

n —

<27 — 0,

as n — 00. Because a m-universal configuration must contain a copy of B,,, we obtain that

lim P(U is n-universal) < lim P(Xp, >0)=0
n— 00 n—oo
For the 1-statement we will use the second moment. We suppose now that N > 22",
Let B be an order type of n points and Xp be the random variable counting the number of

copies of B in U. A union bound shows that,

P(U is not n-universal) < Z P(Xp =0),
|B|l=n

where the right hand sum runs over all order types B of size n. Thus if Z|B\:n P(Xp =0)
is small, then with high probability U is n-universal. Fix a configuration B. A standard
variant of the Chebyshev’s inequality says that

B Var(Xpg)
P(Xp =0) < E(TB)B;‘

Luckily enough, the assumption on N being double exponential allows us to compute the

variance of Xp with no effort. For a subset S C U, let Xp g denote the indicator function
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of S = B. Indeed, a simple computation shows that

Var(XB) = Z CO’U(XB’S,XB_’T) S

S, TCcU
|S|=|T|=n
> (E(Xps-Xpr) - E(Xps)E(XpEr)) <
S, TcU
|S|=|T|=n
> PXps=Xpr=1)< > PES=B)=
S, TcU S, TcU
[S|=|T|=n |S|=|T|=n
[SNT|#0 |SNT|£0
Z Z IP)(S =~ B) < pB(ZN2n—i) < 'I’LN2n_1pB7
i=1 S,TCU i=1
|S|=|T|=n
|SNT|=i

where we use that the probability of sets S and T" are isomorphic to B is less or equal than
the probability of only S is isomorphic to B. Because gr(B) < 22b2n, by Corollary 4.8, we
have that

pp =P(V = B) > 272"

for n sufficiently large. Thus, for every configuration B, we have

Var(Xp) < nN*""lpg

B(Xs) = ((V)ps)*
2n+1 n2n+1 2n+1

P(Xp=0) <

n n
< .
iy NpB — 22(:271, . 272211271, — 22b2n

Finally, using Theorem 2.3 we obtain

2n+1
P(U is not n-universal) < Z P(Xp=0) < T;yzn . 9inlogn+O(n) _,
|Bl=n
as n — oo. Therefore lim,,_, o P(U is n-universal) = 1. O

4.2 Probability of not containing an order type

In this section we will prove Theorem 1.4. The proof will be divided into several steps.
First we will reduce the problem of computing the probability of not containing an order
type to a counting problem in the grid (Proposition 4.10). This will be a consequence of
Lemma 2.5. Then we will give bounds to this counting problem by using the recent results
of Balogh, Morris, Samotij, Saxton, Thomasson [2], [29] on independents set in hypergraphs.
Finally, we will apply these results to obtain bounds to the probability of satisfying a fixed
hereditary property (Corollary 4.16).
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4.2.1 Discretization of the probability

Let us remind the notation, let U be a N-random set obtained by choosing N points
uniformly and independently at random inside the unit square [0, 1]2. Similarly, define V;,
as the random set obtained by doing the same process, but now inside the [m]? grid.

Given a configuration B and integers IV, m, let
Nown(B) ={AC[m]*: |A|=N, B ¢ A},
be the set of actual N-subsets of [m]? without a copy of B. Also let
Con,n(B) = {A C ([m*)V: B¢ A}

be the set of N-tuples without a copy of B. The difference between these two sets is that
the second one allows repetition and permutation of the points, while the first one A is a

set with distinct points.

Proposition 4.10. Let B be a configuration with n points and U be a N-random set inside

the unit square. Then we have,

P(B ¢ U) = lim NtNm v (B)]

m—00 m2N

Proof. For a fixed configuration B of n < N points we define
By ={A: |A|=N,B¢ A}

as the order types A, not necessarily in general position, such that A does not contain a
copy of B. This means that if B ¢ U, then U € By. Therefore, by Lemma 2.5 and by the
fact that By is finite, we have that

PBgU)= Y PA=U)= Y lm PA=V,)= Jim P(B ¢ Vin).

m— 00
A€eBnN AeByn

and we just need to calculate P(B ¢ V).
By the definition of V,,, we have,
Crn.v (B)]
We can estimate the size of C,, y(B) via M, n(B) by noticing that the N-tuples of C,,, v (B)
can be divided into two classes. The first class is of the N-tuples which all entries are
different. This class consists of all permutations of N-sets inside [m]?, that is exactly the
sets in N, ny(B). The second part is of the N-tuple which some of the entries are equal.

We estimate this part by noticing that every N-tuple has at leas two entries with the same

element of [m]2. Therefore, it has at most (1;[ )m? choices for this pair and (m?) =2 for the
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rest. Then,

NYNpn(B)| < 1Cn.n(B)| < N\ Npn(B)| + (;V) m2N-2,

Dividing everything by m?" we obtain

NN v (B)] NN v (B)] + (5)m*N 2
— o SPBZVa) < " )
and the result follows by letting m goes to infinty,
BB ¢ U) = Jim BB ¢ Vi) = Jim "

O

This proposition says that in order to obtain the desired probability we have to estimate
Nop.n(B), that is, the number of subsets of [m]? of size N that do not contain a copy
of B. Let H be the n-graph with V(H) = [m]? and E(H) = {A C [m]* : A = B}
In this interpretation, a subset that does not contain a copy of B is a independent set
and [N, n(B)| is exactly the number of independent sets of size N in H. The problem
of counting the number of independent sets of a fixed size in a hypergraph can be solved
using the container method. The technical details of the method is the content of the next

subsection.

4.2.2 Hypergraph containers

Now we present the result of hypergraph containers. The technique, developed inde-
pendently by Saxton and Thomason ([29]) and Balogh, Morris and Samotij ([2]), says that
independent sets of a balanced uniform hypergraph are clustered in a small number of con-
tainers. This is of great interest when we are counting such independent sets, because we
can do that by estimating only in a small number of sets (containers). We will use the
notation in [2]. First, we start with an important definition. A family F of sets of vertices
is increasing if for every A, B C V, A € F and A C B imply that B € F.

Definition 4.11. Let H be an r-graph, let F be an increasing family of subsets of V(H)
and let € € (0,1). We say that H is (F,e)-dense if

e(H[A]) > ee(H),

for every A € F.

There always exists a family F € P(V(H)) such that #H is (F,e)-dense. For instance,

consider the family

F={ACV(H): e(H]A]) > ece(H)}.
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In applications of the container theorem, we are interested in increasing families F defined
as F ={A € V(H) : |A| > év(H)} for some appropriate ¢ > 0. This is mainly because
the theorem will guarantee that our containers are in the complement F. Therefore, with
this choice of F, our containers will be sets of size at most dv(#H). However, now we have
to prove that H is (F,e)-dense. As we shall see, this is usually done with a supersaturation
theorem.

Given an r-graph H, denote by dy(A) = |{e € E(H) : A C e}| the number of edges that
contain a subset A C V(#H). Then we can define

Ap(H) = max{dy(A) : |A| = k}.

A balanced r-graph means that there exists some ¢ > 0 and p € (0,1) such that

Let Z be the set of independent sets of a balanced r-graph H and let F be a family
such that H is (F,¢)-dense. The container theorem will assign a container C' € F for each
independent set I € 7 such that I C C. For technical reasons that are interesting to us, this
is done in the following way: Given a set I, there exists a small set S(I) C I, that is called
the fingerprint of I and for each fingerprint S there is a container C'(S). This is done in a
way that S(I) € I € C(S(I)). Since each fingerprint is small, the number of containers can

be bounded in a good way.

Theorem 4.12 ([2]). For every r € N and all positive ¢ and €, there exists a positive
constant K such that the following holds. Let H be an r-graph and let F C P(V(H)) be an
increasing family of sets such that |A| > ev(H) for all A € F. Suppose that H is (F,e)-dense
and there exists p € (0,1) such that, for every 1 <k <r,

e(H
v(H)

~—

Ar(H) < epF!

~—

Then there exist a family S C P(V(H)) and functions f : T — S and g: S — F such that
(i) f(I) < Kpv(H), for every I € T.

(i) f(I)CcICg(f(l)), for every I € T.

Moreover, the constant K := K(r,c,e) can be taken as K = Kie " log(1/e) for some

constant Ky := K;(r,c) depending only on ¢ and r.

One important observation is that the constant K has no relation with the size of the
hypergraph H. Thus the theorem is true even for small hypergraphs satisfying the hypoth-
esis.

We want to apply Theorem 4.12 in our context. As we already explained, our n-graph H
will have V(H) = [m]? and E(H) = {A C [m]? : |A| = n, A = B}, that is, the vertices are

the points in the grid and the edges are the n-sets isomorphic to B. Then an independent
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set is a set without a copy of B. It remains to check if H is a balanced n-graph and to
find a family F such that H is (F,e)-dense. For the last one, we will use the following
supersaturation result. For a configuration A, let Ng(A) denote the number of copies of B
inside A.

Theorem 4.13. For a configuration B of n points and § € (0,1), there exists € > 0 such
that for every m the following holds. If X C [m]? with |X| > dm?, then Ng(X) > em?".

Moreover, we can take e = §™(3 gr(B)) > 108(8/9)

Proof. The proof here is similar to the one of Theorem 3.16. Let d = [nlog(8/d)] and
consider a configuration A’ € ®f:1 B as in Theorem 3.15, that is, a configuration A’ such
that gr(A’) < 84=1 gr(B)2?~! and such that every W—perturbation of A’ isin ®‘;:1 B.

For an integer & > 0, consider a homothety that dilates A’ to a copy A” which is
k times greater than A’. The copy A” can be embedded in [k8?~!gr(B)2?-1]2. Write
A" = {ay,...,a,a} and for every a;, let A; be the points of [k89~1 gr(B)2?-1]? that are
inside the open ball centered at a; of radius ng)\/ﬁ. Consider the set A= A;U---UA,..
By the construction of A, every transversal is a configuration in ®f=1 B. Suppose that
k84=1gr(B)24=1 < m, then A € [m]?. Therefore, we can apply Lemma 3.12 in the J-
proportion X of [m]? and obtain a translation of A such that X contains a g—proportion of
it. Suppose without loss of generality that this translation is A.

We now prove that a g—proportion of A contains many copies of B. Since | XNA| > %|A|,
Lemma 3.7 says that there exists a set of indices I of size at least % such that | X NA4;| >
g|Ai| for every i € I. Note that by Lemma 3.3 and our choice of d, we have that Y —;,5 B
for every Y € ®f:1 B. Moreover, a copy of B obtained by this lemma is a transversal of
a configuration Y’ € ®?;1 B with d < d and Y’ C Y. Consider the g—proportion of A”
given by choosing a; € A” with 7 € I and let J be the set of indices of the copy of B inside
this %—proportion of A”. We claim that any transversal of (J;.;A; is isomorphic to B.
This is because the set {a; : j € J} is a transversal of a configuration A" € ®f; 1 B with

ds < dand A" C A and because any %—perturbation of A” preserve the structure of

gr(B)V2
a ®?:1 B.

Finally, using that J C I, we have that | X N A4;| > %|Aj\. By the same Pythagorean
argument made in the proof of Lemma 3.14, in the worst case, A; is a quarter of a circle
and we have

]{32
451 = 16gr(B)?

Therefore,

P 5nk2n
Np(X) > XNA;| > —|Ai| > .
B( )—H‘ n ]‘—H8| J|—162ngr(B)2n
JjeJ JjEJ
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Taking k= \_M’ij we get,

on I_WWJ% o o
Ne(X) > gr(B) 2n > 2n
s 2 g gmr Z Ga@” C Ga(B)re e
Therefore e < ——9— works. O

(3 gr(B))5'7L2 log(8/8)

Now we are able to prove the following version of the container theorem.

Theorem 4.14. Given a configuration B with n points and € > 0, there exist a constant
K := K(B,¢) such that the following holds. For every integer m > 2gr(B), let T = {A C
[m)?: B ¢ A} be the family of subsets of [m]? without a copy of B. Then there exist families
C and S of sets of [m)? and functions f : T — S and g : S C C such that,

(i) f(I) < K, for every I € T.

(i) f(I) CICg(f(I)), for every I € T.
(iii) |C| < dm?, for every C € C.

Where § = 8z 6n7losGer(®) and the constant K can be taken as K = K12 "log(1/e) for
some constant K1 := K1(B) depending only on B.

Proof. This is just an application of Theorem 4.12 with H as described before. Let V(H) =
[m]? and E(H) = {A C [m]? : A= B} the copies of B inside [m]?. Let F be the family of
configurations A C [m]? with |A] > ém?, where 6 = 857 stw Y . It is easy to see that F
is increasing. By Theorem 4.13, we have that e(H[A]) = Np(A) > 6"(3 gr(B)) 57" 108(8/9) >
em?™ > ce(H) and then H is (F,¢)-dense.

It remains to prove that H is balanced. For this, we need a lower bound on Np([m]?). As

in Lemma 3.14 , for an integer k > 0, we can construct a copy B’ of B inside the [k - gr(B)]?

grid such that every (W};r(B))—perturbation is isomorphic to B. Let B’ = {by,...,b,} and
for every b; € B’, let B; be the set of points in the [k - gr(B)]? that are inside the open ball
centered at b; of radius ﬁr(B)' By the Lemma 2.10, we know that if Y = {y1,...,yn} C

[m]? with y; € B;, then Y = B. Therefore,
Np([k - gr(B)) > H | Bil.
i=1

In Lemma 3.14, we also saw that every set B; contains a grid of size ﬁ(B)’ then |B;| >

ﬁ?BP' All together, we have

9 k?n
Np(lk-gr(B > |
sllk e B)) 2 g

Taking k = Lgr}"B)J, we obtain

2 |-grr(nB) J 2 1 2n
0 = Nlnl) = G gy = Gz
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The last estimate shows that # is a dense n-graph, i.e., e(H) > av(H)™ for some a > 0.
This suffices to prove that H is balanced. Indeed, for any 1 < k < n, we have

Ap(H) < (v('H) ; k) < o(H)"F < m2nk)

n—
Choosing p = -5 and ¢ = (3gr(B))"",

2(n—1) 6(7-[)
A < 2n—k) _ k=1 < k-1 )
KR = = G =Y )

Thus, applying Theorem 4.12 for ¢ = (3gr(B))** and ¢ > 0, we obtain a constant K a
family S and functions f:Z — C, g : S — F such that,

(i) f(I) < Kpv(H) = K, for every I € T.
(i) f(I) cIcCg(f(I)), for every I € .

Take C = F. By the definition of F, we have that |C| < dm? for every C' € C. Finally, in
Theorem 4.12, the constant K can be taken as K = K’ "log(1/e), where K; := K;(c,n)
is a constant that depends only on ¢ and n. However, because ¢ = (3 gr(B))*", we can view
K, := K1(B). O

4.2.3 Counting theorem and proof of Theorem 1.4

With the technical machinery of the container method, we are able to count the number

of independent sets of a fixed size.

Theorem 4.15. For a € (0,1( and a configuration B with n points, there exists an integer
M := M (B, «) such that the following holds. For every sufficiently large m and N > M the

number of N-subsets of [m]? that do not contain a copy of B is at most

am?
(V)
Proof. Choose ¢ = (oz/80())6”2 log(3er(B)) | then § = e T TG E (B — a/100. Applying The-
orem 4.14, we obtain a constant K := K(B,¢), families S, F and functions f : Z — S,
g : T — C satisfying items (i), (ii) and (iii). Set M = max{[%],10log(1/6)} and suppose
A C [m]? with |[A| = N > M. If A does not contain a copy of B, then by Theorem 4.14,
there exist sets f(A) € S and g(f(A)) € C such that |f(4)| < K, |g(f(A4))] < dm? and

f(A) € A C g(f(A)). One can count all such sets A using the elements of S. In fact,
recalling that N, n(B) = {A C [m]?>: B ¢ A, |A| = N}, we have,

s £ ()< 5 (5)() = 5 () () (),

s<K

where here we use that (?) < ()° and that (%) = E2S-tdniowen) ont)
( dm2—N)\3

) (]‘z[”i) Noting that the function z — (y/z)* is increasing on (0,y/e) and that for
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sufficiently large m we have % > N, it follows that
2eN\* [om? 2eN\ " [5m?2
m,N(B)| < — <K|=— )
o= () () 52 ()

Using that K < JN and that (‘mZ) < 9N (O‘xz) we have,

s ()" ()

Because § = /100 < 1/100, we have that 2¢ < 21/2% and then

SN [am? am?
Won,n (B)] < 2N/2< N ) : ( N )

which is true for N > 10log(1/9). O

To prove Theorem 1.4 we perform the same trick used in the extremal number problem.
For a fixed N we pick an appropriate « such that M(B,a) < N. Here it is important to

know the behavior of K as a function of €.

Proof of Theorem 1.4. Set o« = N~¢, where ¢ := ¢(B) = W@grw))' For this value of
a, let & = (or/800)67"108B3er(B) and § = a/100. Also let K := K(B,¢) and M := M(B, «)
be the constants obtained by applying Theorems 4.14, 4.15 for parameters B, € and B, «,

respectively. An easy computation using that K = K1e~"log(1/e) shows that,

2K (B
M(B,a) = max{[¥],1oo log(1/6)} < 3K16 *e " log(1/e) < 3K6 te™ ("D
16 6n%(n+1) log(3 gr(B))+1 1 8n® log(3 gr(B))
< Ko () < Ks () = K3N'? <N,
« «

for sufficiently large N and constants K7, Ko, K3 depending only on B. Therefore, by
Theorem 4.15 we have that,

N (B)] < (

and by Proposition 4.10,

O

We conclude this section with an application of the last theorem. We will compute the
probability of an N-random set U being in a certain hereditary property. A hereditary
property of order types is a family P of order types satisfying the condition that if X € P
and Y C X, then Y € P, that is, a hereditary property is a decreasing family.
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Given a configuration X, define
Forb(X)={A: X ¢ A},

as the family of order types that do not contain a copy of X. For a family F of order types
we define Forb(F) as the family of order types that do not contain a copy of any element of
F.

It is not difficult to see that every hereditary property P can be defined as Forb(F) for
some family F. For instance, the family CONV of convex sets is a hereditary property.
This is because any subset of a convex set is also convex. One can see, that another way
to formulate this family is by considering the family Forb(T'), where T is the triangle with
an interior point. Because any convex set does not contain interior point, we have that
CONV C Forb(T). On the other hand, if the convex hull of a configuration in Forb(T')
contains an interior point, then a triangulation generates T. Therefore, CONV = Forb(T).

Given a configuration B of n points and a random set U of N points inside the unit
square, the problem studied in this section can be translated in the new notation, i.e., to

estimate bounds for the probability of U € Forb(B). However, because
P(U € Forb(F1)) < P(U € Forb(F2))

if 75 C F1, in order to obtain an upper bound to the probability of P(U € Forb(F)) we
just need to solve the case where F contains only one element. This observation gives the

following corollary.

Corollary 4.16. Let P be an infinite hereditary property of order types and let U be the set
obtained by choosing at random N points inside the unit square. Then, there exists constants

c1,co depending only on P such that,

(1) crweme (1)

Proof. Let F be the family such that P = Forb(F). Suppose that F contains a convex
set C' of m points. Then by Theorem 3.4, every configuration A with at least ES(m) + 1
points contains a copy of C. This implies that every configuration in P contains at most
ES(m) points and we have that |P| is finite, a contradiction. Therefore, F does not contain
a convex set. An immediate consequence is that every convex set is an element of P. Thus,
by Theorem 4.1,

P(U € P) > P(U is convex) = ((2%!12) >2 > <1>61N,

for an appropriate constant ¢; > 0.
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For the upper bound, just consider a configuration B € F. Then, by Theorem 1.4,

P(U € P) <P(U € Forb(B)) < (;)QN,

with ¢g := c2(B) a constant depending on P. O



Chapter 5

Final Remarks

The combinatorial aspect of order types is a very recent field in combinatorics. Therefore,
there are many unexplored territories and open problems. In this chapter we propose some
problems related with our work.

In Section 3.1, we studed the problem of finding bounds for f(B, «) for a fixed configu-
ration B and a real number a € (0,1). Our approach is based on iterating blow-ups of B
until we obtain an a-proprotion whit the desired copy. This process only uses the fact that

order types are open, which suggests room to improvement.
Problem 5.1. Determine whether f(n,a) is polynomial or exponential on n and «.

One simple case that we do not know an efficient method to compute f(B,«) is when
B is a pentagon with a center point. It would be interesting to find other bounds for this

configuration that avoid the iterative blow-up method.

Figure 5.1: Pentagon with a center point

The following problem was proposed by Hao Huang and is based on its analogue in graph

theory.

Problem 5.2. Given an order type B of n points and a integer N > 0. Find the maximum

number of copies of B inside a configuration of N points.

In Section 3.2 we developed a method to give upper bounds for ex(N, B). This method

can give relatively sharp bounds as we can see in Theorem 3.19. However, we do not
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have a good lower bound, that is, a lower bound that in fact uses some properties of our

configuration B. It would be interesting to find better lower bounds.

Problem 5.3. Does there exists a configuration B such that ex(N, B) is not linear on N ?
We also conjecture that the behavior of the convex case should be as follows.

Conjecture 5.4. If B is a conver set of n points, then ex(N, B) = ©(n3/2N).

At last, in Chapter 4 we studied a specific random space and obtain some results on
probabilities of order types and hereditary properties. All of these were motivated by the
following question proposed by Yoshiharu Kohayakawa.

Problem 5.5. Let R(n) be the minimum integer N such that there exists a configuration

n-universal of N points. Determine bounds for R(n).

An obvious application of Theorem 2.3 gives us that R(n) < 24m1o8 n+0(n)  For the lower
bound, we use the simple counting argument that the number of n-subsets of an n-universal
is at least 24mlogn+0(n)  Thysg,

(R 'fl)) > 24nlogn+0(n)
n

and we obtain that
R(n) > n5+0(1).

Clearly, there is a huge gap between these two bounds. Theorem 1.3 indicates that is
probably not helpful to use our random process to obtain small n-universal order types.
Despite of that, it would be interesting to know more about the probabilities in this space.
We finish this chapter by conjecturing that the probability of an order type is strongly

related to its gr parameter.

Conjecture 5.6. There exist constants ci,co such that for every sufficiently large n the
following holds. Let B be an order type of n points and U be the set obtained by choosing n

random points inside the unit square, then
(gr(B))" " <P(U = B) < (gr(B))"*".

Theorem 4.1 states that this is true for convex sets. We also know, by Theorem 1.4,
that this is true for configurations with polynomial grid size and without containing a small

order type. This is the case for the double circle [3].



Appendix A

Asymptotic Estimates

In this appendix we show an important estimate number theoretic estimate for our work
(Theorem A.2). The estimate relies on the following result known as Abel’s summation

formula.

Theorem A.1 ([1], Theorem 4.2). Let {a,}n>1 be a sequence of real numbers and let

f:[1,00] = R. For each real number x > 1, let

A(z) = Z an,

n<zx

and assume that f(z) has a continuous derivative for x > 1. Then

> anfln) = Al) ()~ [ A @t
n<zx 1

The next theorem involves some estimates over the sums of euler totient functions. Note
that the euler totient function ¢ is defined by ¢(n) = [{j € [n] : ged(n,j) = 1}, ie., the

number of integers in [n] which coprime with n.

Theorem A.2. The estimates

3
> ¢(n) = Sa® + O(xlogx),
™
n<zx
2
Z np(n) = ﬁx?’ + O(x?log z)
n<x

hold for all x.

The proof of this theorem requires a standard result in number theory related with the

Mobius function. The Mobius function p is defined as follows. For every integer n > 1,
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write n = p{*...pg* as its prime factorization. Then

1, ifn=1
p(n) =< (=0F,  ifay == =1
0, otherwise

Notice that p(n) = 0 if and only if n has a squared factor.

Theorem A.3 ([1], Theorem 2.3). If n > 1 we have
n
p(n) = pl(d)=.

d|

Now using Abel’s summation formula we are able to prove this theorem.

Proof of Theorem A.2. First we want to estimate £(") Theorem A.3 gives us

n<x n

o) _ i)
n d
d|n

Summing for all n < z,

Z@: wd) _ 5l M(w+o(1)):

n<z n<z din d d<z d n<z d<z d d
d|n
p(d) 1 = p(d) p(d) 1

=T 2+O( d)zx(Z P2 ;) TO Zg

d<z d<z d=1 d>x d<zx
_ R 1 L
=) +O<x( )T

d=1 d>x d<z

and one can estimate > - ”ézd) by
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where we use that > 7, # = %2. All together give

Z #(n) = %x + O(log x).
n<z

n

To get the desired estimate we now apply the Abel summation formula twice. First with
an = 2% and f(t) = t. Noting that A(xz) =>_ 2 e obtain

n n<x n

S () = 3 anf(n) = A@)f(x) - / " AW) £ (1)dr

n<z n<z

_ <fzx+0(logx))x - /1 <7r62t+0(10gt))dt

:£z2—|—0(z10gz)—£/ tdt + O /logtdt
2 w2 /i 1

6 3 3
= ﬁﬁ + O(zlogz) — ﬁxz + O(zlogz) = ;xz + O(zlogx).

Then we apply again with a,, = @ and f(t) = t2,

S ) = X anf) = Alw) )~ [ A (1)t

n<x n<x

6 . [T 6
(sz—i—O(logx))a: —/1 Qt(ﬂzt—l—O(logt))dt
6 4 9 12 [* 5 ¥
—r° + 0z logz) — — [ t°dt+ O tlogtdt

™)1 1

T2

6 4 2
ﬁx?’ +O(2%logx) — ﬁx?’ + O(2*logz) = ﬁx?’ +O(2%log z).
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