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Abstract. We show that non-abelian two-generator subgroups of right-angled

Artin groups are quasi-isometrically embedded free groups. This provides an
alternate proof of a theorem of A. Baudisch: that all two-generator subgroups

are free or free abelian. Additionally, it shows that they are quasi-isometrically

embedded. Our theorem also gives a method for detecting groups that are not
isomorphic to a subgroup of any RAAG. We present some counterexamples in

subgroups with more than two generators.

1. Introduction

Definition 1.1. Given a combinatorial graph Γ with vertex set V and edge set E,
the right-angled Artin group AΓ is the group presented by the generating set V and
the relations {vivj = vjvi | (vi, vj) ∈ E}.

Right-angled Artin groups (RAAGs) constitute a spectrum between free abelian
groups, given by complete graphs, and free groups, given by edgeless graphs. The
simple definition belies that fact that complicated groups can exist as subgroups of
right-angled Artin groups. Crisp and Weist showed that nearly all surface groups
can be embedded in some RAAG [CW04]. In addition to providing a wealth of
interesting examples, RAAG subgroups have underpinned several recent results in
group theory and topology. The recent proof of the virtual Haken conjecture by
Ian Agol [AGM12] relied on showing that every hyperbolic 3-manifold group had
a finite index subgroup that embeds in a RAAG via a map defined by Haglund
and Wise [HW08]. Hsu and Wise also used embeddings of subgroups to show that
certain graph groups are linear [HW10].

The behavior of two-generator subgroups of RAAGs is much more circumscribed.
A theorem of A. Baudisch completely describes their group structure.

Theorem 1.2. [Bau81, 1.3] Every two generator subgroup of AΓ is either free or
free abelian.

This description of two-generator subgroups is interesting for at least two reasons.
First, it passes to subgroups. If this description holds for a group G, then it holds
for every subgroup H < G. Second, two generator subgroups of many other well-
studied groups have this description or some approximation of it. In mapping class
groups, it is false in general, but given two generators, one can take appropriate
powers of each such that the group those powers generate is free or free abelian.

Two generator subgroups of pure braid groups do fit this description. This fact
that was used by Scrimshaw [Scr10] and Kim and Koberda [KK13] who recovered
Baudisch’s result by embedding any AΓ in some pure braid group.
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Our main result concerns the metric structure of two-generator subgroups in a
right-angled Artin group. We use the word metric to realize each group as a metric
space. The desired metric property is the following.

Definition 1.3. A quasi-isometric embedding is a map f : X → Y between metric
spaces such that there are constants λ ≥ 1 and ε ≥ 0 that satisfy

1

λ
dX(p, q)− ε ≤ dY (f(p), f(q)) ≤ λdX(p, q) + ε

for all p, q ∈ X.

The metric behavior of abelian subgroups of a RAAG is already well understood,
via the Flat Torus Theorem (see in [BH99, II.7.1 and II.7.17]). Our main theorem
resolves the nonabelian case.

Theorem 1.4. Let F = 〈u, v〉 be a free group. If φ : F → AΓ is a homomorphism,
such that φ(u) and φ(v) do not commute, then φ is a quasi-isometric embedding.

We retrieve Baudisch’s original, algebraic description (1.2) as a corollary. Com-
bining with the abelian case, we produce the following metric description.

Corollary 1.5. Every two generator subgroup of AΓ is a quasi-isometrically em-
bedded free or free abelian group.

One consequence is that if an injective homomorphism ψ : F2 → G is not quasi-
isometric, then G is not isomorphic to a subgroup in any RAAG.

There is also a divergence between the algebraic and metric treatments in higher
rank free groups. We produce a free subgroup of a RAAG whose inclusion is not a
quasi-isometric embedding.

2. Background

This section will recall some standard results from geometric group theory, be-
ginning with a discussion of quasi-isometric embeddings.

2.1. Quasi-isometries. It is a straightforward exercise to show that compositions
of quasi-isometric embeddings are quasi-isometric embeddings. The next natural
step is to define a relation based on those embeddings that have an inverse, defined
as follows.

Definition 2.1. A quasi-isometry is a quasi-isometric embedding such that all of
Y lies within a fixed distance of the image f(X). If such a map exists, then X and
Y are quasi-isometric.

One can show that a quasi-isometry f has a quasi-inverse, a quasi-isometry g
such that f ◦ g and g ◦ f move points a bounded distance. “Quasi-isometric” forms
an equivalence relation on metric spaces. It is the natural equivalence relation for
the study of groups as metric spaces. From any generating set S of a group G, one
can produce the word metric d where d(g1, g2) is the length of the shortest word in S
that represents g−1

1 g2. We can’t directly use geodesics to study G, since it has none.
Fortunately the Cayley graph of G does have geodesics, and it is straightforward
to prove the following:

Proposition 2.2. If G has generating set S then the Cayley graph Cay(G,S) (with
unit length edges) is quasi-isometric to the group G given the word metric from S.
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The other natural appeal of quasi-isometry is that the word metric depends on
the choice of generating set S. Quasi-isometry resolves this ambiguity.

Proposition 2.3. If two finite generating sets S1 and S2 of a group G give word
metrics d1 and d2, then the identity map on G is a quasi-isometry between (G, d1)
and (G, d2).

A more general and more powerful theorem concerning quasi-isometries of groups
is the following:

Theorem 2.4 (The varc-Milnor Lemma [Mil68]). If a group G acts properly,
cocompactly and by isometries on a geodesic metric space X, then G is finitely
generated. Furthermore for any x ∈ X, the orbit map g 7→ gx is a quasi-isometry.

An accessible proof is found in [BH99, I.8.19].

2.2. CAT(0) spaces. We will denote a geodesic segment between points a and b
in a geodesic metric space by [a, b].

Definition 2.5. A geodesic metric space X has the CAT(0) property if for any
three points p, q, r ∈ X, any geodesic triangle [p, q] ∪ [q, r] ∪ [r, s] is at least as
thin as a comparison triangle [P,Q] ∪ [Q,R] ∪ [R,P ] with equal length sides in the
euclidean plane E. That is, for any x ∈ [p, q] and y ∈ [q, r], the corresponding points
X ∈ [P,Q] and Y ∈ [Q,R] with dX(x, p) = dE(X,P ) and dX(y, q) = dE(Y,Q) have
the property:

dX(x, y) ≤ dE(X,Y ).

If every point in X has a neighborhood that is CAT(0), then we say X is non-
positively curved.

The CAT(0) property has many useful consequences. A general exposition is
found in [BH99, II.1].

Proposition 2.6. If X is CAT(0) and p, q, r ∈ X with dX(q, r) < ε then the
geodesics [p, q] and [p, r] each lie within an ε -neighborhood of the other.

This follows directly from the equivalent fact in the comparison triangle. Here
is a powerful application.

Corollary 2.7. If X is CAT(0) then there is only one geodesic between any two
points p and q.

Corollary 2.8. A CAT(0) space is contractible.

The contraction moves each point to the basepoint along the unique geodesic
between them at constant speed. Continuity follows directly from Proposition 2.6
and the fact that geodesics are continuous maps.

Proposition 2.9. In a CAT(0) space, local geodesics are (global) geodesics, and
are thus unique.

Non-positive curvature can also be used to study covering spaces and fundamen-
tal groups. One critical ingredient is the following generalization of a theorem from
Riemannian geometry, whose name it also shares.
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Theorem 2.10 (The Cartan-Hadamard Theorem for Non-Positively Curved Spaces).

[AB90, Theorem 1] If X is non-positively curved, then the universal cover X̃ is
CAT(0).

The following standard application illustrates the connection between metric and
group theoretic aspects of maps. A proof is in [BH99, II.4.14].

Proposition 2.11. If X is non-positively curved, Y is a geodesic metric space and
f : Y → X is a locally isometric embedding, then the induced map f∗ : π1(Y ) →
π1(X) is injective.

Furthermore, by the the varc-Milnor Lemma, the map f∗ is a quasi-isometric
embedding, since it is the composition of two quasi-isometries and an isometric
embedding:

π1(Y )→ Ỹ → X̃ → π1(X)

2.3. Isometries of CAT(0) spaces. Like in the hyperbolic plane, isometries of
a CAT(0) space are classified as either elliptic, parabolic, or hyperbolic.

If G is a group acting properly by isometries on X such that X/G is compact,
then a standard result [BH99, II.6.10.2] is that all g ∈ G are either elliptic or
hyperbolic. If G is a deck group, then it acts freely and all its isometries are
hyperbolic.

A hyperbolic isometry of the hyperbolic plane has an axis, a bi-infinite geodesic
preserved by the isometry.

If g is a hyperbolic isometry of a CAT(0) space, then it also has an axis. This
axis may not be unique, but any two axes lie in bounded neighborhoods of each
other. This is clear since g preserves distance. A CAT(0) argument shows that any
two axes are actually parallel (see [BH99, II.6.8]).

2.4. Cube complexes.

Definition 2.12. A cube complex is a metric space X that is the union of metric
cubes [− 1

2 ,
1
2 ]n glued by isometries of their faces.

Finite dimensional cube complexes are geodesic metric spaces [BH99, I.7.19].
Given a RAAG AΓ, we take a cube [− 1

2 ,
1
2 ]#V with the euclidean metric and with

opposite faces identified to make an n-torus. The faces of this torus form a complex
of metric cubes, specifically, each edge is an interval associated to an element of V .
We consider the subcomplex of only those cubes whose edges all commute pairwise
in AΓ.

This subcomplex has fundamental group AΓ. We call it the Salvetti complex,
which we will denote XΓ. With the path metric, XΓ satisfies Gromov’s link condi-
tion [Gro87, 4.2c] for a non-positively curved cube complex [CD95, 3.1.1].

In addition, by the varc-Milnor Lemma, the universal cover X̃Γ is quasi-isometric
to AΓ.

2.5. Hyperplanes.

Definition 2.13. Given a metric n-cube: [− 1
2 ,

1
2 ]n, we define the ith midcube to

be a set of points that is 0 in the ith coordinate. A midcube naturally inherits the
metric and cell structure of an (n− 1)-cube.
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In a cube complex X we define a relation on all midcubes in X. Two midcubes
are related if and only if they share a vertex. There is a unique weakest equiva-
lence relation generated by this relation. This equates any midcubes that can be
connected by a succession of vertices. The union of cubes in an equivalence class is
a hyperplane. Figure 1 shows examples in a small complex.

We’ll say that the vertices of X that belong to edges of X crossing a hyperplane
h are adjacent to h.

p

h3

h2

h1

Figure 1. 3 hyperplanes in a cube complex. p is adjacent to h1

and h2 but not h3.

If X is CAT(0) then a hyperplane h contains at most one midcube of a given
cube, and divides X into two connected components [Sag95, 4.10]. The cubes

containing h form an h × I neighborhood with a metric
√
d2
h + d2

I . This makes
geodesics near h very easy to compute, and since geodesic segments are unique in
X we obtain the following standard results:

(1) If p, q ∈ h, then the geodesic segment from p to q (in X) is also contained
in h. Specifically, h is simply connected.

(2) A geodesic in X is either contained in h, disjoint from h or intersects h
transversely at a single point.

We’ll make use of the following lemma in our proof of the main theorem.

Lemma 2.14. If L is a bi-infinite geodesic in a CAT(0) cube complex that trans-
versely intersects a hyperplane h, then the distances from points on L to h is un-
bounded, traveling in either direction along L.

Proof. Suppose L ∩ h = p. Take q ∈ L at distance 1 from p. Now take r ∈ L
distance t > 1 from p along the same direction as q. Let r′ be a point on h of
minimum distance to r.

Take the comparison triangle (P,R,R′) and let Q′ be the point on [P,R′] with
d(P,Q′) = 1

t d(P,R′). The corresponding point q′ lies in h along the geodesic from
p to r′. Then we have

d(q, h) ≤ d(q, q′) ≤ d(Q,Q′) =
1

t
d(R,R′) =

1

t
d(r, h).

Since d(q, h) is a constant, we can make r arbitrarily far from h by increasing
t. �
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h p

r

r′
q′

q

R

Q

P Q′ R′

Figure 2. The comparison triangle for Lemma 2.14

Here is an immediate consequence.

Corollary 2.15. If L1 and L2 are axes of w, then L1 properly intersects h if and
only if L2 does.

Furthermore h has the structure of a cube complex, given by the midcubes it
comprises. If X is CAT(0), it is straightforward to check that so is h. If w is a
hyperbolic isometry of X preserving h, then w has an axis in h which must also be
an axis in X.

2.6. Special cube complexes. The theory of special cube complexes was intro-
duced by Haglund and Wise [HW08]. Special cube complexes are cube complexes
whose hyperplanes avoid certain pathologies. They are defined in such a way that
guarantees a locally isometric embedding in the Salvetti complex of some RAAG.
Thus if C is a special cube complex, then there is an injective homomorphism from
π1(C) to some RAAG.

Later, Hsu and Wise used special cube complexes to show that many free by
cyclic graph groups virtually embed in RAAGs.

Theorem 2.16. [HW10] Let G be a graph of groups with free vertex groups and
cyclic edges groups. Suppose G contains no Baumslag-Solitar groups, or equivalently
is word hyperbolic. Then G acts on a cube complex C, and G contains a finite index
subgroup H whose action on C is special. As a result, H quasi-isometrically embeds
in some RAAG.

This theorem applies to a free by cyclic HNN extension that we’ll use as an
example later.

A final application is the following result, due to Ian Agol. It is part of his proof
of the virtual Haken conjecture.

Theorem 2.17. [AGM12] Let C be a non-positively curved cube complex such that
π1(C) is word hyperbolic. Then C has a finite cover which is special.

These two theorems are statements of existence. Neither gives a method for
finding the desired cover.

3. X(1) geodesics

3.1. Interaction with hyperplanes. In this section, A will denote a RAAG.
We’ll use X to refer to the universal cover of its Salvetti complex.

Most of our arguments exploit our ability to relate the combinatorics of A to the
geometry of X. We can, in fact, see the group directly in X by tracing our paths
not in X but in its 1-skeleton.
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We’ll call paths in X that stay in X(1) and don’t change direction mid-edge edge
paths. Edge paths between vertices are nothing more than words in the generators
of A. The path follows the edge corresponding to each letter in turn.

Unless A is free, X(1) is not CAT(0) and does not have unique geodesics. We’ll
use [p, q] to denote some choice of minimal length path between p and q in X(1).
We’ll call this an X(1) geodesic segment. Given an edge path from p to q encoded by
w ∈ A, finding an X(1) geodesic [p, q] is equivalent to finding a shortest form for w.
The distance from 1 to w in the word metric, denoted |w| is also the length of [p, q].
Here are some quick results connecting X(1) geodesics segments to hyperplanes.

Observe that an edge path is transverse to the hyperplanes of X. Furthermore,
two vertices of X lie on the same side of a hyperplane h if and only if every edge
path between them crosses h an even number of times.

Lemma 3.1. An X(1)-geodesic segment crosses no hyperplane more than once.

Proof. Suppose [p, q] does cross some hyperplane twice. Consider an innermost pair
of crossings. Let h be the hyperplane they cross. The path between the crossings
does not meet any hyperplane h′ disjoint to h, otherwise it would have to recross
h′ in order to return to h, violating our choice of an innermost pair of crossings.
Thus the path stays adjacent to h, in an h× I neighborhood. This means [p, q] can
be shortened by removing two crossings of h, so it is not a geodesic segment. �

Corollary 3.2. An X(1) geodesic segment is any segment that crosses no hyper-
plane more than once. Given two points, the X geodesic segment and X(1) geodesic
segments between them all cross the same set of hyperplanes.

The following corollary is an application of the triangle inequality.

Corollary 3.3. Given w ∈ A not equal to 1 and a vertex p ∈ X such that d(p, wp)

is minimal, the set ξ =
⋃
i∈Z

wi[p, wp] is an axis of w, that is a w-invariant bi-infinite

X(1) geodesic.

Note that ξ depends both on the choice of p and [p, wp], so it is far from unique.
However, ξ does remain within bounded distance of any (non-X(1)) axis L of w,
since it is the w orbit of a (bounded) segment.

The last lemmas rely on the specific construction of X, rather than general
CAT(0) hyperplane facts. By inspection, the hyperplanes of X/A meet a single
edge each. Thus we can assign to each hyperplane in X a type, according to which
hyperplane in X/A lifts to it. Moreover, since the hyperplanes of X/A do not self-
intersect, distinct hyperplanes of the same type in X do not intersect. Finally, note
that the action of A preserves type, as well as the orientation of the edges that
cross each hyperplane.

Lemma 3.4 (Slope Lemma). Suppose w ∈ A has axis ξ. Suppose p is a point on
ξ, and q is a point on a hyperplane h. h crosses ξ beyond wp (that is, on the ray

ξ =

∞⋃
i=1

wi[p, wp]) if and only if h crosses [wp,wq]. Note figure 3.

Proof. If h crosses ξ then wh 6= h. If the crossing is beyond wp then h must cross
[wp,wq] to avoid crossing wh.
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q

p

wp

wq

←→w
h

ξ

Figure 3. An illustration of the Slope Lemma

On the other hand, if h crosses [wp,wq], we have that w−1h crosses [p, q]. Since
wh 6= h, w−1h must also cross either ξ or [wp,wq]. Continuing by induction, we
either get that some w−kh crosses ξ (thus producing the desired conclusion) or that
infinitely many hyperplanes cross [p, q], an absurdity. �

If h1 and h2 are two hyperplanes in X whose projections in X/A intersect trans-
versely we write h1 ⊥ h2. If their projections are disjoint or identical we write
h1 ‖ h2. No hyperplane of X/A self intersects, so if h1 ‖ h2, then h1 and h2 are
either identical or disjoint. However not all pairs h1 ⊥ h2 intersect.

If two hyperplanes h1 ⊥ h2 are adjacent to the same vertex, then they do in fact
intersect in a square that meets that vertex. Also, only one edge of each type and
direction meets a given vertex. These facts are immediate from our construction
of X. They are also, however, the remaining two conditions for the action of A on
X to be special. The following lemma is true for any group acting specially on a
CAT(0) cube complex.

Lemma 3.5. Let p be a vertex and h a hyperplane. The vertex p is adjacent to h
if and only if every geodesic segment [q, p] from any q ∈ h crosses only hyperplanes
hi ⊥ h.

Proof. Let pi be the ith vertex in [q, p], and hi be the hyperplane crossing [pi, pi+1].
Suppose hi ⊥ h for all i. We’ll show p is adjacent to h by induction. The first
vertex, p1, is adjacent by definition. Now suppose pi, is adjacent to h, via an edge
we’ll denote e. The edges [pi, pi+1] and e span a square, h is a midcube of the
square, and pi+1 is still adjacent to h.

On the other hand if some hi ‖ h then hi separates h from [pi+1, p], since [q, p]
crosses no hyperplane twice. Thus any path from h to p must cross hi, and p is not
adjacent to h. �

Any element of A that preserves h also preserves the set of adjacent vertices on
each side. Given a point p adjacent to h, the stabilizer subgroup of h in A sends p
along the edges that cross hi ⊥ h. In a RAAG, these translations have a particular
form. They correspond to the generators that commute with the generator whose
edge crosses h. Thus the stabilizer subgroup is conjugate to a subgroup generated
by vertices of Γ. This characterization allows us to conclude that if wih = h then
wh = h. which permits a useful variant of the Slope Lemma (3.4).
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Lemma 3.6 (Parallel Axis Lemma). Let w ∈ A have axis ξ as above, and p ∈ ξ.
Suppose that some hyperplane h does not meet ξ and r is some point in X such
that [p, r] meets h. If h intersects wn[p, r] for any n 6= 0, then wh = h.

q

p wnp

q′ = wnq

h

ξ

r wnr

Figure 4. An illustration of the Parallel Axis Lemma

Proof. Let q = h ∩ [p, r]. Suppose that for some n 6= 0, h meets wn[p, r] at q′. If
d(p, q) < d(wip, q′), then the Slope Lemma implies that h meets ξ beyond p (on the
ray not containing wnp. Similarly, if d(p, q) > d(wnp, q′), then h meets ξ beyond
wnp. However, h doesn’t meet ξ at all. We conclude that d(p, q) = d(wnp, q′) and
wnq = q′ (see Figure 4). Thus wnh = h. As noted above, if wn is in the stabilizer
of h then so is w. �

3.2. A standard form for X(1) geodesics. The Salvetti complex X/A has a
single vertex. If we choose a base vertex of X, which we’ll call 1, then every other
vertex has the form w · 1 for some w ∈ A. For brevity, we’ll let w denote the vertex
w · 1 as well as the group element.

Given an element w ∈ A we’ll choose and label a few useful objects, also illus-
trated in Figure 5:

(1) A vertex aw on an axis of w that is minimal distance from 1 among all
vertices that lie on axes of w

(2) A geodesic w from a to wa
(3) A geodesic sw from 1 to a.

(4) The concatenation ←→w =
⋃
i∈Z

wiw, which if w 6= 1 is an axis of w.

1 w

w

s ws

←→w
a wa

w−1
w−2 w2

w3

Figure 5. The geodesics s, w and ws. The translates of w form
an axis ←→w .

Notice that if 1 lies on an axis of w, then aw = 1. Also, our geodesics are in
X(1), so these choices are not unique. Henceforth, we’ll omit the subscripts when
there is no ambiguity.
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Lemma 3.7 (Standard Form). Given an element w in A and a choice of w, a and
s as above,

(1) No hyperplane meets W =←→w ∪
⋃
i∈Z

wis more than once.

(2) The concatenation of s, w and ws is a geodesic from 1 to w.

Notation. Given a set of hyperplanes H and an edge path γ, let Hγ denote the
set of hyperplanes in H that meet γ an odd number of times. This is equivalent
to saying Hγ is the set of h ∈ H that separate the endpoints of γ, if it has them.
Note Hγ′ = Hγ for any γ′ with the same endpoints. If α, β, γ is a triangle, then
Hγ = Hα∆Hβ (the symmetric difference).

Proof of Lemma 3.7. (1) Suppose some h meets W more than once. We can assume
(translating by w) that one of those intersections lies on s, since no hyperplane meets
an axis twice. We can further assume that h is adjacent to a. If it is separated
from a by some other hyperplane, then that hyperplane also intersects W more
than once.

Let p = h∩s and let q be a different point of h∩W. By Lemma 3.5, [wa,wp] meets
only hyperplanes of intersecting type with wh. Thus h does not meet [wa,wp].
Therefore, by the Slope Lemma (3.4), the point q cannot lie on ←→w beyond wa.
Similarly q cannot lie on ←→w beyond w−1a. This leaves the following possibilities
for q:

• h meets ←→w between w−1a and wa.
• h does not meet←→w at all. Thus q ∈ wns for some n 6= 0 and by the Parallel

Axis Lemma (3.6), wh = h.

Thus, exploiting symmetry, we can take h to cross w or we can stipulate h = wh
(but not both, since no hyperplane meets ←→w twice). In either case, we reach the
same contradiction as follows:

Let a′ be the vertex adjacent to a that shares the edge through h. Let H be
the set of all hyperplanes of X. Then we have H[1,a′] = Hs − {h}. We also have
H[a′,wa′] = {h}∆Hw∆{wh}, which in either case means that d(a′, wa′) = d(a,wa).
We conclude a′ lies on an axis and is closer to 1 than a, violating our construction
of a.

(2) Since the concatenation of s, w and ws crosses every hyperplane between 1
and w once, but none of them twice, it must be a geodesic segment. �

Remark. The use of Lemma 3.5 is a convenience here. One can prove this lemma
with only the assumption that X is CAT(0), and hyperplanes of X/A don’t self-
intersect.

Lemma 3.8 (Separating Lemma). Let w 6= 1 be an element of A and suppose that
a hyperplane h is disjoint from one (and hence every) X(1) axis of w. Suppose that
wh 6= h. Then there is a hyperplane h1 ‖ h that separates h from wh. h1 does not
intersect wih for any i ∈ Z.

Proof. Let [p, a] be an edge path from h to an axis of w, minimal in length among
all such paths for all axes of w. p is not a vertex, so we’ll name the vertices of
the edge it lies on. Let q be the one that lies in [p, a]. Set the other vertex as
the basepoint 1. Then [1, w · 1] decomposes into a geodesics s, w and ws, with
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s = [1, a] ⊃ [q, a]. By the Standard Form Lemma (3.7),

h ∩ [1, w] = {p}
wh ∩ [1, w] = {wp}
wih ∩ [1, w] = ∅ for i 6= 0, 1.

We conclude that [q, wq] meets no wih.
Suppose that [q, wq] meets no hyperplanes h1 ‖ h. Then by Lemma 3.5, wq is

adjacent to both h and wh. But w preserves orientation, and only one edge of each
type and direction meets the vertex wq. This implies that wh = h, which violates
our hypothesis. We conclude that [q, wq] does cross a hyperplane h1 ‖ h, which
must therefore separate h from wh. For all i /∈ {0, 1}, the hyperplane wih ‖ h1.
Notice though, that h1 meets [q, wq] and wih doesn’t. Thus wih can’t be equal to
h1, so they are disjoint. �

Repeated application of this lemma gives a corollary.

Corollary 3.9. As in the lemma let w 6= 1 be an element of A and suppose that a
hyperplane h0 is disjoint from one (and hence every) X(1) axis of w. Suppose that
wh0 6= h0. Then there is a hyperplane hN meeting ←→w that separates h0 from wh0,
and does not intersect wih0 for any i ∈ Z.

Proof. We’ll argue by induction. Given an hn that satisfies the hypotheses of
Lemma 3.8 we produce hn+1. If hn+1 crosses ←→w , then we are done. If not, then it
crosses s or ws, but not both. This means that hn+1 separates either hn or whn
from ←→w . Furthermore, whn 6= hn, and we can apply the Lemma again. Since s
crosses finitely many hyperplanes, repeated application of the lemma will eventually
produce some hN that crosses ←→w . Each hyperplane wih0 is separated from hN by
a sequence of hyperplanes winhn. �

4. Two-generator subgroups

4.1. Essential hyperplanes. A two-generator subgroup of a RAAG A is the im-
age of a homomorphism φ : F → A, where F is a free group on two generators. A
acts on X, the universal cover of its Salvetti complex, so F acts on X too. We’ll
produce the following tree T containing F and produce a map φ : T → X which
extends a standard orbit map on F .

First we assume that F = 〈u, v〉 and we choose a basepoint 1 on some axis of u.
We then choose u, av, sv, v as defined in the previous section (note that au = 1,
so we don’t bother with su), and immediately drop the subscripts.

We define T to be a trivalent tree with vertices labeled w and wa for all w ∈ F .
The edges of T are as follows:

(1) w is adjacent to wu via edge wu
(2) w is adjacent to wa via edge ws
(3) wa is adjacent to wva via edge wv

We extend the map φ to T by mapping each vertex to its eponymous vertex in
X and each edge to its eponymous geodesic in some equivariant way (say, constant
speed). This has the effect that for some q ∈ T with φ(q) ∈ h, we have φ(wq) ∈ h
if and only if wh = h.

Definition 4.1. We say a hyperplane h is essential if φ−1(h) is a single point.
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uu−1u

vs

1

a

v−1a

va

v−1v

uu−1

v

v−1

v−1s

vs

Figure 6. A diagram of T near the vertex 1

The advantage of essential hyperplanes to a metric argument should be clear. A
reduced word w ∈ F can be taken as a geodesic in T . If it crosses φ−1(h) once, and
h is essential, then it will never cross φ−1(h) again. Thus our strategy is to produce
sufficiently many of these to justify the main theorem. Our tool for proving that a
hyperplane is essential is the following definition and lemma.

Definition 4.2. Suppose p ∈ T . We denote Tp to be the closure of the connected
component of T − {wp | w ∈ F − {1}} containing p. See Figure 7.

p

←→u

←→v

(a) p ∈ s

p
←→u

v←→u

(b) p ∈ v

Figure 7. Diagrams of Tp for two possible p.

Lemma 4.3. If φ−1(h) ∩ Tp = {p}, then h is essential.

Proof. There are three types of edges in T , and within each type, the preimages of
hyperplanes are identically distributed (and finite). Thus if h is not essential, we
can pick a point p′ of φ−1(h) \ {p} whose distance to p in T is minimal.

Let γ be the geodesic in T from p to p′. Since p′ /∈ Tp by hypothesis, γ contains
some point q = wp in the boundary of Tp. By assumption, q /∈ h so wh 6= h. Since
p and p′ lie of the same side of wh, we conclude that γ must cross wh again at some
q′, either between p and q or between q and p′. Translating by w−1 we have that
w−1q′ lies in φ−1(h) and is closer to p than p′, contradicting our choice of p′. �



TWO-GENERATOR SUBGROUPS OF RAAGS ARE QI EMBEDDED 13

4.2. The existence of essential hyperplanes. The following proposition com-
prises much of the work in proving Theorem 1.4. Recall the following notation:
Given a set of hyperplanes H, and a geodesic γ, Hγ denotes the set of hyperplanes
of H that intersect γ.

Proposition 4.4. If φ(F ) is not abelian, then we can choose a basepoint 1 and gen-
erators u, v of F such that for the associated T , there exists an essential hyperplane
h in X meeting [1, v].

Proof. Let {uorig, vorig} be a generating set for F . Pick a hyperplane that crosses

an axis of the commutator corig = uorigvorigu
−1
origv

−1
orig. Let H be the set of all

hyperplanes of that type.
Now pick a new generating set u, v and a basepoint 1 such that the following

triple of numbers is minimal (lexicographically) among all possible choices of u , v
and 1:

(#Hu,#H[1,v],#Hv).

We claim H[1,v] contains an essential hyperplane. There are two cases which,
unfortunately, admit almost no overlap in their discussion.

Case 1: Suppose Hu is nonempty. We will argue that each of Hu,Hv contains
an essential hyperplane.

Since the hyperplanes ofH are pairwise disjoint, we can order theHu by distance
from 1, and let h1, h2 be the middle ones (if #Hu is odd, h1 = h2). We claim that
one of h1, h2 does not meet the nearby v-paths, seen also in Figure (8a):

[1, v], [1, v−1], [u, uv], [u, uv−1].

v

1 u

uv

uv−1v−1
h1 h2

(a) The four v paths avoided by one
of h1 or h2

1 u

uv−1

h1

< 1
2#Hu > 1

2#Hu

(b) The hyperplanes between 1,
u and uv−1, assuming h1 meets
[u, uv−1]

Figure 8. hi and the nearby v-paths

Similarly if we know that Hv is nonempty, otherwise we could switch u and
v and take basepoint a to reduce the triple. Take h′1 and h′2 to be the middle
hyperplanes of Hv. Then these are also the middle hyperplanes of H[1,v], since
#Hs = #Hvs. We make an analogous claim that one of h′1 and h′2 meets none of
the nearby u-paths. The following three facts establish our claims about the hi and
h′i (i ∈ {1, 2}).
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(1) Neither hi meets either of the “far” v-paths. For instance, if h1 met
[u, uv−1], then [1, uv−1] would meet fewer hyperplanes than [u, uv−1], as
seen in Figure 8b. Defining vnew = uv−1 would give

#H[1,vnew] < #H[u,uv−1] = #H[1,v].

Thus {u, vnew} would produce a smaller triple) than {u, v}, violating our
minimality assumption. Similarly, neither h′i meets either of the far u-paths.

In the case that h1 = h2, all four v-paths are “far,” so the claim is
proven.

(2) The hi do not each meet the near v-paths on the same side. For instance,
suppose h1 met [1, v]. We claim that h2 does not meet [u, uv]. If it did, then
h2 = uh1 as in Figure 9a, but no hyperplane meets ←→u twice. Similarly,
since h′1 and h′2 meet the axis of v, we have h′1 and h′2 do not both meet
the near u-paths on the same side.

(3) The hi do not each meet the near v-paths on the opposite sides. For
instance, suppose h1 met [1, v] and h2 met [u, uv−1].

Choose a point e ∈ u between h1 and h2. Notice H[1,e] consists of h1

and all the hyperplanes of H that separate it from 1, while H[e,u] consists
of h2 and all the hyperplanes of H that separate it from u.

By part (1), h1 does not meet the far v-path [u, uv−1], so it meets
[1, vu−1]. Also by part (1) no hyperplane of H[1,v] meets both [1, u] and

[v, vu−1] (one of these u-paths would be “far”). Since h1 ∈ H[1,v], it meets

[u, uv−1] (see Figure 9b).
Thus if we set vnew = uv−1 we have that h1 meets all of [1, u], [1, vnew]

and [1, v−1
new]. SoH[1,e] is a subset ofHu,H[1,vnew], andH[1,v−1

new]. Translating

the last inclusion by vnew gives H[vnew,vnewe] ⊂ H[1,vnew]. Let’s see what this
implies.

H[e,ue] = H[1,e]∆Hu∆H[u,ue] = (Hu −H[1,e]) ∪∆H[u,ue]

so #H[e,ue] = #Hu.

H[e,vnewe] = H[1,e]∆H[1,vnew]∆H[vnew,vnewe]

= H[1,vnew] − (H[1,e]∆H[vnew,vnewe]) ( H[1,vnew]

so #H[e,vnewe] < #H[1,vnew].

Out hypothesis on h2 givesH[e,u] = Hu∩H[u,uv], soH[1,vnew] = Hu∆H[u,uv] =
H[1,e] t (H[u,uv] −H[e,u]). So #H[1,vnew] = #H[1,v].

This means that replacing v by vnew and shifting the basepoint to e would
strictly reduce the triple, violating our assumptions about its minimality
under u, v and 1. The v case is similar.

This proves our claim about h1 and h2 in Hu. Call one that meets none of
the nearby v-paths hu. Similarly call one of h′1, h

′
2 that meets none of the nearby

u-paths hv. Furthermore, hv is separated from each edge [vn, vnu±1]n/∈{0,1} by one
of its own v-translates.

We’ll use Lemma 4.3 to show that hu is essential. Consider p = hu ∩u. Then to
see that Tp ∩ hu = {p} we check:

(1) ←→u ∩ hu = {p}
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1 u2

u

uv

h2 = uh1

1
2#Hu

(a) Meeting the same side paths
means h1 and h2 don’t cross ←→u .

1

u

e

uv−1

vvu−1

h2

h1

(b) The points e and vnew = uv−1

when h1 and h2 meet opposite side
paths

Figure 9. Illustration of facts (2) and (3)

(2) hu doesn’t meet the four nearby v-paths: [1, v], [1, v−1], [u, uv], [u, uv−1] by
our choice of hu.

(3) hu does not meet any point that lies across any of the hyperplanes: hv, uhv, v
−1hv,

or uv−1hv (see Figure 10), since none of these cross hu.

p

←→v

u←→v

hv v−1hv

uv−1hvuhv

Figure 10. Verifying hu is essential. Notice hu doesn’t cross these
4 translates of hv.

This verifies that Tp ∩ hu = {p} and by Lemma 4.3, hu is essential. By identical
reasoning, so is hv. As it lies in H[1,v], hv is the hyperplane we sought.

Case 2: Suppose Hu is empty. Recall that H is the set of all hyperplanes of
some type that crosses the axis of corig, the commutator of the original generators

of F . However, one can check that c = uvu−1v−1 is equal to gc±1
origg

−1 for some

g ∈ A (the reader can check this on his or her favorite generating set of Aut(F )).
Thus H also contains a hyperplane that crosses any axis of c. Consider a standard
decomposition of [1, c] into sc, c and csc. Since H is c-invariant, there is some h ∈ H
that meets c−1c. Our goal is to show that this h is essential.

Consider the geodesic from 1 to c−1 in T . It maps to a piecewise geodesic path
ξ in X, which is a concatenation of two translates of [1, v] and two translates of
u. Since Hu is empty, h meets ξ at either [1, v] or [vu, vuv−1], but not both (see
Figure 11). Assume, without loss of generality, that it meets [1, v] at p.

We produce two facts about the stabilizer of h. Since vuv−1p /∈ h, we know
vuv−1h 6= h. We also claim that uh 6= h. If we suppose otherwise, then h meets cξ
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c−1 1

cp

h

uvu ⊂ cξ

cac

up
c

c−1c

ξ

pvuv−1p

u

v

Figure 11. The intersection of φ−1(h) with ξ. If h ∈ H[1,v] in-

tersects c−1c and Hu is empty, then φ−1(h) meets ξ exactly once
and doesn’t meet c−1ξ at all.

at up. Since h cannot cross [1, c] or any translate of u, it must meet cξ a second
time, and that meeting must be some q ∈ [uvu−1, c]. Since h doesn’t meet uv←→u ,
the Parallel Axis Lemma says that q = cp. But if ch = h, then h cannot meet ←→c
at all, violating our choice of h. Thus uh 6= h as claimed. We’ll use the fact that
neither uh nor vuv−1h is equal to h in the argument that follows.

We’ll now argue that h is essential using Lemma 4.3. To do this we will con-
sider the intersection of h with the following 5 sets (illustrated in Figure 12). The
preimages of these sets cover Tp (where p now refers to φ−1(h)∩ [1, v] ∈ T ) regard-
less of whether p lies on s, v or vs. Computing these intersections will show that
φ−1(h) ∩ Tp = {p}.

(1) V =←→v ∪
⋃
n∈Z

vns. h meets V only at p, by Lemma 3.7.

(2) ←→u ∪ v←→u . The intersection of h with these axes is empty, because no
F -translate of h meets u.

(3)
⋃
n 6=0

[un, unv]. Since h doesn’t meet←→u , the Parallel Axis Lemma (3.6) states

that if h meets one of these edges then uh = h. We’ve shown that this isn’t
the case, so h does not intersect this set.

(4)
⋃
n 6=0

[vunv−1, vun]. Note as in the previous step that h doesn’t meet v←→u

and vuv−1h 6= h. Thus h does not intersect this set.
(5) Finally, in the case p ∈ v, the region Tp overlaps the paths [unv−1, un]

and [vun, vunv]. We’ll use the following v-straightening argument to
show that h doesn’t meet [unv−1, un], noting that a similar one exists for
[vun, vunv]:

Suppose h meets [unv−1, un]. Since Hu is empty, [1, v] meets the same
hyperplanes as [1, vu−n]. So if we set vnew = vu−n, then H[1,vnew] = H[1,v].
We may then produce a Tnew with vnew and snew. But h and every hyper-
plane of H between 1 and h (including those of Hs), meet both [1, vnew] and
[1, v−1

new]. Thus h ∪ Hs ⊂ Hsnew , which means #Hvnew
< #Hv, violating

the minimality of the triple.

This establishes that φ−1(h) ∩ Tp = {p}. By Lemma 4.3, h is essential. �

The following corollary may be of interest, but we won’t use it here.

Corollary 4.5. For F → A a homomorphism and any hyperplane h, there is a
choice of generators u, v ∈ F and a basepoint 1 such that either

(1) h does not intersect T .
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p

(3)

(4)

(5)

(5)

v←→u

←→u

(1)

(2)

(2)

Figure 12. Tp is divided into 5 regions to verify that h∩Tp = {p}.
This is the p ∈ v case.

(2) There exists w ∈ F such that wh is essential at some p ∈ [1, v].
(3) There exists w ∈ F such that wh meets [1, v] and either uh = h or vuv−1h =

h (possibly both).

Proof. Apply the methods of the previous proposition to H = Fh. Assuming the
conditions of case 1 leads to essential hyperplanes hu ∈ Hu and hv ∈ Hv. Since
hu = whv for some w ∈ F , we have that hv meets w−1u. This contradicts the
claim that it is essential. In case 2 we showed that every hyperplane of H[1,v] is

essential unless uh = h or vuv−1h = h. So either H[1,v] is empty (along with Hu

by assumption) or some w-translate of h satisfies (2) or (3). �

4.3. The main theorem. Using Proposition 4.4, we are ready to prove the main
theorem: that φ is a quasi-isometric embedding.

Proof of Theorem 1.4. For a word w of length n, we know that

|φ(w)| ≤ nmax{|φ(u)|, |φ(v)|}.

It remains to find a lower bound that is linear in n. We’ll produce a pair of essential
hyperplanes, meeting u and v . We’ll consider their orbits Fhu and Fhv, and count
how many of these hyperplanes cross [1, w]. Note that in case 1 of Proposition 4.4
we already produced an adequate pair of essential hyperplanes, but the methods
here only rely on the assumption that some essential h crosses [1, v].

Take the choice of u, v and a basepoint from Proposition 4.4. Consider all possible
generators vnew = un1vun2 , and the Tnew generated by 〈u, vnew〉, but keeping the
same basepoint. Let h be the hyperplane of X that lies closest to ←→u among all
essential (with respect to Tnew) hyperplanes meeting [1, vnew]. Such hyperplanes
exist by Proposition 4.4, and a closest one exists because ←→u is the u orbit of the
compact set u. Let p = φ−1(h).

The Separating Lemma (3.8) part (1) states that there is a hyperplane h′ ‖ h
between h and uh. Since any F -translate h meets T only once, we know h′ /∈ Fh
so it is disjoint from all F -translates of h. As a result, h′ ∩ T is contained in Tp. In
fact, it is contained in the component of Tp − {p} that contains uh.

We claim h′ crosses ←→u . Suppose it does not. We will argue that h′ satisfies
the conditions that lead us to choose h but lies closer to ←→u . h′ meets [p, up], so
h′ meets either [1, p] or [u, up] but not both. This means that uh′ 6= h′. Without
loss of generality, suppose it meets [1, p]. The contrapositive of the Parallel Axis
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Lemma (3.6) therefore applies, meaning h′ does not meet any [un, unp] for n 6= 0.
The only other possible point of φ−1(h′) is on some [unv−1, un]. If h′ doesn’t meet
any such edge, then it is essential and closer to ←→u than h. This contradicts our
choice of h. If h′ does meet this edge, then set vnew = vu−n, and one may check
that Tnew ∩ φ−1(h′) is a single point on snew. Thus h′ would be essential for this
vnew and closer to ←→u than h. This also contradicts our choice of h.

So h′ meets some umu. Now we claim that for some vnew, both h and h′ are
essential on Tnew. That h is essential is immediate. If vnew = un1vun2 , then [1, vnew]
meets un1h and no other F -translates. Thus un1h is essential on [1, vnew].

As noted above, h′ ∩ T is limited to one component of Tp −{p}. If h′ meets any
u-translate of [1, p], then let uk1 [1, p] be the one farthest from umu. Repeated ap-
plications of the Slope Lemma show that only finitely many translates of [1, p] meet
h′. They also show that h′ meets every translate of [1, p] between uk1 [1, p] and umu.
We define uk2 [1, v−1p] similarly to produce the farthest translate meeting h′, and
apply the Slope Lemma similarly. Then we can choose vnew = uσ(m,k1)vu−σ(m,k2)

where

σ(m, k) =


k −m− 1 if k ≤ m
k −m if k > m

0 if k is not defined

One can check that h′ is essential, meeting Tnew only once, on umu.

u3v−1p

u2p up p
u2u

hi+1

Figure 13. An example of a non-essential h′ meeting u2u. The
set h′ ∩ T is limited to one component of Tp − {p}. In this case
k1 = 1 and k2 = 3.

Now let hu = u−mh′. As noted above uσ(m,k1)h is essential. It lies on either
vnew, snew or vnewsnew. In the first case, we’ll call it hv.

In the second two cases, Corollary 3.9 produces a hv meeting vnew that doesn’t
intersect uσ(m,k1)h or any uσ(m,k1)vnnewh. This restriction, along with the Standard
Form Lemma (3.7), means that hv is essential.

Either way we now have essential hyperplanes hu and hv. The group F acts freely
on the orbits Fhu and Fhv, which consist entirely of essential hyperplanes. Any
geodesic in Tnew which crosses the preimage φ−1(h) of an essential hyperplane h will
never cross that preimage again. Since we have one such hyperplane in Fhu ∪Fhv
for each translate of u and vnew, a reduced word w of length n in {u, vnew} will
cross exactly n hyperplanes of Fhu ∪ Fhv.
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We have been flexible with our choice of generators. Given a different set, say
{uorig, vorig}, we might have to compose with some automorphism of F . But auto-
morphisms are quasi-isometries, and quasi-isometric embeddings are closed under
composition. �

Remark. Our procedure is nearly algorithmic. While some steps assume that a
certain quantity is minimized, we also showed explicitly how to reduce it, should
the properties we required be absent. Computationally one needs to be able to
check whether some wh is equal to h and whether some [p, q] crosses h. One also
must be able to produce the hyperplanes of the Separating Lemma. Neither of these
tools is more difficult than placing an element of AΓ in a standard form. Given
those computational tools, the initial description of φ, and the steps of the proof,
one can produce 1, u, v, and the essential hu, hv.

The non-abelian case of Baudisch’s Theorem is recovered by the following corol-
lary. The results listed in the introduction follow quickly.

Corollary 4.6. If φ(F ) is not abelian, then φ is an injection.

Proof. By the previous theorem, given any choice of generators (and hence word
metric), φ is a quasi isometric embedding. There is a λ ≥ 1 and ε ≥ 0 such that
for all w ∈ F ,

1

λ
|w| − ε ≤ |φ(w)|.

Suppose w ∈ F is not the identity. It translates along its axis in T by some
distance d. For sufficiently large n, we have |wn| ≥ nd > λε. But then we have

0 =
1

λ
λε− ε < 1

λ
|wn| − ε ≤ |φ(wn)|.

Since φ(wn) is not the identity, neither is φ(w). �

Proof of Theorem 1.2. Let H be a two-generator subgroup of AΓ. RAAGs are
torsion free [Bau81, 2.3], so if H is abelian, it is free abelian. If H is not abelian,
then apply the previous lemma. �

Proof of Corollary 1.5. As above, suppose first H is abelian. Free abelian sub-
groups of isometries of X are quasi-isometrically embedded in X (and hence in AΓ)
by the Flat Torus Theorem (presented in [BH99, II.7.1 and II.7.17]). If H is not
abelian then Theorem 1.4 applies. �

5. Counterexamples in other settings

5.1. A three-generator subgroup. The result of Baudisch cannot be extended
to subgroups of more generators. He produces a counterexample himself [Bau81,
6.2], which we repeat here. Let Γ be the following graph:

a

b

c

x

y

z
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Write F3 = 〈u, v, w〉 and let φ : F3 → AΓ be defined by

φ(u) = ax φ(v) = by φ(w) = cz

Notice that no two of φ(u), φ(v), φ(w) commute, yet Baudisch shows that the
image of φ is not a free group, meaning that φ is not an injection. He goes farther
and shows that the image of φ not even a RAAG.

5.2. An obstruction to embedding in a RAAG. Consider the group π1(M),
where M is the figure-8 knot complement. π1(M) can be realized as a semi-direct
product F2 o Z with the following presentation.

π1(M) = 〈a, b, t | tat−1 = ab, tbt−1 = bab〉

Now let F2 = 〈a, b〉 and i : F2 → π1(M) be the inclusion. The subgroup F2 is
free.

Consider the element tnat−n, which has length at most 2n + 1 in π1(M). We
can equate this to a word in a, b. We use the relations to cancel a power of t and
t−1 and repeat n times. Each cancellation at least doubles the number of a’s and
b’s. No a’s or b’s ever cancel, since we only produce positive powers of a and b. The
result is that tnat−n is equal to a word of length at least 2n in a and b. Thus there
is an infinite sequence of elements wn ∈ F2 such that |i(wn)| ≤ 2 log2 |wn|+1. Thus
i is not a quasi-isometric embedding. We can thus apply the following corollary to
π1(M).

Corollary 5.1. Let G be any finitely-generated group with a free two-generator
subgroup F2 = 〈a, b〉 that is not quasi-isometrically embedded. No RAAG has a
subgroup isomorphic to G.

Proof. Consider the inclusion i : F2 → G. As noted at the beginning of the proof of
Theorem 1.4, for all w ∈ F2, we have an upper bound |i(w)| ≤ |w|max{|i(a)|, |i(b)|}.
Thus in order for i to fail to be a quasi-isometric embedding, F2 must contain an
infinite sequence of elements wn such that |i(wn)| is sublinear with respect to |wn|.

Let {gi} be a generating set for G. If there were an injective homomorphism
α : G→ AΓ, then α ◦ i would be an injection. For all wn we would have |α(wn))| ≤
|i(wn)|max{|α(gi)|}, which would still be sublinear with respect to |wn|. Thus the
map α ◦ i violates Theorem 1.4. �

Note however that, while π1(M) is not isomorphic to a subgroup of any RAAG,
it is a hyperbolic free by cyclic HNN extension. The theorem of Hsu and Wise
[HW10] (reproduced as Theorem 2.16 here) applies. Thus π1(M) has a finite index
subgroupH that is isomorphic to a subgroup of some RAAG. It would be interesting
to identify such an H. Here is a first step.

Proposition 5.2. If H is a finite index normal subgroup of π1(M) with abelian
quotient, then H is not isomorphic to a subgroup of any RAAG.

Proof. Let H be an index m normal subgroup of π1(M). If π1(M)/H is abelian,
then the commutator subgroup, [π1(M), π1(M)], is a subgroup of H. So a−1tat−1 =
b ∈ H. Also, tbt−1b−1 = ba ∈ H, so a ∈ H. Therefore, F2 ⊂ H. Finally,
tm ∈ H. Thus we have a sequence of wn ∈ F2 such that i(wn) = tmnat−mn and
|i(wn)| ≤ 2 log2 |wn| + 1. Thus H is not isomorphic to a subgroup of any RAAG
by Corollary 5.1. �
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Hsu and Wise’s construction in [HW10] gives a cube complex C with an ac-
tion by π1(M). The proposition above shows that the action of H is not special.
Equivalently, no abelian cover of C/πi(M) is special.

Question. What is the smallest index subgroup of π1(M) that embeds in a RAAG?
Does this number change for different hyperbolic groups of the form F2 o Z?

Question. Can we find groups acting on CAT(0) cube complexes such that no
subgroup of a given index acts has a special action? Can we find these in the class
of 3-manifold groups?

5.3. A badly embedded free subgroup. Baudisch’s three-generator subgroup
shows that the most naive generalization of our main theorem fails to hold when
we increase the number of generators of F . However, even assuming that Fn injects
into AΓ is insufficient to guarantee a quasi-isometric embedding.

As noted before, if M is the figure-8 knot complement, then π1(M) does not
embed in any RAAG, but some finite index subgroup H < π1(M) does. The group
H ∩ F2 is a finite index subgroup of F2 and thus finitely generated [Sch27], [LS77,
3.9]. Call it Fn. The inclusions of H into π1(M) and Fn into F2 are quasi-isometries
(this is a standard exercise).

Fn

iF
��

i // H

iπ1(M)

��

α

q.i.
// AΓ

F2
i
// π1(M)

It is straightforward to show that when a quasi-isometric embedding is composed
with a map that is not a quasi-isometric embedding, the result is not a quasi-
isometric embedding. We conclude that α ◦ i is an injective homomorphism from
free group to a RAAG that is not a quasi-isometric embedding.

Question. What is the minimum rank n such that some RAAG has a free subgroup
of rank n whose inclusion is not a quasi-isometric embedding?
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