
Optimization for Economics, a Visual Approach

Mike Carr

Contents

0 Calculus Reference 3
0.1 Graphs of Functions . 4
0.2 Limits and Derivatives . 10
0.3 Multivariable Functions . 19

1 Unconstrained Optimization 31
1.1 Single-Variable Optimization . 32
1.2 Concavity . 48
1.3 Multivariable Optimization . 68

2 Constrained Optimization 89
2.1 Equality Constraints . 90
2.2 Inequality Constraints . 107
2.3 The Kuhn-Tucker Conditions . 117

3 Comparative Statics 135
3.1 The Implicit Function Theorem . 136
3.2 The Envelope Theorem . 154

4 Sufficient Conditions 163
4.1 The Extreme Value Theorem . 164
4.2 The Bordered Hessian . 173
4.3 Separation . 178
4.4 Concave Programming . 186
4.5 Quasiconcavity . 201

1

Note to the Reader

For the last several years I have taught a course in optimization at Emory University for seniors
majoring in mathematics and economics. While mathematics and economics is the standard preparation
for a doctoral program in economics, the vast majority of students in this course are bound for careers
in finance. One of the challenges in designing this course has been balancing the interests and needs
of students on both tracks. These notes have evolved from my own teaching materials. Their goal is
to present methods for optimization and the reasoning behind them. This reasoning makes students
resilient to the myriad modifications that these tools endure at the hands of economists.

As an outsider to economics education, I was impressed to see the extent to which economics has
embraced visual methods of instruction. More than any other field whose foundation lies in mathematics,
the standard economics curriculum provides students not only with descriptions and formulas, but with
diagrams to depict core principles. Microeconomics students are inundated with supply curves, budget
lines, indifference curves, and graphs in marginal space. This is certainly a lifeline for visual learners,
but I suspect it produces deeper understanding for all.

As a geometer, my first inclination is to lean heavily upon visual reasoning when presenting the
methods of optimization. In our efforts to find a textbook for our admittedly niche curriculum, we have
not found a economics-focused text that takes this approach. I have made these notes available in the
hope that this visual viewpoint can become an effective supplement to existing techniques. Like with
the graphical arguments in undergraduate microeconomics, I think it can bring a complete and rigorous
understanding of optimization methods to a broader set of learners.

The audience for this text is anyone who wants to understand the mathematical methods for finding
maximizers in economic theory. The best-prepared reader will have mastered the techniques of differ-
entiation, including partial derivatives. They will also be familiar with the foundations of mathematical
logic: set notation, functions, and methods of proof like contradiction and the contrapostive. Finally,
they will need a basic proficiency in vector and matrix operations: sums, products and determinants. A
competent high-school treatment may suffice for this requirement.

Anyone who sets out to teach or learn the methods of optimization from this text should be aware
of its limitations. It does not contain the economic applications that my economist colleagues present
each semester. These must be provided in order to create genuine enthusiasm for the material. This is
a deficiency that I would like to rectify eventually, if there is some consensus about which examples to
include.

We have used one widely-available source of economic examples: Optimization for Economic Theory
by Avinash Dixit. This excellent book has a rigorous, traditional treatment of most of the material here
and good explanations of some advanced applications. Dixit’s book has proved too difficult for all but the
strongest undergraduates to read independently, but the examples are compelling and comprehensible
with some extra exposition.

Finally I would like to acknowledge my economist colleagues Blake Allison and Teddy Kim who were
essential partners in developing this course. Three students, Alexia Witthaus, Jacob Sugarmann and
Aarya Aamer, carefully read my early drafts and asked many questions. Their feedback allowed me to
identify the most opaque exposition (and clarify it, I hope). There is still a long road of revision and
improvement ahead for this document. I would appreciate any feedback you have.

Mike Carr
May 2023

Chapter 0

Calculus Reference

0.1

Graphs of Functions

Goals:

1 Graph algebraic functions.

2 Graph transformations of functions.

0.1.1

Graphs of Basic Functions

Definition 0.1

The graph of a function f(x) is the set of points (x, y) whose coordinates satisfy the equation y = f(x).

In this section we review several basic functions and their graphs. These will be important as examples
and counterexamples for our methods of optimization. In addition, knowing the shape of a graph is an
efficient way to memorize the behavior of functions that appear frequently in economic models.

Definition 0.2

Linear functions can be written in slope-intercept form:

f(x) = mx+ b.

The graph of a linear function is a line.

m is the slope, which is the change in y over the change in x between any two points on the line.

(0, b) is the y intercept.

If we have the slope and a known point (a, b) on a line. We can write its equation in point-slope
form.

y − b = m(x− a)

4

Definition 0.3

A monomial is a function of the form:
f(x) = xn

where n is an integer greater than 0.

For n ≥ 2 the graph y = xn curves upward over the positive values of x.

Greater values of n have lower values of f(x) when 0 < x < 1 but higher values when x > 1.

For even values of n the graph is symmetric across the y-axis, curving up when x is negative.

For odd values of n the graph curves down when x is negative. It is anti-symmetric across the
x = 0.

x2x4x6

x

y

Figure 1: Graphs of even-powered
monomials

xx3x5

x

y

Figure 2: Graphs of odd-powered
monomials

Monomials of Negative Power

Monomials of negative power have the form f(x) = x−n. They are also commonly written

f(x) =
1

xn

.

The graph y = 1
xn has a vertical asymptote at x = 0.

The graph approaches the x-axis, y = 0 as x gets large.

For even values of n, the graph is above the x-axis.

For odd values of n, the graph is above the x-axis for positive x and below it for negative x.

A greater choice of n makes the function approach the x-axis more quickly.

5

0.1.1 Graphs of Basic Functions

x

y

Figure 3: Graphs of y = x−2, y = x−4

and y = x−6

x

y

Figure 4: Graphs of y = x−1, y = x−3

and y = x−5

Definition 0.4

A root function is a function of the form:

f(x) = n
√
x

where n is an integer greater than 0.

The domain of n
√
x is [0,∞) if n is even and all real numbers if n is odd.

The x and y intercept of y = n
√
x is at (0, 0).

Root functions are increasing. At x = 0, they travel straight up.

√
x

3
√
x

x

y

Figure 5: Graphs of root functions

6

Definition 0.5

An exponential function has the form:
f(x) = ax

where a is a number greater than 0.

a is called the base of the exponential function.

The graph y = ax passes through (0, 1).

If a > 1 then f(x) increases quickly as x takes on positive values. Greater values of a give a
steeper increase. f(x) approaches 0 as x goes to −∞. Greater values of a give a faster approach.
The graph does not touch or cross the x-axis.

If a < 1, then the above is reversed.

e is a commonly used base. e is approximately 2.718.

x

y

Figure 6: Graphs of y = 2x, y = ex and y = 3x

Definition 0.6

A logarithmic function has the form:
f(x) = loga x

where the base a is a number greater than 1. loga x is the number b such that ab = x. The natural
logarithm is the logarithm with base e. It is denoted f(x) = lnx.

ab can never be 0 or less. The domain of f(x) = loga x is (0,∞).

As x approaches 0, loga x goes to −∞.

y = loga x has an x intercept at (1, 0).

7

0.1.1 Graphs of Basic Functions

y = loga x grows more and more slowly as x increases. This effect is more pronounced for larger
values of a.

x

y

Figure 7: Graphs of y = log2 x, y = lnx and y = log10 x

Logarithms and exponents are inverse functions. We solve exponential equations by applying a
logarithm to both sides. We solve logarithm equations by exponentiating both sides.

ax = c x = loga c

loga x = c x = ac

0.1.2

Graphs of Transformations

Suppose we would like to transform the graph y = f(x). Here are four ways we can.

The graph of y = af(x) is stretched by a factor of a in the y direction.

The graph of y = f(x) + b is shifted by b in the positive y direction.

The graph of y = f(cx) is compressed by a factor of c in the x direction.

The graph of y = f(x+ d) is shifted by d in the negative x direction.

We can perform multiple transformations on a single function.

8

Figure 8: The graph of y = f(x) and its transformation y = af(cx+ d) + b

9

0.2

Limits and Derivatives

Goals:

1 Verify that a function is continuous.

2 Compute derivatives.

3 Use derivatives to understand graphs and vice versa.

0.2.1

The Limit of A Function

Calculus is the study of change. Our most important rate of change cannot be computed directly,
but exists only as a limit of rates.

Definition 0.7

The limit as x approaches a (or x → a) of a function f(x) is denoted lim
x→a

f(x).

lim
x→a

f(x) = L means that we can make f(x) arbitrarily close to L by restricting x to a small

enough neighborhood surrounding a.

If there is no L such that lim
x→a

f(x) = L, we say that lim
x→a

f(x) does not exist.

Remark

arbitrarily close means any amount of closeness demanded. We need to be able to make f(x)
within 1

10 of L, within 1
1000 of L, within 1

10000000 of L and so on. When proving that a limit
exists, mathematicians traditionally model this closeness with the variable ϵ. We indicate or verify
arbitrary closeness with the inequality |f(x)− L| < ϵ.

By a neighborhood we mean an open interval that contains a. The set {a} is not a neighborhood.
If it were, then every function would limit to f(a) as x → a. Mathematicians generally restrict to
neighborhoods of the form (a− δ, a+ δ), then they need a way to produce a valid, positive δ for
any given positive ϵ.

10

Figure 9: A neighborhood of a that keeps f(x) within ϵ of L

0.2.2

Continuity

Limits give us a formal approach to defining continuity. Many of our results will rely on the fact that
a function is continuous.

Definition 0.8

A function f(x) is continuous at a, if

lim
x→a

f(x) = f(a).

f(x) can also be continuous on an interval or other set of points if it is continuous at each a in that
set. If it is continuous on R, we say f(x) is a continuous function.

Proving that a function is continuous requires us to verify its limit at every point a. This is too
much work for a case-by-case basis. Instead mathematics adopts a constructive approach. First we show
that a few basic functions are continuous. Next we prove that sums, differences, products and other
combinations preserve continuity.

11

0.2.2 Continuity

Theorem 0.9

The following functions are continuous on their domains

1 Constant functions

2 Linear functions

3 Polynomials

4 Roots

5 Exponential functions

6 Logarithms

7 Trigonometric functions

8 f(x) = |x|

Theorem 0.10

If f(x) and g(x) are continuous on their domains, then the following are also continuous on their
domains

1 f(x) + g(x)

2 f(x)− g(x)

3 f(x)g(x)

4
f(x)
g(x) (note that any x where g(x) = 0 is not in the domain)

5 f(x)g(x) as long as f(x) > 0

6 f(g(x))

We can use these theorems together to argue that complicated functions are continuous.

12

Example

The function f(x) = 4
√
3x2 − 17x+ 2− ex

log5 x is the difference of two functions. The first is a compo-

sition of a root function and polynomial (both continuous on their domains). The second is a quotient
of an exponential and a logarithm (both continuous on their domains). Thus f(x) is the difference of
two continuous functions and is continuous on its domain.

Remark

Just about any function we can write using algebraic expressions is continuous on its domain. This does
not mean it is continuous everywhere. f(x) = 1

x is not continuous at x = 0, for example.

0.2.3

The Intermediate Value Theorem

One early intuition for continuity is that the graph of a continuous function can be drawn without
any breaks. There are many ways to formalize this idea. One of the most important is the following
theorem.

Theorem 0.11 [The Intermediate Value Theorem]

If f is a continuous function on [a, b] and K is a number between f(a) and f(b), then there is some
number c between a and b such that f(c) = K.

Intuitively, a continuous graph cannot get from one side of the line y = K to the other without
intersecting y = K. Notice that this theorem does not say exactly where this intersection must occur,
only that it must occur somewhere in the interval (a, b). It also does not rule out the possibility of more
than one such c existing.

Example

Show that f(x) = ex − 3x has a root between 0 and 1.

13

0.2.3 The Intermediate Value Theorem

Solution

A root is a number c such that f(c) = 0. To prove such a root exists, we check the conditions of the
intermediate value theorem.

f(x) is a sum of continuous functions, so it is continuous on its domain.

f(0) = 1

f(1) = e− 3 < 0

0 is between f(0) and f(1)

We conclude there is some c between 0 and 1 such that f(c) = 0.

−1 1 2

−1

1

2

y = ex − 3x

(0, 1)

(1, 3− e)

c
x

y

Figure 10: A root of y = ex − 3x

0.2.4

The Derivative

The derivative is a method for measuring the rate of change of a function.

14

Definition 0.12

Given a function f(x), the derivative of f(x) at a is the number

lim
h→0

f(a+ h)− f(a)

h
.

The derivative function of f(x) is the function

lim
h→0

f(x+ h)− f(x)

h
.

Here are two different notations for the derivative at a.

1
df

dx
(a) (Leibniz)

2 f ′(a) (Lagrange)

The ratio
f(a+ h)− f(a)

h
can be interpreted two ways

1 The average rate of change of f between a and a+ h

2 The slope of a secant line of y = f(x) from (a, f(a)) to (a+ h, f(a+ h))

Since the derivative is the limit of these, we interpret f ′(a) as

1 The instantaneous rate of change of f at a

2 The slope of a tangent line to y = f(x) at (a, f(a))

Figure 11: A secant line and a tangent line to y = f(x)

15

0.2.4 The Derivative

We can take higher order derivatives by taking derivatives of derivatives. The derivative function
of f in this context is called the first derivative. Its derivative function is the second derivative. The
second derivative’s derivative function is the third derivative and so on.

Notation

The following notations are used for higher order derivatives

name Lagrange notation Leibniz notation

first derivative f ′(x)
df

dx

second derivative f ′′(x)
d2f

dx2

third derivative f ′′′(x)
d3f

dx3

fourth derivative f (4)(x)
d4f

dx4

fifth derivative f (5)(x)
d5f

dx5

The sign of a higher order derivative tells us how the derivative of one order lower is changing. For

example if
d5f

dx5
< 0, then

d4f

dx4
is decreasing.

0.2.5

Computing Derivatives

The limit definition of a derivative is too unwieldy to use every time. Instead calculus students learn
the derivatives of some basic functions. They then use theorems to compute derivatives when those
functions are combined.

16

Derivatives of Basic Functions

d
dxc = 0 (derivative of a constant is 0)

d
dxx

n = nxn−1 for any n ̸= 0 (The Power Rule)

d
dxe

x = ex

d
dxa

x = ax ln a for a > 0

d
dx lnx = 1

x

d
dx loga x = 1

x ln a

The following rules allow us to differentiate functions made of simpler functions whose derivative we
already know.

Differentiation Rules

Sum Rule: (f(x) + g(x))′ = f ′(x) + g′(x)

Constant Multiple Rule: (cf(x))′ = cf ′(x)

Product Rule: (f(x)g(x))′ = f ′(x)g(x) + g′(x)f(x)

Quotient Rule:
(

f(x)
g(x)

)′
= f ′(x)g(x)−g′(x)f(x)

(g(x))2 unless g(x) = 0

Chain Rule: (f(g(x))′ = f ′(g(x))g′(x)

0.2.6

Computing a Derivative

Compute
d2

dx2
(4
√
75− 3x2 + 10)

17

0.2.6 Computing a Derivative

Solution

We begin by computing the first derivative. We use the chain rule with 4x1/2+10 as the outer function
and 75− 3x2 as the inner function.

d

dx
(4
√
75− 3x2 + 10) = 2(75− 3x2)−1/2(−6x)

= − 12x√
75− 3x2

We compute the second derivative by differentiating the first derivative. We use the quotient rule. We
need the chain rule again when we differentiate the denominator.

d2

dx2
(4
√
75− 3x2 + 10) = − d

dx

12x√
75− 3x2

= −
d
dx (12x)

√
75− 3x2 − d

dx (
√
75− 3x2)(12x)

(
√
75− 3x2)2

= −
12

√
75− 3x2 + 3x√

75−3x2
(12x)

75− 3x2

= −
12

√
75− 3x2 + 36x2

√
75−3x2

75− 3x2

We can obtain a common denominator to simplify this expression.

d2

dx2
(4
√
75− 3x2 + 10) = −

12(
√
75−3x2)2√
75−3x2

+ 36x2
√
75−3x2

75− 3x2

= −12(75− 3x2) + 36x2

(75− 3x2)3/2

= − 900

(75− 3x2)3/2

18

0.3

Multivariable Functions

Goals:

1 Compute partial derviatives.

2 Recognize continuous multivariable functions.

3 Apply the chain rule to compositions of multivariable functions.

0.3.1

Multi-Variable Functions

Most interesting phenomena are not described by a single variable. We will need to develop methods
for optimizing multivariable functions. There are many ways to denote multivariable domains and the
functions on them. This is how we will denote them.

Notation

An n-vector is an ordered set of n numbers called components. For instance a⃗ = (5,−
√
17, 12.31)

is a 3-vector.

We add a vector arrow, as in a⃗, to indicate that a⃗ is a vector.

The components of a vector can be denoted abstractly by subscripts: x⃗ = (x1, x2, . . . xn). The
xi do not have arrows because they are numbers, not vectors.

n-space, the set of all n-dimensional vectors, is denoted Rn.

0⃗ is the zero vector: (0, 0, 0, . . . , 0). The dimension should be clear from context.

The vectors e⃗1, e⃗2, . . . , e⃗n are the standard basis vectors of Rn. e⃗i has 1 in the ith component
and 0 in the others. For example e⃗2 = (0, 1, 0, . . . , 0).

An n-variable function f(x1, x2, . . . , xn) can be written f(x⃗).

19

0.3.1 Multi-Variable Functions

Remark

Using a common letter with an index variable

x1, x2, x3 . . .

is a good choice for a large or an unknown number of variables. We will use this notation when developing
the theory of multivariable optimization. In many economics problems, there is a fixed, small number
of variables. In these problems, it is more convenient to use different letters for each variable, to avoid
keeping track of subscripts.

x, y, z, . . .

Even better, we should try to choose descriptive variable names like q for quantity or p for price.

We visualize functions with their graphs. The height of the graph over a point in the domain
represents the value of the function at that point. This allows us to detect visually where the function
is large or small, increasing or decreasing.

Definition 0.13

Given an n-variable function f(x⃗), the graph of f is the set of points (x1, x2, . . . , xn, y) in Rn+1 that
satisfy y = f(x1, x2, . . . , xn).

Figure 12: The graph y =
√
36− 4x2

1 − x2
2 and the height showing f(1, 4).

20

Remark

In general, a graph of the form y = f(x1, x2) will be hard to visualize. For more than three variables,
this visualization becomes impossible. So why bother? Graphs are a useful visual aid to the reasoning
behind our methods. As we progress, it is useful to have an prototypical two-variable graph in your
head. You can apply our methods to that graph, whether or not you have an algebraic expression to go
with it.

0.3.2

Partial Derivatives

Our optimization tools rely on the ability to measure rates of change. For a function of multiple
variables, there are many rates of change, because there are many ways in which the input variables can
change. The simplest are those where only one variable is changing while the others remain fixed.

Definition 0.14

The partial derivative of f with respect to xi is a function of x⃗. It measures the rate of change of f
at x⃗ as xi increases but the other coordinates remain constant. The formula is

lim
h→0

f(x⃗+ he⃗i)− f(x⃗)

h

Here are two different notations for the partial derivative.

1
∂f

∂xi
(x⃗) (Leibniz)

2 fx1(x⃗) (Lagrange)

Each has advantages, so we will use both. When it will not cause confusion, we can shorten Lagrange’s
notation from fxi(x⃗) to fi(x⃗).

In the two variable case, we can interpret f1(x⃗) as the slope of the tangent line to the graph
y = f(x1, x2) in the x1-direction. Higher-dimensional partial derivatives are also slopes, but are harder
to visualize.

21

0.3.2 Partial Derivatives

Figure 13: The tangent line to y = f(x1, x2) in the x1-direction

Computing a partial derivative requires us to treat the non-changing variables as constants. Then
we can perform ordinary single-variable differentiation with the respect to the variable that is changing.

0.3.3

Computing a Partial Derivative

The profit of a firm with a Cobb-Douglas production function might be modeled by

π(L,K) = pLαKβ − wL− rK.

We can compute the partial derivative πL(L,K), which measures the marginal effect of hiring more
labor.

Solution

Since πL(L,K) is a partial derivative, we can treat K as a constant. That means that neither Kβ nor
rK is changing. We treat Kβ as a constant multiple of the monomial function Lα. We treat rK as a
constant term with derivative 0.

πL(L,K) = pαLα−1Kβ − w

22

0.3.4

Multivariable Limits and Continuity

Definition 0.15

A multivariable function f(x⃗) is continuous at a⃗, if

lim
x⃗→a⃗

f(x⃗) = f (⃗a)

In order to verify this limit, we must check that f(x⃗) can be made arbitrarily close to f (⃗a) by
restricting to a sufficiently small neighborhood of a⃗. This neighborhood allows for travel in infinitely
many directions from a⃗, rather than just forwards and backwards like a one-variable limit. This makes
multivariable limits difficult to compute rigorously and multivariable continuity difficult to verify directly.

Fortunately, we can use the same approach we used for single-variable functions.

Variant of Theorem 0.9

The following multivariable functions are continuous on their domains

1 Constant functions

2 Linear functions

3 Polynomials

4 Roots

5 Exponential functions

6 Logarithms

7 Trigonometric functions

23

0.3.4 Multivariable Limits and Continuity

Variant of Theorem 0.10

If f(x⃗) and g(x⃗) are continuous on their domains, and c is a constant, then the following are also
continuous on their domains

1 f(x⃗) + g(x⃗)

2 f(x⃗)− g(x⃗)

3 f(x⃗)g(x⃗)

4
f(x⃗)
g(x⃗) (note that any x⃗ where g(x⃗) = 0 is not in the domain)

5 f(x⃗)g(x⃗) as long as f(x⃗) > 0

6 f(g(x⃗)) where f(x) is a one-variable function

Multivariable continuity becomes important when discussing derivatives. Partial derivatives do not
use multivariable limits. They use a limit as a single variable h goes to 0. For this reason, we are not
guaranteed that partial derivatives reliably model the shape of a function.

Example

Consider the function

f(x1, x2) =

{
0 if x2 ≤ 0

x1 if x2 > 0

This function is 0 when x1 = 0 or x2 = 0. Thus the partial derivatives at (0, 0) are

f1(0, 0) = 0 f2(0, 0) = 0

If we increase x1 while holding x2 constant or increase x2 while holding x1 constant, then the function
stays constant at 0. This does not reflect the fact that if we increase both x1 and x2 at (0, 0), the
function will have a positive slope.

Many theorems rely on a function behaving consistently with its partial derivatives no matter which
direction we travel. The following property will usually serve that purpose.

Definition 0.16

A function f(x⃗) is continuously differentiable, if all the partial derivative functions fi(x⃗) are continuous
functions. If instead they are all continuous at a point a⃗, we say f(x⃗) is continuously differentiable at
a⃗.

24

0.3.5

The Chain Rule

How do model the change of a multivariable function when more than one input variable is changing?
We write each input variable as a function of a parameter. For instance, if x1 and x2 are both changing
we can write each as a function of a parameter t. We can combine these to define a vector function:

x⃗(t) = (x1(t), x2(t)).

f(x⃗(t)) is a composition of functions. If we have defined x1(t) and x2(t) to correctly model the change
we want in x1 and x2, then the derivative of f(x⃗(t)) will tell us how f is changing as well. Notice
f(x⃗(t)) is a single variable function. The value of t determines its value completely. The multivariable
chain rule computes its derivative using x⃗(t) and the gradient of f(x⃗).

Definition 0.17

Given a function f(x⃗), the gradient vector of f at x⃗ is

∇f(x⃗) = (f1(x⃗), f2(x⃗), . . . , fn(x⃗))

Theorem 0.18 [The Multivariable Chain Rule]

Suppose f(x⃗) is a continuously differentiable, n-variable function. If x⃗(t) is differentiable, then the
derivative of the composition f(x⃗(t)) with respect to t is

df

dt
(t) = ∇f(x⃗(t)) · x⃗′(t)

or
df

dt
(t) =

n∑
i=1

fi(x⃗(t))x
′
i(t)

We should avoid using the notations f ′(t) and ft(t) for derivatives of compositions. Instead, we use
Leibniz notation. This makes the variable of differentiation clear without implying that we are computing
a partial derivative.

25

0.3.6

Applying the Chain Rule

Suppose f(x1, x2) =
ln x1

x2
. If x1(t) = t2 and x2(t) = et, compute d

dtf(x1(t), x2(t)).

Solution

According to the chain rule

d

dt
f(x1(t), x2(t)) = fx1

(x1(t), x2(t))x
′
1(t) + fx2

(x1(t), x2(t))x
′
2(t)

=
1

x1(t)x2(t)
x′
1(t)−

lnx1

x2
2

x′
2(t)

=
1

t2et
2t− ln t2

e2t
et

=
2

tet
− ln t2

et

=
2− t ln t2

tet

Remark

The multivariable chain rule is not useful for direct calculations. Substituting the expressions for x1(t)
and x2(t) would have given us

f(x1(t), x2(t)) =
ln t2

et
.

We can differentiate this using single-variable methods to obtain the same answer. The multivariable
chain rule will instead serve us well in more abstract situations.

0.3.7

Alternate Notations and the Chain Rule

The multivariable chain rule is easiest to state when we give the component functions names that
match the variables of f . When this is not the case, we need to take care with our notation.

26

Example

Let f(x, y) be a continuously differentiable function. Let x and y be defined by differentiable functions
g(t) and h(t) respectively. The chain rule states that

d

dt
f(g(t), h(t)) = fx(g(t), h(t))g

′(t) + fy(g(t), h(t))h
′(t).

We do not write fg or fh in this example. f is defined as a function of x and y, so those are the only
partial derivatives it has.

Some applications use one of the variables of f as the parameter. The simplest example gives an
alternate formulation for the partial derivative.

Example

Let f(x1, x2) be a continuously differentiable function. Let x1 be the identity function of itself and let
x2 to be a constant function of x1.

x1 = x1
dx1

dx1
= 1

x2 = c
dc

dx1
= 0

The rate of change with this parameterization should reflect that x1 is changing and x2 is not. That is
exactly what the chain rule tells us.

d

dx1
f(x1, c) = fx1(x1, c)

dx1

dx1
+ fx2(x1, c)

dc

dx1

= fx1(x1, c)(1) + fx2(x1, c)(0)

= fx1(x1, c)

We will build upon this formulation when we compute comparative statics.

Finally, we should note that the chain rule applies when the xi are multivariable functions of a vector
t⃗. In this case, f(x⃗(⃗t)) is a function of t⃗ and thus we can compute its partial derivatives.

27

0.3.7 Alternate Notations and the Chain Rule

Generalization of Theorem 0.18

Suppose f(x⃗) is a continuously differentiable, n-variable function. If xi(⃗t) are differentiable functions of
the variables tj , then the partial derivative of the composition f(x⃗(⃗t)) with respect to tk is

∂f

∂tk
(⃗t) = ∇f(x⃗(⃗t)) · x⃗k (⃗t)

or
∂f

∂tk
(⃗t) =

n∑
i=1

fi(x⃗(⃗t))
∂xi

∂tk
(⃗t)

This generalization follows immediately from treating each tj except tk as a constant.

0.3.8

Proving the Multivariable Chain Rule

The proof of the multivariable chain rule uses the same tools as the single variable chain rule (and
product rule). However, multivariable limits are much more difficult to verify than single variable limits.
To check that lim

x⃗→a⃗
f(x⃗) = L, we have to consider values of x⃗ in every direction from a⃗, not just forward

or backwards along a line. We will sketch the proof for the case where f is a two-variable function.
Even the sketch is quite technical. It contains no arguments that are important enough to commit to
memory.

Proof

We apply the definition of a derivative

df

dt
= lim

h→0

f(x⃗(t+ h))− f(x⃗(t))

h

= lim
h→0

f(x1(t+ h), x2(t+ h))− f(x1(t), x2(t))

h

We break up this limit into a sum of two limits by adding and subtracting a term and regrouping the
result (assuming the limit of each summand exists)

= lim
h→0

f(x1(t+ h), x2(t+ h))− f(x1(t), x2(t+ h)) + f(x1(t), x2(t+ h))− f(x1(t), x2(t))

h

= lim
h→0

f(x1(t+ h), x2(t+ h))− f(x1(t), x2(t+ h))

h

+ lim
h→0

f(x1(t), x2(t+ h))− f(x1(t), x2(t))

h

28

Next we multiply each limit by 1, represented as a quotient of an expression divided by itself.

= lim
h→0

f(x1(t+ h), x2(t+ h))− f(x1(t), x2(t+ h))

h

x1(t+ h)− x1(t)

x1(t+ h)− x1(t)

+ lim
h→0

f(x1(t), x2(t+ h))− f(x1(t), x2(t))

h

x2(t+ h)− x2(t)

x2(t+ h)− x2(t)

Naturally xi(t+h)−xi(t)
xi(t+h)−xi(t)

evaluates to 0
0 when h = 0. This is not a problem for a limit. However, if it

also evaluates to 0
0 at other values of h, no matter how small a neighborhood of h = 0 we choose,

then another approach is needed. In this case, the entire term will limit to 0, but we omit the formal
argument from this sketch. Instead we assume all is well, and we reorganize each product by swapping
denominators.

= lim
h→0

f(x1(t+ h), x2(t+ h))− f(x1(t), x2(t+ h))

x1(t+ h)− x1(t)

x1(t+ h)− x1(t)

h

+ lim
h→0

f(x1(t), x2(t+ h))− f(x1(t), x2(t))

x2(t+ h)− x2(t)

x2(t+ h)− x2(t)

h

We break up the result as a product of limits (assuming the limit of each factor exists)

= lim
h→0

f(x1(t+ h), x2(t+ h))− f(x1(t), x2(t+ h))

x1(t+ h)− x1(t)
lim
h→0

x1(t+ h)− x1(t)

h

+ lim
h→0

f(x1(t), x2(t+ h))− f(x1(t), x2(t))

x2(t+ h)− x2(t)
lim
h→0

x2(t+ h)− x2(t)

h

The second factor of each product now looks like a derivative. To make first factors look more like
derivatives, we let j = x1(t+h)−x1(t) and k = x2(t+h)−x2(t). These quantities go to 0 as h → 0.
Our limits can be rewritten as

= lim
(h,j)→(0,0)

f(x1(t) + j, x2(t+ h))− f(x1(t), x2(t+ h))

j
lim
h→0

x1(t+ h)− x1(t)

h

+ lim
(h,k)→(0,0)

f(x1(t), x2(t) + k)− f(x1(t), x2(t))

k
lim
h→0

x2(t+ h)− x2(t)

h

At this point we have four limits, each of which looks like the definition of a derivative. We can
replace each one with its derivative notation. In general, we cannot evaluate a multivariable limit by
handling one variable at a time, but the fact that the partial derivatives are continuous allows us to do
so here. The details of this kind of argument are covered in an analysis course.

= lim
h→0

f1(x1(t), x2(t+ h))x′
1(t) + lim

h→0
f2(x1(t), x2(t))x

′
2(t)

= f1(x1(t), x2(t))x
′
1(t) + f2(x1(t), x2(t))x

′
2(t)

This is the dot product

= ∇f(x⃗(t)) · x⃗′(t)

One can adapt this proof to a higher dimension by breaking the limit into more summands. The
theorem we gave is even more general, because applies to an n-variable function. To prove that version,
we would use a proof by induction.

29

0.3.8 Proving the Multivariable Chain Rule

30

Chapter 1

Unconstrained Optimization

1.1

Single-Variable Optimization

Goals:

1 Know the definition of a local or global maximizer.

2 Apply the first- and second-order conditions to calculate maximizers.

3 Distinguish between necessary and sufficient conditions and recognize the role of each in optimiza-
tion.

4 Understand the role of the derivative in proving the first- and second-order conditions.

Some of the most important methods in calculus are those that identify maximizers and minimizers
of functions. This section gives precise theorems to describe those methods. We will also examine
the distinct but complementary roles played by necessary conditions and sufficient conditions. Finally,
we will give a reasonably compact formal basis to prove the theorems of this section and support the
theorems in the sections that follow.

1.1.1

The First-Order Condition

Given a function, we are interested in what inputs of that function will produce the largest or
smallest values of that function. These inputs are called maximizers and minimizers. In order to identify
maximizer and minimizers, we need to have a rigorous definition that we can verify.

Definition 1.1

Suppose a lies in the domain of a function f(x).

1 a is a maximizer of f if f(a) ≥ f(x) for all other x in the domain of f . In this case f(a) is called
the maximum of f .

2 a is a local maximizer of f if f(a) ≥ f(x) for all other x in some neighborhood of a. It is a
strict local maximizer if f(a) > f(x) instead. In either case f(a) is called a local maximum of
f .

3 a is a minimizer of f if f(a) ≤ f(x) for all other x in the domain of f . In this case f(a) is called
the minimum of f .

4 a is a local minimizer of f if f(a) ≤ f(x) for all other x in some neighborhood of a. It is a
strict local minimizer if f(a) < f(x) (than 0) to the left of a and smaller values (than 0) to the
right. Thus, travelinstead. In either case f(a) is called a local minimum of f .

32

Remark

When we are trying to draw a contrast with a local maximizer, sometimes we use global maximizer or
absolute maximizer to refer to a maximizer of a function.

The difficulty in finding maximizers is that the domain has infinitely many points. Using only the
definition, we would need to evaluate them all, one by one, to find a maximizer. This is obviously
impossible. Thankfully, calculus gives us a way to narrow down the search.

Derivatives measure the rate of change of a function. Knowing whether the rate is positive or negative
should tell us how f(a) compares to nearby values. Here is a way to formally state that relationship.

Lemma 1.2

If f ′(a) > 0, then for all x in some neighborhood of a,

1 f(x) > f(a) if x > a

2 f(x) < f(a) if x < a.

Figure 1.1: The graph y = f(x) and a neighborhood where it stays close to its tangent line

Remark

A lemma is a statement that is not particularly interesting on its own. It is used as a step to proving a
more important result.

We will provide a formal proof for this lemma later. The main argument is that near a, y = f(x)
lies close enough to the tangent line at a to mimic its behavior, attaining larger values for x > a and

33

1.1.1 The First-Order Condition

smaller values for x < a. Notice that this behavior does not need to persist for all x. We cannot say
how long y = f(x) will stay close to its tangent line. It may be that the neighborhood where it does is
quite small.

We can make the same argument for functions with a negative derivative, except the behavior is
backwards. Aside from switching the direction of some inequalities, the proof is identical. Rather than
treat this result as its own lemma, we present it as a variant.

Variant of Lemma 1.2

If f ′(a) < 0, then for all x in some neighborhood of a,

1 f(x) < f(a) if x > a

2 f(x) > f(a) if x < a.

The existence of nearby x such that f(x) > f(a) is inconsistent with the definition of a local
maximizer. Lemma 1.2 and its variant guarantee such x, so:

If f ′(a) > 0, then a is not a local maximizer.

If f ′(a) < 0, then a is not a local maximizer.

We convert these statements to their contrapositives. If a is a local maximizer, then f ′(a) is neither
positive nor negative. This gives us the following condition.

Theorem 1.3 [The First-Order Condition (FOC)]

Let a be a local maximizer or local minimizer of f(x). Either f ′(a) does not exist or f ′(a) = 0.

Definition 1.4

The values of x that satisfy the first-order condition are called critical points.

34

1.1.2

Applying the First-Order Condition

What does the first-order condition tell us about f(x) = 8x3 − x4?

Solution

The first-order condition tells us that a local maximizer or minimizer only occurs where the derivative
is 0 or undefined. The derivative of this function is 24x2 − 4x3. It is defined for all x, so we solve for
where it is 0.

f ′(x) = 0

24x2 − 4x3 = 0

4x2(6− x) = 0

x = 0 or x = 6

This means that no point except x = 0 or x = 6 can be a local maximizer or minimizer.

−4 −2 2 4 6 8 10

−200

200

400

600

y = f(x)

x

y

Figure 1.2: The graph of f(x) = 8x3 − x4

Remark

The first-order condition does not tell us that either of x = 0 or x = 6 must a local maximizer or a local
minimizer. In fact, x = 6 is a local maximizer but x = 0 is neither.

35

1.1.3

The Second-Order Condition

As the previous example shows, the first-order condition is limited in its conclusion. Knowing the
value of f ′(a) is not enough to give us certainty about the shape of the graph near a. For that we need
to know how the first derivative is changing at a. The change in the first derivative is measured by
the second derivative. The second derivative function, denoted f ′′(x), is the derivative of the function
f ′(x). The sign of the second derivative allows us to classify some critical points.

Theorem 1.5 [The Second-Order Condition (SOC)]

If f ′(a) = 0 and f ′′(a) < 0, then a is a strict local maximizer of f .

−2 −1 1 2 3 4 5

−10

10

20

y = f(x)

y = f ′(x)

(2, f(2))

y = f(x)
x

y

Figure 1.3: A neighborhood where a = 2 is the maximizer of f(x)

The intuition behind this result relies on the fact that f ′′(a) is the derivative of f ′(x) at a. If
f ′′(a) < 0, then f ′(a) takes on larger values (than 0) to the left of a and smaller values (than 0) to the
right. Traveling left to right, the function increases until it reaches a. After passing a, it decreases.

Naturally, we have the following variant.

Variant of Theorem 1.5

If f ′(a) = 0 and f ′′(a) > 0, then a is a strict local minimizer of f .

Remark

This is sometimes called the local second-order condition, since it gives information about local
maximizers.

We cannot conclude anything, if f ′′(a) = 0. a may be a maximizer, a minimizer or neither.

36

1.1.4

Applying the Second-Order Condition

What does the second-order condition tell us about f(x) = 8x3 − x4?

Solution

The second-order condition requires f ′(x) = 0. We’ve already shown that this only occurs at x = 0 and
x = 6. The other part of the condition requires us to compute the second derivative.

f ′(x) = 24x2 − 4x3

f ′′(x) = 48x− 12x2

f ′′(0) = 0

f ′′(6) = −144 < 0

This means that x = 6 is strict local maximizer. The second-order condition does not tell us anything
about x = 0.

1.1.5

The Global Second-Order Condition

A firm seeking to increase its profits does not have much use for a local maximizer. The excuse:
“Our strategy was superior to all numerically similar strategies” will not impress a board of directors.
Nor would any rational actor settle for a mere local maximizer of their utility function. Utility maximizers
and profit maximizers want to find the global maximizer. If we know more about the second derivative
of the utility function, we can identify such a value.

Theorem 1.6 [The Global Second-Order Condition (GSOC)]

If f ′(x∗) = 0 and f ′′(x) < 0 for all x, then x∗ is the only critical point of f and is the unique global
maximizer of f .

37

1.1.5 The Global Second-Order Condition

Remark

Unlike the (local) second-order condition, this theorem requires that the second derivative is
negative everywhere, not just at x∗.

In return for a stronger requirement, we obtain a much stronger conclusion.

Economists traditionally use x∗ to denote a global maximizer. Thus we will use x∗ to denote a
known maximizer or any point that will imminently be identified as a maximizer.

−2 2 4

−2

−1

1

2

3

(2, f(2))

y = f(x)

y = f ′(x)

x

y

Figure 1.4: A function and its derivative near a maximizer

Unlike in the local case, we can make some use of a zero second derivative here.

Variants of Theorem 1.6

1 If f ′(x∗) = 0 and f ′′(x) > 0 for all x, then x∗ is the only critical point of f and is the global
minimizer of f .

2 If f ′(x∗) = 0 and f ′′(x) ≤ 0 for all x, then x∗ is a global maximizer of f (not necessarily unique).

3 If f ′(x∗) = 0 and f ′′(x) ≥ 0 for all x, then x∗ is a global minimizer of f (not necessarily unique).

38

1.1.6

Sufficient and Necessary Conditions

The conclusions we draw from the first-order condition are fundamentally different from the con-
clusions that we draw from the second-order conditions. Neither of them allows us to fully answer the
question of which points are local maximizers of f . We can see the difference in their structure

FOC: If a is a local maximizer, then [condition]
SOC: If [condition], then a is a local maximizer

Mathematics has the following vocabulary for describing this difference.

Definition 1.7

Suppose we have a condition P that we are using to detect whether a statement Q is true or false.

1 A statement of the form “If Q then P” indicates that P is a necessary condition for Q.

2 A statement of the form “If P then Q” indicates that P is a sufficient condition for Q.

Remark

We can find uses for both necessary and sufficient conditions, but we need to be careful to interpret
their conclusions correctly.

If you want to show that Q is true, you need to use a sufficient condition. A necessary condition
will not suffice.

If you want to rule out Q being true, one way is to show that a necessary condition is not satisfied.

Going forward, it is important to identify each new result as being necessary or sufficient (or maybe
both). We can begin by seeing how these terms apply to the first- and second-order conditions.

The first-order condition is a necessary condition. You can not have a local maximizer without
satisfying it. It is not a sufficient condition. A point can satisfy the first-order condition without being
a local maximizer.

Example

Let f(x) = x3. The value a = 0 satisfies the FOC but is not a local maximizer (or minimizer).

39

1.1.6 Sufficient and Necessary Conditions

This means that the first-order condition can only rule out values that are not maximizers. We
cannot conclude that a point is a maximizer just by showing that it satisfies the first-order condition.

The second-order condition is a sufficient condition. If f ′(a) = 0 and f ′′(a) < 0 then a must be a
local maximizer. It is not a necessary condition: there may be local maximizers that do not satisfy the
second-order condition.

Example

Let f(x) = −x4. The local maximizer a = 0 does not satisfy the SOC, because f ′′(0) = 0.

The global second-order condition is also a sufficient condition and not a necessary one. For example,
a function can have a global maximizer without satisfying it.

−2 2 4

−1

1

2

3

(1, f(1))

y = f(x)

x

y

Figure 1.5: The graph of f(x) = 2
x2−2x+2 , which has a global maximizer and unique critical point at

x∗ = 1, but does not satisfy the GSOC.

Remark

Abstractly, there is no difference between P and Q. There are two ways to view the statement:

If P , then Q.

P is a sufficient condition for Q.

Q is a necessary condition for P

However, we like to think of conditions as statements that we use to test for what we really care about.
So while, abstractly, being a local maximizer is a sufficient condition for f ′(a) = 0, this does not reflect
the way we use the first-order condition in practice.

Generally we will want to have both necessary and conditions to test for properties that we care about.
With the tools we have so far, we can determine that certain points are local or global maximizers. We

40

can determine that many points are not local maximizers. Still, there may be points that satisfy the first-
order condition but not the second-order condition. We cannot tell whether these are local maximizers
or not.

The best condition would be a condition that is both necessary and sufficient. No such tool exists for
general optimization, so we are on the lookout for additional conditions to apply when the ones we have
are inconclusive. Coming up with new conditions is usually hard work, but we can obtain one easily, if
we exploit the relationship between maximizers and minimizers.

A sufficient condition for a minimizer can be turned into a necessary condition for a maximizer. If
f ′(a) = 0 and f ′′(a) > 0 then by a variant of Theorem 1.5, a is a strict local minimizer. Thus it cannot
be a maximizer. On the other hand, if f ′′(a) exists but f ′(a) ̸= 0 then a is still not a local maximizer.
This leaves only the following possibilities for the second derivative at a local maximizer a.

Theorem 1.8

If a is a local maximizer of f , then f ′′(a) ≤ 0 or f ′′(a) does not exist.

1.1.7

Proving the First-Order Condition

In general, we expect a positive derivative to mean that greater values of x produce greater values
of f(x). The lemma at the heart of the first-order condition described what we can conclude when a
derivative is positive at one point.

The derivative is a limit, so any formal argument needs to start there. Proofs about limits can require
extensive computations and creative problem solving. Fortunately, we will only need the following lemma
about limits.

Lemma 1.9

If lim
x→a

f(x) = L and L > 0, then there is a neighborhood of a on which f is positive.

Proof

Since L is positive, L/2 is also positive. By definition of a limit there is some neighborhood of a in
which f(x) is within L/2 of L. We can express that distance with an absolute value.

|f(x)− L| < L/2

−L/2 < f(x)− L < L/2

L/2 < f(x) < 3L/2

Since L/2 is positive, so is f(x).

41

1.1.7 Proving the First-Order Condition

Variant of Lemma 1.9

If lim
x→a

f(x) = L and L < 0, then there is a neighborhood of a on which f is negative.

We are now in a position to prove Lemma 1.2.

Lemma 1.2

If f ′(a) > 0, then for all x in some neighborhood of a,

1 f(x) > f(a) if x > a

2 f(x) < f(a) if x < a.

Proof

Since f ′(a) = lim
h→0

f(a+ h)− f(a)

h
> 0, Lemma 1.9 guarantees that there is a neighborhood of h

values near 0 where f(a+h)−f(a)
h > 0. Let x = a + h. In the corresponding neighborhood of x values

around a, we can make the following computations.

1 If x > a then h > 0 and

f(a+ h)− f(a)

h
> 0

f(x)− f(a)

h
> 0

f(x)− f(a) > 0

f(x) > f(a)

2 If x < a then h < 0 and

f(a+ h)− f(a)

h
> 0

f(x)− f(a)

h
> 0

f(x)− f(a) < 0

f(x) < f(a)

42

Remark

This proof uses an earlier lemma. If you are carefully reading this proof to understand the argument,
you may need to look back at the lemma and think about how it is being used here.

Visually, the argument of this proof is that the secant lines from a have positive slope in some
neighborhood of a.

1.1.8

Proving the Second-Order Conditions

In order to prove the second-order condition, we need a stronger conclusion than Lemma 1.2. Calculus
teaches that a function with positive derivatives is increasing, while a function with negative derivatives
is decreasing. In order to make a rigorous argument, we should know formal definitions of increasing
and decreasing.

Definition 1.10

Let f(x) be a function, and let I be an interval in its domain.

f(x) is increasing if for any numbers a < b in the domain of f , f(a) < f(b).

f(x) is decreasing if for any numbers a < b in the domain of f , f(a) > f(b).

43

1.1.8 Proving the Second-Order Conditions

Figure 1.6: The graph of an increasing function

f ′(a) > 0 is not enough to guarantee that f(x) increases in a neighborhood of a. f(x) may suffer
from oscillations that persist arbitrarily close to a (see Figure 1.1). If we want to use a derivative to show
that a function is increasing, we need to know the derivative is positive at every point on an interval.

Lemma 1.11

If f ′(x) > 0 for all x on an interval I, then f(x) is increasing on I.

To prove this lemma, we need to show that when f ′(x) > 0, the function satisfies the formal
definition of increasing that we saw above. This is surprisingly arduous to prove using the definition of
a derivative as our starting point. Here are two deceptively short proofs

Proof

Suppose a < b. Apply the fundamental theorem of calculus: f(b)−f(a) =

∫ b

a

f ′(x) dx. The integrand

is positive over all of [a, b], so the integral is positive too. Thus f(b) > f(a).

44

Figure 1.7: The fundamental theorem of calculus applied to a positive derivative

Proof

Suppose a < b. Apply the mean value theorem: There is some c between a and b such that f(b)−f(a)
b−a =

f ′(c). Since c ∈ I, we know that f ′(c) > 0. Thus f(b) > f(a).

Figure 1.8: The point c, whose tangent line has the same slope as the secant from a to b

You should not be satisfied by these proofs. Each raises a new question.

1 How do you prove the fundamental theorem of calculus?

2 How do you prove the mean value theorem?

A satisfactory argument would either prove the missing result or find another method that eliminates
the need for them. Unfortunately, any of these approaches takes us into concepts beyond the scope of
these notes. You can expect to find their formal proofs in an analysis course.

Naturally, this lemma has variants. We can switch the direction of the inequality, but we can also
relax the strictness of the inequality.

45

1.1.8 Proving the Second-Order Conditions

Variants of Lemma 1.11

1 If f ′(x) < 0 on an interval I, then f(x) is decreasing on I.

2 If f ′(x) ≥ 0 on an interval I, then f(x) is non-decreasing on I, meaning that if a < b,
f(a) ≤ f(b).

3 If f ′(x) ≤ 0 on an interval I, then f(x) is non-increasing on I, meaning that if a < b, f(a) ≥
f(b).

Moving forward, we will see strict and non-strict variants so frequently that when we don’t, it is
worth pondering why not.

With these lemmas in hand, we are ready to prove the second-order condition.

Theorem 1.5

If f ′(a) = 0 and f ′′(a) < 0, then a is a strict local maximizer of f .

Arguments about the second derivative usually rely on the fact that f ′′(x) is the derivative of f ′(x).
We will apply Lemma 1.9, letting f ′(x) play the role of the original function with f ′′(x) as its derivative.
We can thus use the sign of f ′′(a) to compare the values of f ′(x) and f ′(a). Here is the formal
argument.

Proof

We suppose f ′(a) = 0 and f ′′(a) < 0. f ′′(x) is the derivative of f ′(x), and it is negative at a. A
variant of Lemma 1.9 applies. There is some neighborhood I of a where

if x > a, then f ′(x) < f ′(a) = 0

if x < a, then f ′(x) > f ′(a) = 0.

The second inequality shows, by Lemma 1.11, that f(x) is increasing to the left of x in I. By definition
of increasing this means that f(x) < f(a) for all x < a in I. Similarly, the first inequality shows that
f(x) is decreasing to the right of a in I. By definition of decreasing this means that f(x) < f(a) for
all x > a in I. Thus f(a) > f(x) for all other x in I. This satisfies the definition of a strict local
maximizer, so we conclude that a is a strict local maximizer of f .

The proof of the global second-order condition follows the same logic. The only difference is that
we can apply Lemma 1.11 instead of Lemma 1.9 to get a global statement about the first derivative on
either side of x∗. Here is the full text for the sake of completeness.

46

Proof

We suppose f ′(x∗) = 0 and f ′′(x) < 0 for all x. A variant of Lemma 1.11 tells us that f ′(x) is
decreasing for all x. This means:

if x > x∗, then f ′(x) < f ′(x∗) = 0

if x < x∗, then f ′(x) > f ′(x∗) = 0.

The second inequality shows, by Lemma 1.11, that f(x) is increasing for all x < x∗. By definition of
increasing this means that f(x) < f(x∗) for all x < x∗. Similarly, the first inequality shows that f(x)
is decreasing for all x > x∗. By definition of decreasing this means that f(x) < f(x∗) for all x > x∗.
Thus f(x∗) > f(x) for all other x. This satisfies the definition of a unique maximizer, so we conclude
that x∗ is a unique maximizer of f .

To show that x∗ is the only critical point, we simply note that if there were another critical point,
it would also satisfy this condition and be the unique maximizer. Since there can be only one unique
maximizer, no such critical point can exist.

1.1.9

Section Summary

The most important definitions and results from this section were

The first-order condition (Theorem 1.3)

The second-order condition (Theorem 1.5)

The global second-order condition (Theorem 1.6)

Necessary and sufficient conditions (Definition 1.7)

f ′′(x∗) < 0
and f ′(x∗) = 0

f ′′(x) < 0 for all x
and f ′(x∗) = 0

x∗ is a
strict local max

x∗ is the
unique global max and

only critical point

f ′(x∗) = 0 or DNEf ′′(x∗) ≤ 0 or DNE

SOC

GSOC

FOCThm 1.8

Figure 1.9: Relationships between the conditions of single variable optimization

47

1.2

Concavity

Goals:

1 Recognize convex sets.

2 Recognize concave and convex functions visually.

3 Understand the difference between strict and non-strict convexity/concavity.

4 Verify concavity using inequalities, tangent lines or second derivatives as appropriate.

5 Use concavity to find maximizers of a function.

1.2.1

Convex Sets

Our goal is to understand what the shape of a graph tells us about the maximizer(s) of a function.
We would prefer methods that apply to both single-variable and multivariable functions. For this, we
need to be able to describe shapes in any dimension. Most students learn how to recognize a convex
polygon, but we can define convexity in a large variety of shapes. Convex regions can be angular or
smooth. They can exist in any dimension. To see this, we need the formal definition of convexity.

Definition 1.12

A region D ⊆ Rn is convex, if the line segment between any two points a⃗ and b⃗ in D entirely lies in
D.

There is no restriction on the dimension of D. We can even apply it to regions in the real line.

Example

If D is a subset of R1, then D is convex if and only if it is connected.

48

For a polygon, this definition should match our previous intuition of convexity. Convince yourself
that any two points in the convex polygons you learned about can be connected with a segment. In a
nonconvex polygon there is at least one pair of points whose line segment leaves the polygon. You can
convince yourself by picking your favorite nonconvex polygon and finding such a segment.

a⃗

b⃗

a⃗

b⃗

Figure 1.10: A convex polygon and a nonconvex polygon

We cannot make a rigorous case for convexity by drawing segments. There are too many to check.
We can instead make convexity more algebraic by parameterizing the line segment from a⃗ to b⃗.

x⃗(t) = (1− t)⃗a+ t⃗b 0 ≤ t ≤ 1

You can check that this is a line by writing it as

x⃗(t) = a⃗+ t(⃗b− a⃗) 0 ≤ t ≤ 1

x⃗(0) = a⃗. As t increases, x⃗(t) travels in the direction of (⃗b − a⃗) until arriving at b⃗ when t = 1. To
check for convexity of D, we just need to test that the points of x⃗(t) lie in D.

Figure 1.11: The line segment from a⃗ to b⃗

Furthermore, we do not need to check every a⃗ and b⃗. Any a⃗ and b⃗ whose segment leaves D will
leave the at some boundary point c⃗ and reenter at some boundary point d⃗ (Figure 1.12). Thus if we

49

1.2.1 Convex Sets

only checked segments between boundary points, the segment between c⃗ and d⃗ would be sufficient to
indicate that D is not convex. We summarize this argument in the following theorem.

a⃗

b⃗

c⃗
d⃗

Figure 1.12: A segment that leaves a nonconvex region

Theorem 1.13

A region D is convex if for all a⃗ and b⃗ in the boundary of D and all t in [0, 1],

(1− t)⃗a+ t⃗b ∈ D

We visually identify convex polygons as polygons where every corner “points outward.” However,
the corners of the polygon are the only places that point outward. The rest of the boundary is flat,
pointing neither inward nor outward. With non-polygonal regions, it is possible to have a boundary that
points outward everywhere, not just at a few corners. This will be a useful property to keep track of, so
we have a name for such regions.

Definition 1.14

A region D is strictly convex, if the segment, not including the endpoints, between any two points a⃗
and b⃗ in D entirely lies in the interior of D.

Figure 1.13: Two convex regions, one strictly convex and the other not strictly convex

50

Remark

Every strictly convex region is also convex, but some convex regions are not strictly convex. We say
that strict convexity is a stronger condition and convexity is a weaker condition.

We are often interested in the intersection of two regions. For instance, if one region is the set of
points satisfying one condition, while a second region is the set of points satisfying a second conditions,
then their intersection is the points satisfying both conditions. Convexity behaves well in these situations.

Theorem 1.15

If D1 and D2 are convex regions, then D1 ∩D2 is convex.

The proof is a good exercise.

1.2.2

Concave Functions

Our next step is to use convexity to describe the shape of functions or, more precisely, their graphs.
Most students encounter convex and concave functions in calculus, though they are sometimes called
concave up and concave down. With a rigorous definition of a convex region, we are now in position to
define what it means to be a convex function.

Definition 1.16

Let f(x⃗) be a function whose domain is convex. We say f(x⃗) is convex, if y ≥ f(x⃗), the region above
its graph, is convex. It is concave if y ≤ f(x⃗), the region below its graph, is convex.

51

1.2.2 Concave Functions

Figure 1.14: A concave function

Remark

Be careful when learning these definitions. Students often expect the definition of concave function to
have something to do with a region being nonconvex (which is sometimes called concave), but it does
not. Nonconvex regions above and below graphs are unremarkable. It is when one of regions is convex
that the graph is special.

Figure 1.15: The graph of a function that is neither concave nor convex and the nonconvex regions
above and below it.

We might ask whether the region above or below y = f(x⃗) is strictly convex, rather than merely
convex. If it is, we can pass the “strictness” onto our description of f .

Definition 1.17

Let f(x⃗) be a function whose domain is convex. f(x⃗) is strictly convex, if the region y ≥ f(x⃗) is
strictly convex. It is strictly concave if the region y ≤ f(x⃗) is strictly convex.

52

Remark

Strict concavity is a stronger condition than concavity. Every strictly concave function is also concave,
but some concave functions are not strictly concave.

Figure 1.16: A function that is concave but not strictly concave

Notice that the region below y = f(x⃗) is a mirror image of the region above y = −f(x⃗). If one is
convex, so is the other. We can make the following connection between a function and its negative.

Lemma 1.18

Let f(x⃗) be a function.

1 f(x⃗) is concave if and only if −f(x⃗) is convex.

2 f(x⃗) is strictly concave if and only if −f(x⃗) is strictly convex.

We will use this lemma as an excuse to ignore convex functions. Any argument about concave
functions becomes an argument about convex functions by introducing a negative sign.

53

1.2.3

The Inequality Test for Concavity

We verify the convexity of the region below y = f(x⃗) by checking line segments between points on
the boundary. The boundary in this case is the graph itself. The line segments are called secants.

Figure 1.17: A secant below the graph of y = 5− x2
1 − x2

2

We take two general points (⃗a, f (⃗a)) and (⃗b, f (⃗b)) on y = f(x⃗). We parametrize the secant between
them.

x⃗(t) =(1− t)⃗a+ t⃗b

y(t) =(1− t)f (⃗a) + tf (⃗b)
0 ≤ t ≤ 1

We can write an inequality to express the condition that secant lies below the graph.

Figure 1.18: A secant below the graph of a single-variable function

54

Theorem 1.19

A function is concave, if and only if for all a⃗ and b⃗ in its domain and any 0 ≤ t ≤ 1 we have

(1− t)f (⃗a) + tf (⃗b)︸ ︷︷ ︸
height of secant

≤ f((1− t)⃗a+ t⃗b)︸ ︷︷ ︸
height of y=f(x⃗(t))

0 ≤ t ≤ 1

Remarks

This is an “if and only if” condition. That means it is both necessary and sufficient for establishing
concavity.

Only a function with a convex domain can meet this condition. Otherwise we cannot always
evaluate f((1− t)⃗a+ t⃗b), because (1− t)⃗a+ t⃗b may lie outside the domain.

The theorem follows directly from the definitions we have developed so far. Here is a representation
of our reasoning.

(1− t)f (⃗a) + tf (⃗b) ≤ f((1− t)⃗a+ t⃗b)

for all a⃗, b⃗ and t

The secant between any a⃗ and b⃗
lies under the graph y = f(x⃗)

The region below y = f(x⃗) is convex

f is concave

Applying the same reasoning to the definitions of convexity and strict concavity/convexity gives the
following variants. Note that we cannot demand a strict inequality at t = 0 or t = 1 because the secant
will always intersect the graph y = f(x) at a and b.

55

1.2.3 The Inequality Test for Concavity

Variants of Theorem 1.19

1 A function is convex, if and only if for all a⃗ and b⃗ in its domain and any 0 ≤ t ≤ 1 we have

(1− t)f (⃗a) + tf (⃗b) ≥ f((1− t)⃗a+ t⃗b) 0 ≤ t ≤ 1

2 A function is strictly concave, if and only if for all a⃗ and b⃗ in its domain and any 0 < t < 1 we
have

(1− t)f (⃗a) + tf (⃗b) < f((1− t)⃗a+ t⃗b) 0 < t < 1

3 A function is strictly convex, if and only if for all a⃗ and b⃗ in its domain and any 0 < t < 1 we have

(1− t)f (⃗a) + tf (⃗b) > f((1− t)⃗a+ t⃗b) 0 < t < 1

1.2.4

Verifying Concavity with an Inequality

Verify that f(x) = 5− x2 is concave using the inequality condition.

Solution

Let a and b be any two real numbers. We need to show that for all t in [0, 1]:

(1− t)f(a) + tf(b) ≤ f((1− t)a+ tb)

To prove this inequality, we first need the AM-GM (arithmetic mean-geometric mean) inequality from
algebra. Here it is.

(a− b)2 ≥ 0

a2 − 2ab+ b2 ≥ 0

a2 + b2 ≥ 2ab

We also note that for t in [0, 1], t(1 − t) ≥ 0. We now prove the required inequality, starting with
the right side.

56

f((1− t)a+ tb) = 5− ((1− t)a+ tb)2 definition of f

= 5− (1− t)2a2 − 2t(1− t)ab− t2b2 distribute

≥ 5− (1− t)2a2 − t(1− t)(a2 + b2)− t2b2 AM-GM

= 5− (1− t)2a2 − t(1− t)a2 − t(1− t)b2 − t2b2 distribute

= 5− (1− t)(t+ 1− t)a2 − t(1− t+ t)b2 factor

= 5− (1− t)a2 − tb2 simplify

= 5(1− t)− (1− t)a2 + 5t− tb2 break up 5

= (1− t)(5− a2) + t(5− b2) factor

= (1− t)f(a) + tf(b) definition of f

The inequality condition is difficult to verify, even for this simple function. It is much worse for a
function involving a square root or an exponential. On the other hand. The inequality condition can be
convenient for abstract results.

Theorem 1.20

If f(x⃗) and g(x⃗) are both concave, then so is their sum: h(x⃗) = f(x⃗) + g(x⃗)

Proof

Let a⃗ and b⃗ be in the domain of h. Since the domain of h is the intersections of the domains of f and g,
h has a convex domain (Theorem 1.15). We know from the concavity of f and g that for all t in [0, 1]:

(1− t)f (⃗a) + tf (⃗b) ≤ f((1− t)⃗a+ t⃗b)

(1− t)g(⃗a) + tg(⃗b) ≤ g((1− t)⃗a+ t⃗b)

We now verify that the inequality holds for h:

(1− t)h(⃗a) + th(⃗b) = (1− t)f (⃗a) + (1− t)g(⃗a) + tf (⃗b) + tg(⃗b)

≤ f((1− t)⃗a+ t⃗b) + g((1− t)⃗a+ t⃗b)

= h((1− t)⃗a+ t⃗b)

We conclude that h is concave.

57

1.2.4 Verifying Concavity with an Inequality

Main Idea

The inequality condition is sometimes useful at a theoretical level, but is painful to check for any but
the simplest specific functions. We will want a condition that is easier to check.

1.2.5

Concavity and Tangent Lines

We sought out the idea of concavity because it applies to functions of many variables. Some results
about concave functions are related to their derivatives. We will develop these tools in the setting
that is most comfortable and intuitive: one-variable functions. Once we have presented the theory of
optimization for multivariable functions, we will revisit and generalize these results.

Derivatives tell us about tangent lines, and tangent lines have an interesting relationship to convex
sets. If you draw a nonconvex set, you will be able to find a tangent line that crosses through the set.
A convex set, on the other hand, lies entirely on one side of any of its tangent lines. We will not try
to prove this for general sets, but we will prove it for the strictly convex region below the graph of a
strictly concave function.

Lemma 1.21

If f(x) is a strictly concave function that is differentiable at a, then the rest of the graph y = f(x) lies
below its tangent line at (a, f(a)).

y = f(x)

x

y

Figure 1.19: The graph of a strictly concave function and some of its tangent lines

This lemma describes the relationship between y = f(x) and a single tangent line. It can apply to
a function that is not differentiable at other points in its domain. If the function is differentiable on its
entire domain, we can produce a necessary and sufficient condition on the tangent lines.

58

Theorem 1.22

Let f(x) be a differentiable function on a convex domain. f(x) is strictly concave, if and only if the
graph y = f(x) lies below all of its tangent lines (except at the point on tangency).

The proofs of these results are somewhat technical. We will provide them after we have discussed
applications.

1.2.6

Concavity Conditions for a Maximizer

Our main use of concavity (for now) is to produce sufficient conditions for maximizers. The following
corollary follows from Lemma 1.21.

Corollary 1.23

If f(x) is a strictly concave function and f ′(x∗) = 0, then x∗ is the unique global maximizer of f .

Proof

The assumption that f ′(x∗) = 0 tells us that f is differentiable at x∗, and the tangent line at x∗ is
horizontal. By Lemma 1.21, the rest of the graph lies below this line. We conclude that x∗ is the unique
global maximizer.

y = f(x)

(x∗, f(x∗))

x

y

Figure 1.20: The graph of y = f(x), which lies below the tangent line at x∗.

Like in the global second-order condition, we can also argue that x∗ is the only critical point. If
there were another, then it would also be the unique global maximizer, which is nonsense.

59

1.2.7

A Second Derivative Test for Concavity

We would still like to have a better way to determine when a function is concave. In calculus, we
learn that the sign of the second derivative determines the concavity of a function. We are now in a
position to formally argue this result.

Theorem 1.24

If f is a function on a convex domain D ⊆ R and f ′′(x) < 0 for all x in D, then f(x) is strictly
concave.

This means that a negative second derivative is a sufficient condition for strict concavity. Is it
necessary? No, consider the following.

Example

Consider f(x) = −x4. This function is strictly concave, but f ′′(0) = 0, so the second derivative is not
always negative.

Putting this with Corollary 1.23 gives a string of conditions. Each is sufficient and neither is necessary,
so the implications can only be followed from left to right.

f ′′(x) < 0
for all x

f strictly concave
Any x∗ with f ′(x∗) = 0

is a maximizer

We could claim that Corollary 1.23 and Theorem 1.24 have combined to give an alternate argument
for the global second-order condition. However, proving Theorem 1.24 without the global second-order
condition would require us to redo much of the work that went into that theorem. Instead we will use
the global second-order condition to keep our proof of Theorem 1.24 brief.

Proof

Our goal is to apply Theorem 1.22. Let a be a point in the domain of f . Since f ′′(x) exists, f ′(a)
exists. Let y = ℓ(x) be the tangent line to y = f(x) at a. Let g(x) = f(x) − ℓ(x). We know the
following about g:

g′′(x) = f ′′(x)− ℓ′′(x) < 0 for all x, since ℓ′′(x) = 0.

g′(a) = f ′(a)− ℓ′(a) = 0, since the derivative is the slope of the tangent line.

g(a) = 0, since ℓ(a) = f(a).

g and a satisfy the conditions of the global second-order condition. Thus a is the unique maximizer of
g, meaning g(x) < g(a) = 0 for all x ̸= a. Thus y = f(x) lies below y = ℓ(x). This reasoning holds for
the tangent line at any value a. Theorem 1.22 tells us that f is strictly concave.

60

y = f(x)

y = g(x)

(a, f(a))

x

y

Figure 1.21: The graph of f(x), the tangent line at a, and their difference

1.2.8

Verifying Concavity with the Second Derivative

Verify that f(x) = 5− ex is strictly concave.

Solution

f ′′(x) = −ex < 0 for all x. Therefore by Theorem 1.24, f(x) is strictly concave.

Main Idea

The second derivative is an easier test of strict concavity than the inequality we used earlier, but it is
only a sufficient condition. It does not detect every strictly concave function.

1.2.9

Proving the Relationship Between Concavity and Tangent Lines

We will now present the formal reasoning of Lemma 1.21 and Theorem 1.22. We prove Lemma 1.21
by examining the difference between f(x) and its secants.

61

1.2.9 Proving the Relationship Between Concavity and Tangent Lines

Proof

Pick any b ̸= a on the graph y = f(x). The tangent line to y = f(x) at (a, f(a)) has equation
y = f(a)+f ′(a)(x−a). We will first show that (b, f(b)) does not lie above the tangent line by showing
that f(b) ≤ f(a) + f ′(a)(b− a).

Consider the case that b > a. Denote the secant from (a, f(a)) to (b, f(b)) by the equation y = s(x)
and let g(x) = s(x) − f(x). The region below y = f(x) is convex, so y = s(x) is below y = f(x)
for any x between a and b. Their difference, g(x), is less than or equal to 0 on this interval. By the
contrapositive of Lemma 1.2 we know g′(a) cannot be greater than 0.

s′(a) is the slope of the secant:
f(b)− f(a)

b− a
. We substitute this into g′(a) ≤ 0 and solve.

g′(a) ≤ 0

s′(a)− f ′(a) ≤ 0 (sum rule)

f(b)− f(a)

b− a
− f ′(a) ≤ 0 (substitute)

f(b)− f(a)− f ′(a)(b− a) ≤ 0 (b− a > 0)

f(b) ≤ f(a) + f ′(a)(b− a)

We conclude that (b, f(b)) does not lie above the tangent line.

Now we must also show it does not lie on the tangent line. This is easiest with a contradiction
argument. Suppose some (b, f(b)) lies on the tangent line at a. Then consider any c between a and b.
(c, f(c)) also does not lie above tangent line by the argument we gave for b. However, the secant from
(a, f(a)) to (b, f(b)) is part of the tangent line, and (c, f(c)) lies above this by the definition of strict
concavity. This is a contradiction. Thus there is no (b, f(b)) that lies on the tangent line.

The case where b < a can be proved with a similar argument. We conclude that (b, f(b)) lies below
the tangent line to y = f(x) at (a, f(a)).

y = f(x)

y = s(x)

(a, f(a))

(b, f(b))

x

y

Figure 1.22: A tangent line and a secant to a concave function

Theorem 1.22 is an “if and only if” statement, so it requires two arguments to prove. We must
show that if f is strictly concave, then its graph lies below its tangent lines. We must also show that if

62

its graph lies below its tangent lines, then it is strictly concave. Fortunately, Lemma 1.21 has already
shown that if f(x) is strictly concave, then y = f(x) lies below the tangent line at a.

Proof

Suppose we know f is concave. For each a in the domain of f , Lemma 1.21 states that y = f(x) lies
below its tangent line at a. Since this holds for all a, y = f(x) lies below all of its tangent lines.

Now suppose that we know y = f(x) lies below all its tangent lines. We will verify that the region
under y = f(x) is strictly convex. Let a and b be any points in the domain of f . Let c be any point
between them. We know that (a, f(a)) and (b, f(b)) both lie below the tangent line to y = f(x) at
(c, f(c)). Thus the tangent line lies above the entire secant between (a, f(a)) and (b, f(b)). (c, f(c))
is on this tangent line, so (c, f(c)) is above the secant as well.

Since this argument holds for any such c, we conclude that the entire graph between a and b lies
above the secant. Since this is true for any choice of a and b, we conclude that the region below
y = f(x) is strictly convex and f(x) is a strictly concave function.

y = f(x)

(a, f(a))
(c, f(c))

(b, f(b))

x

y

Figure 1.23: A secant with both endpoints below the tangent line at (c, f(c))

1.2.10

Non-Strict Concavity and Convexity

We have primarily worked with strictly concave functions, because they give the strongest results
about maximizers. The properties of non-strict concavity and convexity give similar results. The results
for convexity are obtained by flipping the directions of inequalities. They are probably not worth mem-
orizing. On the other hand, economists frequently need to work with non-strictly concave functions. It
is worth understanding how utility maximization works for these.

Graphs of non-strictly concave functions can intersect their own tangent lines. For instance, a linear
function is concave, and its graph is identical to its tangent line. While the graph of a concave function
can intersect the tangent lines, it cannot go above them.

63

1.2.10 Non-Strict Concavity and Convexity

Variants of Lemma 1.21

Let f(x) be a function on a convex domain.

1 If f(x) is a concave function that is differentiable at a, then the graph y = f(x) has no points
above its tangent line at (a, f(a)).

2 If f(x) is a strictly convex function that is differentiable at a, then the rest of the graph y = f(x)
lies above its tangent line at (a, f(a)).

3 If f(x) is a convex function that is differentiable at a, then the graph y = f(x) has no points
below its tangent line at (a, f(a)).

The proof for non-strict concavity is identical to the proof for strict concavity, with the contradiction
argument omitted. The necessary and sufficient conditions are unsurprising.

Variants of Theorem 1.22

Let f(x) be a differentiable function on a convex domain.

1 f(x) is concave if and only if the graph y = f(x) has no points above any of its tangent lines.

2 f(x) is strictly convex if and only if the graph y = f(x) lies above each of its tangent lines (except
at the point of tangency).

3 f(x) is convex if and only if the graph y = f(x) has no points below any of its tangent lines.

These results can also be extended to well-behaved non-differentiable functions. For instance, what-
ever “tangent lines” you might reasonably add to the function in Figure 1.16 will not stray below the
graph. Rigorously defining tangent lines in these situations would require a detailed argument involving
limits, so we will not pursue it here.

The variants of Lemma 1.21 give rise to their own corollaries about maximizers and minimizers.

64

Variants of Corollary 1.23

1 If f(x) is a concave function and f ′(x∗) = 0, then x⃗∗ is a global maximizer (but other points may
be as well).

2 If f(x) is a strictly convex function and f ′(x∗) = 0, then x⃗∗ is the unique global minimizer of f .

3 If f(x) is a convex function and f ′(x∗) = 0, then x⃗∗ is a global minimizer (but other points may
be as well).

(x∗, f(x∗))

x1

x2

Figure 1.24: A global but non-unique maximizer of a not strictly concave function

Finally, we can use the Variants of Theorem 1.22 to produce second-derivative tests for the other
forms of concavity and convexity.

Variants of Theorem 1.24

1 If f is a function on a convex domain D ⊂ R and f ′′(x) ≤ 0 for all x in D, then f(x) is concave.

2 If f is a function on a convex domain D ⊂ R and f ′′(x) > 0 for all x in D, then f(x) is strictly
convex.

3 If f is a function on a convex domain D ⊂ R and f ′′(x) ≥ 0 for all x in D, then f(x) is convex.

In the non-strict case, the condition is necessary as well as sufficient.

65

1.2.10 Non-Strict Concavity and Convexity

Corollary 1.25

A twice differentiable function f(x) on a convex domain D is concave, if and only if f ′′(x) ≤ 0 for all
x in D.

The sufficiency of f ′′(x) ≤ 0 is found in the preceding variant. We establish necessity with a
contrapositive argument. It should look familiar to anyone who read our proof of Theorem 1.24. Notice
that it is making a local rather than a global argument.

Proof

Suppose f ′′(x) ≤ 0 for all x. A variant of Theorem 1.24 tells us that f is concave.

On the other hand, suppose f ′′(a) > 0 for some a. First note than since f ′′(x) exists, f is a
differentiable function. Let y = ℓ(x) be the tangent line to y = f(x) at a. Consider g(x) = f(x)−ℓ(x).
We know the following about g:

g′′(a) = f ′′(a)− ℓ′′(a) > 0, since ℓ′′(x) = 0.

g′(a) = f ′(a)− ℓ′(a) = 0, since the derivative is the slope of the tangent line.

g(a) = 0, since f(a) = ℓ(a).

Thus by a variant of the (local) second-order condition, Theorem 1.5, a is a strict local minimizer of g,
meaning g(x) > g(a) = 0 for all x in a neighborhood of a. Thus y = f(x) lies above y = ℓ(x) in this
neighborhood. By a variant of Theorem 1.22, f is not concave.

The contrapositive of this argument is that if f is concave, then there is no a such that f ′′(a) > 0.
Equivalently, f ′′(x) ≤ 0 for all x.

This result means that we not only have a way to show that f(x) is concave, but also that it is not
concave. If f ′′(a) > 0 for any a, then f is not a concave function.

1.2.11

Section Summary

The most important definitions and results from this section were

The definition of a (strictly) convex region (Definitions 1.12 and 1.14)

The definition of a (strictly) concave function (Definitions 1.16 and 1.17)

The inequality condition for concave functions (Theorem 1.19)

The tangent line condition for strictly concave functions (Theorem 1.22)

66

The sufficient condition for a maximizer using strict concavity (Corollary 1.23)

The second derivative tests for strictly concave and concave functions (Theorem 1.24 and Corollary
1.25)

Here is a summary of which conditions and statements from this section imply which others. Some
of these conditions only apply to differentiable, or even twice differentiable functions.

If f differentiable
(twice if relevant)

(1− t)f(a) + tf(b) < f((1− t)a+ tb) (1− t)f(a) + tf(b) ≤ f((1− t)a+ tb)

f strictly concave f concave

y = f(x) below tangent lines y = f(x) not above tangent lines

f ′′(x) < 0 f ′′(x) ≤ 0

critical points are unique maximizers critical points are maximizers

Figure 1.25: Conditions and applications of concave functions

67

1.3

Multivariable Optimization

Goals:

1 Apply the first- and second-order conditions to multivariable functions

2 Calculate the Hessian of a function

3 Understand the definition and significance of positive or negative definite matrices

4 Test whether a matrix is positive or negative definite

5 Show that a multivariable function is strictly concave

1.3.1

Parametrizations and Compositions

In this section we develop conditions to find maximizers of multivariable functions. Our optimization
methods so far rely on using rates of change to compare a potential maximizer to the points around it.
This is a more daunting task in the multivariable situation, because the comparison points can lie in any
direction. The function can be changing differently depending on which direction we travel. We avoid
the need to develop now tools from scratch by considering paths through a potential maximizer a⃗.

A path through a⃗ is a function x⃗(t) such that for some t0, x⃗(t0) = a⃗. We can think of the variable
t as representing time. Then x⃗(t) represents the position on our path at time t.

A path breaks down into coordinate functions

x⃗(t) = (x1(t), x2(t), . . . , xn(t))

If these are differentiable, the derivative

x⃗′(t) = (x′
1(t), x

′
2(t), . . . , x

′
n(t))

represents the instantaneous rate of change in position of x⃗ with respect to t. It is tangent to the
path. In physics it is called the velocity vector.

68

Figure 1.26: A path and its tangent vector

We will study a function f(x⃗) by studying compositions of the form f(x⃗(t)). At each value of t, we
compute the corresponding position on the path and then evaluate f at that position. Geometrically,
this is the height of the graph y = f(x⃗) above the curve x⃗(t).

Figure 1.27: The graph of the composition f(x⃗(t)) and the corresponding points in the original graph
y = f(x⃗)

The derivative of f(x⃗(t)) with respect to t is computed using the multivariable chain rule.

69

1.3.1 Parametrizations and Compositions

Theorem 0.18

Suppose f(x⃗) is an continuously differentiable n-variable function. If x⃗(t) is a differentiable path, then
the derivative of the composition f(x⃗(t)) with respect to t is

df

dt
(t) = ∇f(x⃗(t)) · x⃗′(t)

or
df

dt
(t) =

n∑
i=1

fi(x⃗(t))x
′
i(t)

As with single-variable optimization, the sign of a derivative is important to our arguments. We can
obtain the sign of df

dt visually, using the following fact about dot products.

The Sign of the Dot Product

Given nonzero vectors u⃗ and v⃗, the sign of u⃗ · v⃗ is

positive if u⃗ and v⃗ make an acute angle
zero if u⃗ and v⃗ are orthogonal

negative if u⃗ and v⃗ make an obtuse angle

The angle between ∇f and x⃗′(t) determines the sign of df
dt . This indicates whether f(x⃗) increases

or decreases as x⃗ travels along the path x⃗(t).

Figure 1.28: The tangent line to the graph y = f(x⃗(t)) and the angle between ∇f(x⃗(t)) and x⃗′(t)

70

The value of df
dt is realized geometrically as the slope of the tangent line to the graph of the

composition function: y = f(x⃗(t)).

Using compositions to find maximizers has two main consequences. The first is helpful. The second
creates difficulties.

1 f(x⃗(t)) is a one-variable function. No matter the dimension of x⃗, we can graph y = f(x⃗(t)) in
the ty-plane and look for maximizers there.

2 One path will not cover the whole domain of f(x⃗). We have to study many different paths x⃗(t),
if we want to compare a potential maximizer to every other point in the domain.

We could study all paths in the domain of f , but that would be needlessly difficult. Instead we
restrict ourselves to paths that are lines. We will express these lines using the following notation.

Notation

Every line has a direction vector v⃗ = (v1, v2, . . . , vn). A line through a⃗ in the direction of v⃗ has the
equation

x⃗(t) = a⃗+ tv⃗

In a convex domain, any two values f (⃗a) and f (⃗b) can be attained as values of the composition

f (⃗a + tv⃗), where v⃗ = b⃗ − a⃗. If we want to compare these values (for instance to argue that a⃗ is or is
not a maximizer), we compare f (⃗a+ 0v⃗) and f (⃗a+ 1v⃗).

Lemma 1.26

Suppose f(x⃗) has a convex domain. A point a⃗ is a (local or global) maximizer, if and only if 0 is a
(local or global) maximizer of f (⃗a+ tv⃗) for all direction vectors v⃗.

This lemma tells us that a necessary condition for 0 to be a maximizer of f (⃗a + tv⃗) for all v⃗ is
a necessary condition for a⃗ to be a maximizer of f(x⃗). Similarly, a sufficient condition for 0 to be a
maximizer of f (⃗a+ tv⃗) for all v⃗ is a sufficient condition for a⃗ to be a maximizer of f(x⃗).

The compositions f (⃗a + tv⃗) are realized as cross sections of the graph y = f(x⃗) above the line
x⃗(t) = a⃗+ tv⃗.

71

1.3.1 Parametrizations and Compositions

Figure 1.29: The graph of a two-variable function and its cross section over a line

1.3.2

The Multivariable First-Order Condition

Our starting point for multivariable optimization is Lemma 1.26. a⃗ is a local maximizer or minimizer
of f(x⃗), if and only if 0 is a local maximizer or minimizer of f (⃗a+ tv⃗) for all vectors v⃗. A condition on
the compositions f (⃗a+ tv⃗) at t = 0 becomes a condition on a⃗.

The first-order condition on f (⃗a+ tv⃗) at t = 0 is

df

dt
(0) = 0

∇f (⃗a+ 0v⃗) · v⃗ = 0

∇f (⃗a) · v⃗ = 0

If a⃗ is a local maximizer, this must hold for all directions v⃗. There is only one value of ∇f (⃗a) that
satisfies this requirement.

Theorem 1.27 [The Multivariable First-Order Condition]

Suppose a⃗ lies in the domain of f(x⃗). If a⃗ is a local maximizer or minimizer of f , then either ∇f (⃗a) = 0⃗
or ∇f (⃗a) does not exist.

Like in the single variable case, we call points where ∇f(x⃗) is 0⃗ or undefined critical points. Finding
critical points is often the first step in a multivariable optimization.

72

Remark

If a⃗ lies at the boundary of the domain, then it may not be possible to travel in all directions v⃗ from
a⃗ and still evaluate f (⃗a + tv⃗). Fortunately, the first-order condition still holds. If ∇f (⃗a) exists, then
the partial derivatives fi(⃗a) exist. Thus f (⃗a + he⃗i) exists for h near 0. That means we can at least
travel in the standard basis directions from a⃗ without immediately leaving the domain of f(x⃗). At a
local maximizer, the derivatives in these directions must be 0.

1.3.3

Computing Critical Points

What does the multivariable first-order condition say about f(x1, x2) = x4
1 − 4x1x2 + x4

2?

Solution

We compute the gradient vector by taking the partial derivatvies with respect to x1 and x2.

∇f(x⃗) = (f1(x⃗), f2(x⃗))

= (4x3
1 − 4x2, 4x1 + 4x3

2)

This is never undefined, so we solve for where it is (0, 0).

4x3
1 − 4x2 = 0 −4x1 + 4x3

2 = 0

x3
1 = x2 (solve for x2)

−4x1 + 4x9
1 = 0 (substitute)

4x1(x
8 − 1) = 0 (factor)

x1 = 0 or ± 1

Subsituting back into x3
1 = x2 gives lets us solve for the corresponding values of x2. We obtain the

critical points (0, 0), (1, 1) (−1,−1). We conclude that no point other than (0, 0), (1, 1) (−1,−1) can
be a local maximizer or a local minimizer. We cannot conclude whether each of these points is a local
maximizer, a local minimzer or neither.

73

1.3.4

The Second Derivative of a Composition

We would also like to apply the local or global second-order condition along each line. In order to

do this, we need a way to compute d2

dt2 f (⃗a+ tv⃗). The chain rules allows us to write the first derivative
as a dot product, or a sum. We will write it as a sum.

d

dt
f (⃗a+ tv⃗) =

n∑
i=1

fi(⃗a+ tv⃗)vi

To obtain the second derivative we differentiate both sides. We differentiate each term of the sum. We
can treat each vi as a constant multiple, but fi(⃗a + tv⃗) is a composition of functions. The derivative
of each term will need the chain rule. We again write this as a sum, using a different index variable to
avoid ambiguity. The partial derivatives of fi are fij .

d2

dt2
f (⃗a+ tv⃗) =

d

dt

n∑
i=1

fi(⃗a+ tv⃗)vi

d2

dt2
f (⃗a+ tv⃗) =

n∑
i=1

d

dt
(fi(⃗a+ tv⃗)) vi

d2

dt2
f (⃗a+ tv⃗) =

n∑
i=1

 n∑
j=1

fij (⃗a+ tv⃗)vj

 vi

d2

dt2
f (⃗a+ tv⃗) =

n∑
i=1

n∑
j=1

fij (⃗a+ tv⃗)vjvi

We could use this formula to compute the second derivative of a particular composition f (⃗a+ tv⃗). We
could test whether it is positive or negative. What we need, though, is to test the sign of the second
derivative for all direction vectors v⃗. While this is possible in small dimensions, leaving the vi as variables,
the algebra quickly becomes daunting as n increases.

1.3.5

The Hessian Matrix

A theorem in linear algebra provides a shortcut. To do linear algebra, we need to write our vectors
like matrices.

74

Point Form and Column Form

When we want to emphasize that a vector x⃗ represents a point in Rn, we write it as x⃗ = (x1, x2, . . . xn).
If we want to do matrix multiplication, we can write it as a column vector:

x⃗ =

x1

x2

...
xn

The expression

d2

dt2
f (⃗a+ tv⃗) =

n∑
i=1

n∑
j=1

fij (⃗a+ tv⃗)vjvi

that we obtained can be written as a matrix product.

[
v1 v2 · · · vn

]

f11(⃗a+ tv⃗) f12(⃗a+ tv⃗) · · · f1n(⃗a+ tv⃗)

f21(⃗a+ tv⃗) f22(⃗a+ tv⃗) · · · f2n(⃗a+ tv⃗)
...

...
...

fn1(⃗a+ tv⃗) fn2(⃗a+ tv⃗) · · · fnn(⃗a+ tv⃗)

v1

v2
...

vn

You may want to convince yourself that this algebra is correct with a 2 or 3 dimensional example.
What do we make of the individual factors in this product? The vectors on either end of this expression
are just v⃗ and its transpose (v⃗ flipped sideways). The matrix in the middle seems important. We should
have a name for it.

Definition 1.28

Given a function f(x⃗) of n variables, the Hessian is a n×n matrix function of x⃗ whose entries are the
second partial derivatives of f at x⃗. Its formula is

Hf(x⃗) =

f11(x⃗) f12(x⃗) · · · f1n(x⃗)

f21(x⃗) f22(x⃗) · · · f2n(x⃗)
...

...
...

fn1(x⃗) fn2(x⃗) · · · fnn(x⃗)

Notice that for well-behaved functions, fij = fji. This means the Hessian will be a symmetric
matrix.

75

1.3.6

Negative Definite Matrices

Our Hessian notation allows us to write
d2

dt2
f (⃗a+ tv⃗) = v⃗THf (⃗a+ tv⃗)v⃗. The following vocabulary

captures exactly which Hessian matrices will produce a negative (or positive) second derivative in all
directions.

Definition 1.29

A symmetric n× n matrix M is negative definite, if for all nonzero n-vectors v⃗,

v⃗TMv⃗ < 0.

It is positive definite, if for all nonzero n-vectors v⃗,

v⃗TMv⃗ > 0.

Remark

We may think, based on positive and negative numbers, that most matrices are either positive definite
or negative definite. In fact, a randomly chosen matrix is most likely to be neither. For most matrices,
v⃗TMv⃗ is positive for some v⃗ and negative for others.

Connecting this back to our original goal, we can apply the definition of negative definite to describe
the sign of the second derivatives of the compositions f (⃗a+ tv⃗). For a critical point a⃗, we can draw the
following conclusions.

If Hf (⃗a) is negative definite, then d2f
dt2 (0) < 0 for all v⃗. Since df

dt (0) = 0, t = 0 satisfies the
second-order condition for all v⃗. We conclude a⃗ is a strict local maximizer of f .

If Hf(x⃗) is negative definite for all x⃗, then d2f
dt2 (t) < 0 for all t and all v⃗. Since df

dt (0) = 0, t = 0
satisfies the global second-order condition for all v⃗. We conclude a⃗ is the unique global maximizer
of f .

Without an efficient way to test whether a matrix is negative definite, we have only managed to
restate the problem. We can say that we are checking whether Hf (⃗a) is negative definite, or we can

say that we are checking whether
n∑

i=1

n∑
j=1

fij (⃗a)vjvi < 0 for all v1, v2, . . . , vn. The computations are

the same, and they are daunting.

Fortunately, there is an easier way to show that a matrix is negative or positive definite.

76

Theorem 1.30

A symmetric n×n matrix M is negative definite if the upper left square minors Mi have determinants
that satisfy the alternating condition:

(−1)i|Mi| > 0 for all 1 ≤ i ≤ n

Example

For a 4× 4 matrix, here are the Mi and what we would check to apply Theorem 1.30.

· · · ·
· · · ·
· · · ·
· · · ·

 |M1| < 0

|M2| > 0

|M3| < 0

|M4| > 0

Variant of Theorem 1.30

A n× n matrix M is positive definite if the upper left square minors have positive determinants.

1.3.7

The Multivariable Second-Order Conditions

Now that we have a check for negative definite and positive definite matrices, it is worth stating
the results of our investigation as theorems. These are our most important sufficient conditions for a
maximizer of a multi-variable function.

77

1.3.7 The Multivariable Second-Order Conditions

Theorem 1.31 [The Multivariable Second-Order Condition]

Given a function f(x⃗) with a⃗ it its domain. If

∇f (⃗a) = 0⃗

Hf (⃗a) is negative definite

then a⃗ is a strict local maximizer of f .

Theorem 1.32 [The Multivariable Global Second-Order Condition]

Suppose f is a function with a convex domain D and x⃗∗ is in D. If

∇f(x⃗∗) = 0⃗

Hf(x⃗) is negative definite for all x⃗ ∈ D.

then x⃗∗ is the only critical point of f and the unique global maximizer.

We can summarize the reasoning behind the global second-order condition as follows:

Hf(x⃗) is negative definite
for all x⃗

d2

dt2 f(x⃗
∗ + tv⃗) < 0 for

all directions v⃗

∇f(x⃗∗) = 0⃗

df
dt (0) = 0 along
all lines x⃗∗ + tv⃗

0 is the global maximizer
of f(x⃗∗ + tv⃗) for all directions v⃗

x⃗∗ is the global maximizer of f(x⃗)

These theorems have variants for minimizers.

78

Variants of Theorems 1.31 and 1.32

Suppose f is a function with domain D and a⃗ is in D.

1 If

∇f (⃗a) = 0⃗

Hf (⃗a) is positive definite

then a⃗ is a strict local minimizer of f .

2 If D is convex and

∇f (⃗a) = 0⃗

Hf(x⃗) is positive definite for all x⃗ in D

then a⃗ is the only critical point of f and the unique global minimizer.

Minor determinants with the wrong sign produce the wrong sign of v⃗TMv⃗ for some v⃗. This in turn
means the wrong second derivative in the direction of v⃗. This relationship is formalized in the following
necessary condition.

Corollary 1.33

Let f(x⃗) be a twice-differentiable function on a convex domain D. Let M = Hf (⃗a).

1 If a⃗ is a local maximizer, then

(−1)i|Mi| ≥ 0 for all 1 ≤ i ≤ n.

2 If a⃗ is local minimizer, then
|Mi| ≥ 0 for all 1 ≤ i ≤ n.

1.3.8

Applying the Multivariable Second-Order Condition

Let f(x1, x2, x3) = 3 3
√
x1x3+lnx2−x1

4 −x2

5 −2x3+15 on the domainD = {(x1, x2, x3) : x1, x2, x3 >
0}. Find the critical point of f . What does the Global Second-Order Condition say about this point?

79

1.3.8 Applying the Multivariable Second-Order Condition

Solution

We take all three partial derivatives of f . Since they are always defined on D, the gradient vector exists,
so the critical points must be where they all equal 0.

3
√
x3

3
√
x2
1

− 1

4
= 0

1

x2
− 1

5
= 0

3
√
x1

3
√
x2
3

− 2 = 0

3
√
x3

3
√
x2
1

=
1

4

1

x2
=

1

5

3
√
x1

3
√

x2
3

= 2

3
√
x3 =

3
√
x2
1

4
x2 = 5

16 3
√
x1

3
√

x4
1

= 2

16

x1
= 2

8 = x1

3
√
x3 =

3
√
82

4

x3 = 1

The critical point is (8, 5, 1). We compute the Hessian by taking the second partial derivatives of f .

Hf(x1, x2, x3) =

− 2 3

√
x3

3 3
√

x5
1

0 1

3 3
√

x2
1x

2
3

0 − 1
x2
2

0
1

3 3
√

x2
1x

2
3

0 − 2 3
√
x1

3 3
√

x5
3

To check that Hf(x⃗) is negative definite for all x⃗, we apply Theorem 1.30. There are three determinants
to calculate.

(−1)1|M1| = (−1)

∣∣∣∣∣− 2 3
√
x3

3 3
√
x5
1

∣∣∣∣∣ = 2 3
√
x3

3 3
√

x5
1

(−1)2|M2| = (1)

∣∣∣∣∣ − 2 3
√
x3

3 3
√

x5
1

0

0 − 1
x2
2

∣∣∣∣∣ = 2 3
√
x3

3x2
2

3
√

x5
1

(−1)3|M3| = −|Hf(x1, x2, x3)|

= −

((
−
2 3
√
x3

3 3
√
x5
1

)∣∣∣∣∣ − 1
x2
2

0

0 − 2 3
√
x1

3 3
√

x5
3

∣∣∣∣∣− 0 +

(
1

3 3
√
x2
1x

2
3

)∣∣∣∣∣ 0 − 1
x2
2

1

3 3
√

x2
1x

2
3

0

∣∣∣∣∣
)

=
4

9x2
2

3
√
x4
1x

4
3

− 1

9x2
2

3
√
x4
1x

4
3

=
1

3x2
2

3
√
x4
1x

4
3

80

Since x1, x2 and x3 are all positive in this domain, so are these three quantities. We conclude that
Hf(x1, x2, x3) is negative definite. By the global second-order condition, we conclude that (8, 5, 1) is
the only critical point (which we already knew from the FOC) and that it is the unique maximizer of f .

1.3.9

The Hessian and Concavity

Linear compositions play well with secants. The height of the secant above each t is the same
whether we are looking in ty-plane or in Rn+1. We can state this relationship formally as a lemma.

Lemma 1.34

If y = s(t) is a secant of y = f (⃗a+ tv⃗), then

x⃗(t) = a⃗+ tv⃗

y(t) = s(t)

is a secant of y = f(x⃗).

Figure 1.30: A secant of y = f (⃗a+ tv⃗) and the corresponding secant of y = f(x⃗) over x⃗(t) = a⃗+ tv⃗

We determine whether a function f(x⃗) is concave by whether its graph lies above its secant lines.
Every such secant line lies above some line a⃗+ tv⃗. This secant stays below the graph y = f(x⃗), if and
only if the corresponding secant stays below y = f (⃗a+ tv⃗).

81

1.3.9 The Hessian and Concavity

Lemma 1.35

A function f(x⃗) on a convex domain is concave, if and only if f (⃗a+ tv⃗) is concave for every a⃗ in the
domain of f and every direction vector v⃗.

f (⃗a+ tv⃗) is concave
for all lines a⃗+ tv⃗

y = f (⃗a+ tv⃗) lies above
its secants (t, s(t))
for all lines a⃗+ tv⃗y = f(x⃗) lies above the secants

x⃗(t) = a⃗+ tv⃗
y(t) = s(t)

for all lines a⃗+ tv⃗
f(x⃗) is concave

Def 1.16

Cor 1.34

Def 1.16

Variants of Lemma 1.35

Suppose f(x⃗) is a function on a convex domain

1 f(x⃗) is strictly concave if and only if f(x⃗(t)) is strictly concave for every line x⃗(t) in the domain
of f .

2 f(x⃗) is convex if and only if f(x⃗(t)) is convex for every line x⃗(t) in the domain of f .

3 f(x⃗) is strictly convex if and only if f(x⃗(t)) is strictly convex for every line x⃗(t) in the domain of
f .

The result of this lemma is that any test for concavity or convexity of the single-variable compositions
f (⃗a + tv⃗) becomes a test for the concavity of f(x⃗) itself. If every composition passes, then f does.
If at least one composition fails, then so does f . Our natural next step is to take our theorems from
single-variable concavity and apply them to these compositions,

Theorem 1.22 showed that the graphs single-variable strictly concave functions lie below their tangent
lines. Tangent lines to a composition have the same heights as the tangent lines of the multivariable
graph. We can formalize this relationship with a lemma.

Lemma 1.36

If the line y = ℓ(t) is tangent to y = f (⃗a+ tv⃗), then

x⃗(t) = a⃗+ tv⃗

y(t) = ℓ(t)

is a tangent line to y = f(x⃗).

82

Figure 1.31: A tangent line of y = f (⃗a+ tv⃗) and the corresponding tangent line of y = f(x⃗) over
x⃗(t) = a⃗+ tv⃗

We can check whether tangent lines lie above or below a graph y = f(x⃗) by checking whether
tangent lines lie above or below the compositions y = f (⃗a+ tv⃗).

Theorem 1.37 [Multivariable version of Theorem 1.22]

A differentiable function f on a convex domain is strictly concave if and only if the graph y = f(x⃗) lies
below each of its tangent lines (except at the point of tangency).

y = f(x⃗) lies below
its tangent lines.

y = f (⃗a+ tv⃗) lies below all
its tangent lines for any a⃗+ tv⃗.

f (⃗a+ tv⃗) is strictly concave
for any a⃗+ tv⃗

f(x⃗) is strictly concave

Cor 1.36

Thm 1.22

Lem 1.35

This theorem allows us to update our corollary on critical points of strictly concave functions.

Corollary 1.38 [Multivariable Version of Corollary 1.23]

If x⃗∗ is a critical point of a differentiable, strictly concave function f(x⃗), then it is the only critical
point and is the unique global maximizer.

83

1.3.9 The Hessian and Concavity

We can also use compositions to update our theorems about second derivatives and concavity.

Theorem 1.39 [Multivariable Version of Theorem 1.24]

If f is a function on a convex domain D ⊂ Rn and d2

dt2 f (⃗a + tv⃗) < 0 for all lines a⃗ + tv⃗ in D, then
f(x⃗) is strictly concave.

Corollary 1.40 [Multivariable Version of Corollary 1.25]

A twice differentiable function f(x⃗) on a convex domain D is concave, if and only if d2

dt2 f (⃗a+ tv⃗) ≤ 0
on all lines a⃗+ tv⃗ in D.

As we have seen, the sign of these second derivatives depends on the Hessian matrix. This gives us
our most useful computational test for the concavity of a multivariable function.

Theorem 1.41

Let f(x⃗) be a twice-differentiable function on a convex domain D. If Hf(x⃗) is negative definite for all
x⃗ in D, then f is strictly concave.

This means that concavity plays the same role in multivariable optimization as in single-variable
optimization. For some functions, we can identify a maximizer by concavity even though they do not
satisfy the second-order condition. On the other hand, the most convenient way to identify concave
functions is still the second derivatives.

84

1.3.10

Negative Semi-Definite Matrices

Changing the condition f ′′(x) < 0 to f ′′(x) ≤ 0 was a natural approach to generalizing Theorem
1.24. As a bonus, we obtained Corollary 1.25, which is both a necessary and sufficient condition
for concavity. The same is possible for multivariable functions, but the condition on the Hessian is
surprisingly complicated.

We might expect the multivariable analogue to be that (−1)i|Mi| ≥ 0 for each i. Consider a
function like f(x1, x2, x3) = x2

3. In the x3 direction this function is a parabola which is strictly convex.
Unfortunately, its Hessian passes our expected test for concavity.

Hf(x1, x2, x3) =

 0 0 0
0 0 0
0 0 2

 .

This has |Mi| = 0 for each i. The determinant cannot detect the curvature of later variables, if the
earlier variables produce a row of zeroes in Hf(x⃗). Our expected test is not a correct test. To avoid
this problem, we must consider different orders of variables. Which orders? All of them.

Theorem 1.42

Let f(x⃗) be a twice-differentiable function on a convex domain D ⊆ Rn. let σ be any reordering of
the coordinates of Rn. Let σM = Hf(σx⃗).

1 f is concave if and only if

(−1)i|σMi| ≥ 0 for all σ and all 1 ≤ i ≤ n.

If so, then v⃗THf(x⃗)v⃗ ≤ 0 for all nonzero v⃗. We say Hf(x⃗) is negative semidefinite

2 f is convex if and only if

|σMi| ≥ 0 for all σ and all 1 ≤ i ≤ n.

If so, then v⃗THf(x⃗)v⃗ ≥ 0 for all nonzero v⃗. We say Hf(x⃗) is positive semidefinite

To give a sense of the amount of computation required, we will consider an example. Suppose

Hf(x⃗) =

 0 2 5
2 −6 0
5 0 −3

 .

We check the determinants

|M1| = |0| ≤ 0 |M2| =
∣∣∣∣ 0 2
2 −6

∣∣∣∣ ≥ 0 |M3| =

∣∣∣∣∣∣
0 2 5
2 −6 0
5 0 −3

∣∣∣∣∣∣ ≤ 0

85

1.3.10 Negative Semi-Definite Matrices

But then we must do the same for all possible reorderings of x1, x2 and x3 meaning we must check
the same three minors for each of 0 2 5

2 −6 0
5 0 −3

original Hf(x⃗)

 −6 2 0
2 0 5
0 5 −3

σ switches x1 and x2

 −3 0 5
0 −6 2
5 2 0

σ switches x1 and x3

 0 5 2
5 −3 0
2 0 −6

σ switches x2 and x3

 −6 0 2
0 −3 5
2 5 0

σ : (x1, x2, x3) 7→ (x2, x3, x1)

 −3 5 0
5 0 2
0 2 −6

σ : (x1, x2, x3) 7→ (x3, x1, x2)

This is a significant amount of work, though linear algebra knowledge lets us avoid some. For
instance, all the |σM3| are equal. As the dimension increases, there are more symmetries to exploit.
With these shortcuts, the main driver in complexity is computing the n×n determinant, not the number
of re-ordered smaller determinants. Checking whether a matrix is negative semidefinite takes about twice
as many operations as checking that it is negative definite.

1.3.11

Section Summary

The most important definitions and results from this section were

The multivariable first-order condition (Theorem 1.27)

The Hessian matrix (Definition 1.28)

Positive and negative definite (Definition 1.29)

The determinant test for a negative definite matrix (Theorem 1.30)

The multivariable global second-order condition (Theorem 1.32)

The Hessian test for strict concavity (Theorem 1.41)

Here is a summary of which conditions and statements from this section imply which others.

86

Hf(x⃗) negative
definite for all x⃗Hf(x⃗) negative semi-

definite for all x⃗
Hf (⃗a) negative

definite

f is strictly concave

f is concave

a⃗ is the
unique global max

and only critical pointa⃗ is a
global max

a⃗ is a strict
local max

∇f (⃗a) = 0⃗

∇f (⃗a) = 0⃗

Hf (⃗a) negative
semidefinite

Thm 1.41

Thm 1.42

SOC

GSOC

GSOC

FOCFOC Thm 1.33Thm 1.33

Figure 1.32: Relationships between the conditions of multivariable optimization

87

1.3.11 Section Summary

88

Chapter 2

Constrained Optimization

2.1

Equality Constraints

Goals:

1 Use logic to reason about the effects of a constraint on optimization problems.

2 Visually identify maximizers and minimizers using level sets.

3 Compute the maximizer subject to an equality constraint using the Lagrangian.

4 Use paths and the chain rule to understand the reasoning behind the Lagrangian.

2.1.1

Constrained Optimization

Given a function f(x⃗) with domain D, we have so far performed unconstrained optimization, trying
to compute

max
x⃗∈D

f(x⃗) or min
x⃗∈D

f(x⃗)

In a constrained optimization problem, we restrict our attention to a subset of the domain. For some
subset S ⊆ D, we want to know

max
x⃗∈S

f(x⃗) or min
x⃗∈S

f(x⃗)

A maximizer in S is a vector a⃗ such that f (⃗a) ≥ f(x⃗) for all x⃗ ∈ S. Geometrically, it is the highest
point on the part of the graph y = f(x⃗) that lies above S. In constrained optimization, the function we
are maximizing is called a objective function. The set S is called the feasible set.

The notation above is flexible enough to apply to many different kinds of constraints, producing
many different kinds of subset S.

Figure 2.1: The graph y = f(x⃗) over a two-dimensional subregion S

90

Figure 2.2: The graph y = f(x⃗) over a curve S

Figure 2.3: The graph y = f(x⃗) over a finite set S

Constraints arise naturally in economics. Here are two familiar examples recast in the abstract form
that we just introduced.

Example

What is the maximum utility one can attain given a budget constraint?

max
x⃗∈S

u(x⃗)

where S is the set of purchases one can afford.

91

2.1.1 Constrained Optimization

Example

How cheaply can a firm produce 500 units?

min
x⃗∈S

c(x⃗)

Here, S is the set of inputs that produce 500 units.

Without knowing the specific nature of the constraint, we can still deduce some basic facts about
constrained optimization using logic and set theory.

Tightening a constraint can only reduce the value of the maximum.

Lemma 2.1

For a function f(x⃗) with domain D and a two subsets T ⊆ S ⊆ D,

max
x⃗∈T

f(x⃗) ≤ max
x⃗∈S

f(x⃗)

Sometimes finding a maximum over S is computationally easier than finding a maximum over T . If
we are lucky, the maximizer of f(x⃗) in S might also lie in T . We can apply the following reasoning.

Corollary 2.2

Suppose x⃗∗ is a maximizer of f(x⃗) over a set S. If T ⊆ S and x⃗∗ ∈ T then x⃗∗ is also a maximizer of
f(x⃗) over T and

max
x⃗∈T

f(x⃗) = max
x⃗∈S

f(x⃗)

Remark

Why do we make the distinction between the domain and a subset? If we want to constrain x⃗ to values
in S, we could redefine f to have a domain of S. This is generally not a good idea. We will want to
use the derivatives of f to solve constrained optimization problems. For example, we may need to know

lim
h→0

f (⃗a+ he⃗i)− f (⃗a)

h

If a⃗ is on the boundary of S and we declare everything outside S to no longer be in the domain of
f , then we may not be able to evaluate f (⃗a+ he⃗i) in a neighborhood of h = 0.

92

2.1.2

Equality Constraints and Level Sets

The first type of constraint we will examine is an equality constraint.

Definition 2.3

An equality constraint is a constraint of the form g(x⃗) = 0. With such a constraint we are solving

max
x⃗∈D

f(x⃗) subject to g(x⃗) = 0 or

max
x⃗∈S

f(x⃗) where S = {x⃗ ∈ D : g(x⃗) = 0}

To contrast g with the objective function f , we call it a constraint function.

Remark

We can rewrite any equation in the variables of x⃗ to have the form g(x⃗) = 0. For example:

x2 =
16

x1
=⇒ 16− x1x2 = 0

An equality constraint is an equation, a condition that a point can satisfy or fail to satisfy. In order
to maximize f among such points, we want to be able to visualize the entire set of points that satisfy
the constraint. Mathematics has a term for this set.

Definition 2.4

Given a function g(x⃗) a level set of g is the set of points that, for some number c, satisfy g(x⃗) = c.

Example

Given the function g(x1, x2) = x1x2, here are four different level sets of g:

{(x1, x2) : x1x2 = 9}
{(x1, x2) : x1x2 = 17.32}
{(x1, x2) : x1x2 = 0}
{(x1, x2) : x1x2 = −4}

93

2.1.2 Equality Constraints and Level Sets

Remark

Commonly, people refer to a level set by its defining equation, rather than using set notation. Thus “the
level set x2

1 + x2
2 = 16” refers to the set {(x1, x2) : x2

1 + x2
2 = 16}.

Level sets have several applications in economics you may be familiar with:

Example

If we are choosing to buy quantities x1 and x2 of goods priced at p1 and p2, then the goods we can buy
with a budget constraint I is the level set (often called a budget line):

p1x1 + p2x2 = I

Example

Given a utility function u(x1, x2), the level set u(x1, x2) = c is called an indifference curve. The
chooser will be equally happy with any point on the curve.

For a two-variable function, a level set is the intersection of the graph y = g(x1, x2) with a horizontal
plane y = c. These are often curves, so we call them level curves.

Figure 2.4: The level curves x1x2 = c

Notice that x1x2 = c is not always a curve. When c = 0, the level set is the x1- and x2-axes. At
the origin, this is two curves (lines) intersecting.

94

For a three-variable function, the level sets are called level surfaces because for most values of c,
they are 2-dimensional.

Figure 2.5: The level surfaces x2
1 + x2

2 + x2
3 = c

Notice x2
1 + x2

2 + x2
3 = 0 is not a surface, it is a point. x2

1 + x2
2 + x2

3 = −5 is the empty set.

It can be difficult to determine the shape and structure of a level set. A powerful mathematical
theorem can tell us when to expect good behavior.

Corollary 2.5 [Corollary to the Implicit Function Theorem]

Let g(x⃗) be a continuously differentiable function at a⃗. If a⃗ lies on the level set g(x⃗) = c and ∇g(⃗a) ̸= 0⃗,
then the level set g(x⃗) = c is a (n− 1)-dimensional shape in some neighborhood of a⃗. Specifically, it is
the graph of a differentiable function of n− 1 of the variables of Rn.

This means that for smooth functions we can generally expect the level set to be a space of one
dimension lower than the domain, except at the occasional points where ∇g(x⃗) = 0⃗. We can see this
in our previous examples.

For g(x1, x2) = x1x2 the nonempty level sets are curves, except for x1x2 = 0. Even x1x2 = 0
looks like a curve in any neighborhood that does not include (0, 0).

For g(x1, x2, x3) = x2
1 + x2

2 + x2
3 the nonempty level sets are surfaces (spheres), except for

x2
1 + x2

2 + x2
3 = 0

We will give an argument for this corollary once we have seen the implicit function theorem in chapter
4.

95

2.1.3

Finding the Maximizer and Minimizer Graphically

The level set g(x⃗) = 0 is obviously important to a constrained optimization problem. We can also
use level sets to understand the shape of the objective function. Level sets have the advantage that
they live in Rn, not Rn+1, making them easier to draw than the graph y = f(x⃗),

Consider the objective function f(x1, x2) = x2
1 + x2

2 subject to x2
1 − x2 − 4 = 0.

a What are the level curves of f(x1, x2)?

b How can we use a diagram of the level curves of f to argue that (1,−3) is not a local maximizer

or minimizer?

c Where do the local maximizer(s) and local minimizer(s) of f on x2
1 − x2 − 4 = 0 appear to lie?

d Are any of the local maximizers and minimizers also global maximizers or minimizer?

Solution

a The level sets have the form x2
1+x2

2 = c these are circles centered at the origin, with higher values

the farther from the origin we go.

b (1,−3) lies on the level set x2
1+x2

2 = 10. We can see from a sketch that the curve x2
1−x2−4 = 0

passes through this level set from higher values to lower values. Thus (1,−3) is not a local
maximizer or minimizer.

c (0,−4) appears to be a local maximizer, because x2
1 − x2 − 4 = 0 meets the x2

1 + x2
2 = 16 and

travels back to smaller-values in both directions. There also appear to be local minimizers in the
third and fourth quadrant where x2

1 − x2 − 4 = 0 touches a smallest level set and then travels
back to larger-valued level sets.

d There is no global maximizer. As we travel upwards in x2
1 −x2 − 4 = 0, we cross larger and larger

valued level sets. There is no upper bound to the values of f(x1, x2) that we can attain on the
constraint. On the other hand, the local minimizers are global minimizers. The only smaller-valued
level curves are inside that circle, and the constraint does not enter that region.

96

c = 1

c =?

c = 10

c = 16

c = 25

(1,−3)

global min global min

local max

x1

x2

Figure 2.6: Level curves of x2
1 + x2

2 and the level curve x2
1 − x2 − 4 = 0

Figure 2.7: The graph of y = x2
1 + x2

2 over the constraint x2
1 − x2 − 4 = 0

When the level set g(x⃗) = 0 crosses a level set f(x⃗) = c at a⃗, this usually means that it intersects

97

2.1.3 Finding the Maximizer and Minimizer Graphically

both larger-valued and smaller-valued level sets on either side. If it does, then a⃗ cannot be a local
maximizer or minimizer of f on the constraint.

Main Idea

We expect to find local maximizer and minimizers only where the level set g(x⃗) = 0 is tangent to a level
set of f .

We can base our intuition on the following narrative: g(x⃗) = 0 crosses higher and higher-valued level
sets of f as it approaches f(x⃗) = c. When it reaches f(x⃗) = c, rather than crossing it to even higher
values, it brushes against it (tangency) and backs away toward lower-valued level sets.

This does not describe every possible version of tangency. The curve x2 − x3
1 = 0 is tangent to

the level set x2 = 0, but still crosses onto both sides. Furthermore level sets can behave unpredictably
when their gradient vector is 0⃗. A rigorous argument for a maximizer using tangency generally needs to
appeal to the algebraic properties of f(x⃗) and g(x⃗) in some way.

2.1.4

The Lagrangian

Looking for tangency is a valuable method for approximating the maximizer, but we cannot expect it
to be precise enough to determine exact coordinates. For an exact position, we need a set of equations
to solve. These equations take the form of a necessary condition for a maximizer subject to an equality
constraint. We first form a new function from both the objective function and the constraint.

Definition 2.6

Given an n-variable objective function f(x⃗) and a constraint g(x⃗) = 0, the Lagrangian is an (n+ 1)-
variable function of the xi and λ (lambda). Its equation is

L(x⃗, λ) = f(x⃗) + λg(x⃗)

98

Theorem 2.7

Let f(x⃗) and g(x⃗) be continuously differentiable functions. If a⃗ is a local maximizer or minimizer of
f(x⃗) subject to the constraint g(x⃗) = 0, then either

1 there is some number λ such that (⃗a, λ) satisfies the first-order condition of L or

2 ∇g(⃗a) = 0.

We will call these the points that satisfy these conditions critical points or stationary points of
the constrained optimization problem. The value of λ is called a Lagrange multiplier.

Remark

Notice that this theorem is a necessary condition for a maximizer or minimizer, not a sufficient one.

2.1.5

Using the Lagrangian

We expect that the objective function f(x1, x2) = x2
1 + x2

2 has a minimizer on the constraint
x2
1 − x2 − 4 = 0 somewhere in the fourth quadrant. Find it.

Solution

Letting g(x1, x2) = x2
1 − x2 − 4 we have the Lagrangian:

L(x1, x2, λ) = x2
1 + x2

2 + λ(x2
1 − x2 − 4)

∇g(x1, x2) = (2x1,−1). This is never 0⃗, so any minimizer must satisfy the first-order condition of L.

99

2.1.5 Using the Lagrangian

We set the partial derivatives equal to 0 and solve.

∂L
∂x1

= 0
∂L
∂x2

= 0
∂L
∂λ

= 0

2x1 + 2x1λ = 0 2x2 − λ = 0 x2
1 − x2 − 4 = 0

2x1(1 + λ) = 0

if x1 = 0 02 − x2 − 4 = 0

x2 = −4

if λ = −1 2x2 + 1 = 0

x2 = −1

2

x2
1 +

1

2
− 4 = 0

x1 = ±
√

7

2

The only possible local maximizers and minimizer are (0,−4),
(√

7
2 ,−

1
2

)
and

(
−
√

7
2 ,−

1
2

)
. Since we

are looking for a minimizer in the fourth quadrant, it must be
(√

7
2 ,−

1
2

)
.

2.1.6

Proving the First-Order Condition of the Lagrangian

The partial derivatives of the Lagrangian are

∂L
∂xi

=fi(x⃗) + λgi(x⃗)

∂L
∂λ

=g(x⃗)

Any solution (⃗a, λ) to the first-order condition on L satisfies

1 fi(⃗a) = −λgi(⃗a) for all i, so ∇f (⃗a) = −λ∇g(⃗a).

2 g(⃗a) = 0, so a⃗ lies on the constraint.

The necessity of 2 is easy to explain. If a⃗ does not lie on the constraint, then it cannot be a
maximizer or minimizer subject to that constraint.

In order to understand 1 , we need to investigate the relationship between gradient vectors and
level sets. Like with multivariable unconstrained optimization, we use compositions over paths to study
maximizers on constraints. We need to alter our approach in three important ways.

100

We are only comparing f (⃗a) to f (⃗b) for other b⃗ in the level set g(x⃗) = 0. Thus we only consider
paths x⃗(t) that stay in the level set.

Unless the level set is linear, we cannot assume the paths x⃗(t) are straight lines. They likely need
to curve to stay in the level set.

The tangent vectors x⃗′(t) generally cannot point in all directions. Most directions of travel would
cause the path to leave the level set.

Now we examine the composition f(x⃗(t)) where x⃗(t) is a path in the level set g(x⃗) = 0.

Figure 2.8: The composition f(x1(t), x2(t)) for a path (x1(t), x2(t)) in the level set g(x1, x2) = 0 and
its realization as the heights of y = f(x1, x2)

If a⃗ is a local maximizer or minimizer of f(x⃗) among the points on g(x⃗) = 0 then it must be a local
maximizer or minimizer of the composition f(x⃗(t)) for all paths x⃗(t) in the level set g(x⃗) = 0. This
means the t-value corresponding to a⃗ (we will call it t0) must satisfy the first-order condition of f(x⃗(t)).
To compute the derivative of the composition, we apply the chain rule.

df

dt
(t0) = 0 (first-order condition)

∇f(x⃗(t0)) · x⃗′(t0) = 0 (chain rule)

∇f (⃗a) · x⃗′(t0) = 0

In the unconstrained case, ∇f (⃗a) · v⃗ = 0 for all v⃗ allowed us to conclude that ∇f (⃗a) = 0. Our
conclusion cannot be so restrictive here. x⃗(t) must be a path in the level set. We are thus only
considering vectors x⃗′(t0) that are tangent to the level set at a⃗.

To make a conclusion about∇f (⃗a), we appeal to the geometric properties of the dot product. ∇f (⃗a)
and x⃗′(t0) must be orthogonal for all paths in the level set that pass through a⃗ at t0. We introduce the
following vocabulary to describe this relationship between ∇f (⃗a) and the level set.

Definition 2.8

A vector v⃗ is normal to a set at a⃗, if v⃗ orthogonal to all tangent vectors of that set at a⃗.

101

2.1.6 Proving the First-Order Condition of the Lagrangian

To avoid having to mention it as a separate case, we consider 0⃗ to be orthogonal to every vector.

Lemma 2.9

If a⃗ is a local maximizer or local minimizer of a continuously differentiable function f(x⃗) subject to
g(x⃗) = 0, then ∇f (⃗a) is normal to the level set g(x⃗) = 0.

This gives us a good characterization of the gradient of the objective function at a local maximizer
or minimizer. We can now visually rule out a potential maximizer, if its gradient does not point in the
right direction. We now need to connect this to our computational tool. The Lagrangian compares ∇f
to ∇g. What can we say about ∇g?

Again, we consider a path x⃗(t) in the level set g(x⃗) = 0. This time we study the composition g(x⃗(t)).
If you think carefully about what we have done, you will notice that this is a silly composition. We can
evaluate this composition at any value of t, and we will always get 0 (make sure you see why).

We can now apply the chain rule to g(x⃗(t)), the zero function. This time the derivative is zero
because we are differentiating a constant function.

dg

dt
(t0) = ∇g(x⃗(t0)) · x⃗′(t0)

0 = ∇g(⃗a) · x⃗′(t0)

We conclude that ∇g(x⃗(t)) is orthogonal to x⃗′(t) for all paths x⃗(t) in the level set g(x⃗) = 0.

Remark

This argument did not rely on a⃗ being any special point on the level set. Nor did it matter that the level
set had value 0. Any level set g(x⃗) = c will have this relationship to the gradient, since the composition
will still be a constant function.

The result of this argument is the one of the most important geometric facts about gradient vectors.
We will use it over and over again.

Theorem 2.10

If g is a continuously differentiable function, and g(⃗a) = c, then ∇g(⃗a) normal to the level set g(x⃗) = c.

In R2, this means that ∇g(⃗a) points either 90◦ degrees clockwise or 90◦ counterclockwise from
x⃗′(t0).

102

Figure 2.9: Two possible ∇g(x⃗(a)) orthogonal to x⃗′(t0)

In the case of a level surface, there are many paths through a⃗. In order to be normal to the level
set, there are only two possible directions for ∇g(⃗a).

Figure 2.10: Two possible ∇g(⃗a) orthogonal to all possible tangent vectors x⃗′(t0) in the level set
g(x⃗) = 0.

We can use Corollary 2.5 to generalize this to an n-variable function. The level set is an (n − 1)
dimensional graph in n-space (as long as the gradient is nonzero). It has two normal directions, pointing
in opposite directions.

We can summarize what we have learned about the gradients of f and g as follows.

∇f (⃗a) is normal to the level set g(x⃗) = 0 at a local maximizer a⃗.

∇g(x⃗) is normal to the level set g(x⃗) = 0 at all points on the level set.

If ∇g(⃗a) ̸= 0⃗, then there are only two normal directions to the level set g(x⃗) = 0, pointing in
opposite directions.

103

2.1.6 Proving the First-Order Condition of the Lagrangian

Vectors in the same or opposite directions are parallel. Algebraically, they are scalar multiples of each
other. We conclude that at any local maximizer or local minimizer, f (⃗a) = −λ∇g(x⃗) for some λ. This
is exactly what the first-order condition of the Lagrangian requires.

Figure 2.11: Parallel vectors ∇f(x⃗) and ∇g(x⃗) at a minimizer of f(x⃗) subject to g(x⃗) = 0

This line of reasoning is complex. It is also important. We will revisit and generalize it later. Here
is a reminder of the steps of our argument.

a⃗ is a local maximizer
of f(x⃗) on g(x⃗) = 0

t0 is a local maximizer of f(x⃗(t))
on any path x⃗(t) through a⃗ in g(x⃗) = 0

d
dtf(x⃗(t)) = 0 at t0 ∇f (⃗a) · x⃗′(t0) = 0

∇f (⃗a) is normal to g(x⃗) = 0

∇g(x⃗) is always
normal to g(x⃗) = 0

There are only two
normal directions to g(x⃗) = 0

∇f (⃗a) and ∇g(⃗a) are parallel

∇f(x⃗) = −λ∇g(⃗a) for some λ
(λ, a⃗) satisfies the FOC

of the Lagrangian

FOC

chain rule

104

2.1.7

The Tangency Method

This argument also validates the tangency method of locating a maximizer. Theorem 2.10 applies
to f as well as to g. ∇f (⃗a) is normal to the level set f(x⃗) = c where c = f (⃗a). At a local maximizer,
where ∇f (⃗a) and ∇g(⃗a) are parallel, it must follow that the level sets g(x⃗) = 0 and f(x⃗) = c have the
same normal directions. This implies that g(x⃗) = 0 and f(x⃗) = c are tangent to each other.

Corollary 2.11

Suppose both ∇f (⃗a) and ∇g(⃗a) exist and are not 0⃗. If a⃗ is a maximizer of f(x⃗) subject to g(x⃗) = 0,
then the level sets of f and g that contain a⃗ are tangent to each other at a⃗.

Figure 2.12: Parallel ∇f and ∇g and their tangent level curves at a local maximizer

2.1.8

Section Summary

The important definitions and results from this section were

The effect of strengthening a constraint (Lemma 2.1)

The definition of a level set (Definition 2.4)

The Lagrangian (Definition 2.6)

The first-order condition of the Lagrangian (Theorem 2.7)

The direction of the gradient (Theorem 2.10)

105

2.1.8 Section Summary

The tangency of level curves (Corollary 2.11)

106

2.2

Inequality Constraints

Goals:

1 Identify maximizers subject to inequality constraints.

2 Use the Lagrange multiplier to identify points that cannot be maximizers or minimizers.

3 Recognize several notations for complementary slackness.

2.2.1

Inequality Constraints and Upper Level Sets

Definition 2.12

An inequality constraint is a constraint of the form g(x⃗) ≥ 0. With such a constraint we are solving

max
x⃗∈D

f(x⃗) subject to g(x⃗) ≥ 0 or

max
x⃗∈S

f(x⃗) where S = {x⃗ ∈ D : g(x⃗) ≥ 0}

Remark

Like with an equality constraint, just about any non-strict inequality can be rewritten in the form
g(x⃗) ≥ 0. Even an expression g(x⃗) ≤ k is equivalent to k − g(x⃗) ≥ 0.

Here are two prototypical applications of inequality constraints in economics.

Example

If you have a budget to buy two types of goods, but you are not required to spend all of it, then your
constraint is

I − p1x1 − p2x2 ≥ 0

107

2.2.1 Inequality Constraints and Upper Level Sets

Example

If x1 denotes a physical quantity then it is often appropriate to assume

x1 ≥ 0.

Inequalities like these define the familiar shape of the budget set.

I/p2

I/p1

x1

x2

Figure 2.13: The region constrained by I − p1x1 − p2x2 ≥ 0, x1 ≥ 0 and x2 ≥ 0

The set of points that satisfies an inequality constraint generally lies on one side of the level set
g(x⃗) = 0. Graphically, it is the subset of the domain over which the graph y = g(x⃗) is above the plane
y = 0. We therefore adopt the following terminology.

Definition 2.13

Given a multivariate function f(x⃗) a upper level set of f is the set of points that, for some number
c, satisfy f(x⃗) ≥ c. The points that satisfy f(x⃗) ≤ c are a lower level set.

108

Figure 2.14: The upper level set where y = f(x⃗) lies above y = c

We can use the chain rule to determine whether a path travels into an upper level set or lower level
set.

Lemma 2.14

Suppose a⃗ lies in the level set f(x⃗) = c, ∇f (⃗a) ̸= 0⃗, and x⃗(t) is a path that passes through a⃗ at t0.

If x⃗′(t0) makes an acute angle with ∇f (⃗a), then immediately after t0, x⃗(t) travels into the upper
level set f(x⃗) ≥ c.

If x⃗′(t0) makes an obtuse angle with ∇f (⃗a), then immediately after t0, x⃗(t) travels into the lower
level set f(x⃗) ≤ c.

Figure 2.15: The gradient vector, the upper level set and the lower level set of f

109

2.2.1 Inequality Constraints and Upper Level Sets

The gradient vector makes an acute angle with itself, so we obtain the following characterization
immediately.

Corollary 2.15

Suppose f (⃗a) = c. If ∇f (⃗a) ̸= 0⃗, then ∇f (⃗a) points into the upper level set f(x⃗) ≥ c.

We can visualize the reasoning behind Lemma 2.14. Here is the case where the angle is acute.

x⃗′(t0) makes an acute
angle with ∇f (⃗a)

∇f (⃗a) · x⃗′(t0) > 0

df
dt (t0) > 0

In some nbhd of t0,
f(x⃗(t)) > f(x⃗(t0)) for t > t0.

In some nbhd of t0,
x⃗(t) is in the upper level set

f(x⃗) ≥ c for t > t0.

chain rule

Lem 1.2

2.2.2

Binding and Nonbinding Constraints

We already have the tools to impose necessary conditions on a maximizer subject to an inequality
constraint. Our strategy is to consider two cases and to apply the appropriate first-order conditions to
each one.

Suppose a⃗ is a local maximizer of f(x⃗) subject to g(x⃗) ≥ 0.

1 If g(⃗a) = 0 we say that the constraint is binding.

a⃗

x1

x2

Figure 2.16: A maximizer a⃗ on g(x⃗) = 0

110

If a⃗ is a maximizer subject to g(x⃗) ≥ 0, then it also maximizes f subject to g(x⃗) = 0. It must
satisfy the FOC of the Lagrangian.

2 If g(⃗a) > 0 then the constraint is non-binding.

x⃗′(t)

a⃗

x1

x2

Figure 2.17: A maximizer a⃗ in g(x⃗) > 0 and some directions of travel through a⃗

We can travel in all directions x⃗′(t) through a⃗ without immediately leaving the upper level set.
To ensure ∇f (⃗a) · x⃗′(t) = 0, ∇f (⃗a) must be the zero vector.

At an interior point, the boundary is not relevant to local measurements like the derivative. The
conditions of optimization are those of an unconstrained optimization, as if the constraint did not exist.

2.2.3

The Sign of λ at a Maximizer

If the inequality constraint g(x⃗) = 0 binds at local maximizer a⃗, then a⃗ will satisfy the first-order
condition of the Lagrangian

L(x⃗, λ) = f(x⃗) + λg(x⃗)

What can we say about the λ that goes with a⃗?

Any path in the direction of ∇f (⃗a) points toward higher values of f . If ∇f (⃗a) points into the region
g(x) ≥ 0, then a⃗ cannot be a local maximizer subject to g(x⃗) ≥ 0. This can be tested by the sign of λ.

∇g

∇f
a⃗

x1

x2

Figure 2.18: A non-maximizing critical point a⃗ on g(x⃗) = 0

111

2.2.3 The Sign of λ at a Maximizer

The first-order condition of the Lagrangian requires that ∇f (⃗a) = −λ∇g(⃗a). ∇g(⃗a) points into the
upper level set g(x⃗) ≥ 0. If λ is negative then ∇f (⃗a) points into this set as well.

Lemma 2.16

Suppose that (⃗a, λ) satisfies the first-order condition of the Lagrangian of f subject to g(x⃗) = 0. If a⃗
is a local maximizer of f(x⃗) subject to g(x⃗) ≥ 0, then either

1 λ ≥ 0 or

2 ∇g(⃗a) = 0⃗

Understanding the intuition behind this result is probably more important than knowing a formal
proof. Still, here is a proof. Like the argument we have already given, it is a proof of the contrapositive.

Proof

If ∇g(⃗a) = 0⃗ then the lemma is satisfied. We will consider the case where ∇g(⃗a) ̸= 0⃗ and λ < 0. We
will show that a⃗ is not a local maximizer.

Consider the line through a⃗ in the direction of ∇g(⃗a). Its equation is x⃗(t) = a⃗ + t∇g(⃗a) and
x⃗′(0) = ∇g(⃗a). By Lemma 2.14, since ∇g(⃗a) · x⃗′(0) = ∇g(⃗a) · ∇g(⃗a) > 0, this line travels into the
upper level set g(x⃗) ≥ 0 at t = 0.

What happens to values of f along this line? Consider the composition f (⃗a+ t∇g(⃗a)). Its derivative
at t = 0 is

df

dt
(0) = ∇f (⃗a) · ∇g(⃗a)

= (−λ∇g(⃗a)) · ∇g(⃗a)

= −λ(∇g(⃗a) · ∇g(⃗a))

> 0

By Lemma 1.2, there is a neighborhood of 0 where for t > 0, f(x⃗(t)) > f(x⃗(0)) = f (⃗a). We have seen
that these points lie in the upper level set, so a⃗ cannot be a maximizer of f(x⃗) subject to g(x⃗) ≥ 0.

Since a⃗ cannot be a maximizer when λ < 0, we conclude that if a⃗ is a maximizer, then λ ≥ 0.

Remark

Showing that a⃗ is not a maximizer required us to compare it to points in the upper level set g(x⃗) ≥ 0.
This reasoning does not work when maximizing subject to an equality constraint. The line we used does
not lie in g(x⃗) = 0. We can thus pout no restriction on λ when maximizing subject to g(x⃗) = 0. λ can
be positive, negative, or zero at a maximizer.

112

2.2.4

Complementary Slackness

Whenever we have an inequality constraint, there are two cases to check: it can be binding or non-
binding. We could keep track of this manually, but there is an easier way to organize our search. We
can use the Lagrangian

L(x⃗, λ) = f(x⃗) + λg(x⃗)

to test for both the binding and non-binding case.

g(x⃗) ≥ 0 binding:

A maximizer a⃗ satisfies the first-order
condition of the Lagrangian.

This automatically checks g(⃗a) = 0.

We can check that λ ≥ 0.

g(x⃗) ≥ 0 nonbinding:

We can set λ = 0

Now a maximizer a⃗ satisfies the first-
order condition of L(x⃗, λ) = f(x⃗).

We can check that g(⃗a) ≥ 0.

There is an interesting algebraic symmetry between the role of λ and g(⃗a). The following definition
allows us to combine both these cases into one statement.

Definition 2.17

A point satisfies two non-strict inequalities with complementary slackness, if at least one of them
holds with equality.

We can cover both cases of an inequality constraint by demanding that g(x⃗) ≥ 0 and λ ≥ 0 hold
with complementary slackness. Here are a few different ways to denote complementary slackness.

Notations for Complementary Slackness

1 g(x⃗) ≥ 0 and λ ≥ 0 hold with complementary slackness

2 g(x⃗) ≥ 0, λ ≥ 0 and λg(x⃗) = 0

3 λ ≥ 0 and g(x⃗) ≥ 0, = 0 if λ > 0

113

2.2.5

Conditions for a Maximizer Subject to an Inequality Constraint

With complementary slackness in hand, we can write a necessary condition for a maximizer on an
inequality constraint. This theorem is written using notation 2 , but we could rewrite it with one of the
other notations.

Theorem 2.18

Let f(x⃗) and g(x⃗) be continuously differentiable functions. If a⃗ is a local maximizer of f(x⃗) subject to
the constraint g(x⃗) ≥ 0, then one of the following must be true

1 there is some number λ such that (⃗a, λ) satisfies

∂L
∂xi

(⃗a, λ) = 0 for all i

g(⃗a) ≥ 0, λ ≥ 0, and λg(⃗a) = 0.

2 g(⃗a) = 0 and ∇g(⃗a) = 0.

2.2.6

Opimization Subject to an Inequality Constraint

Find the maximizer of f(x1, x2) = 10− x2
1 − x2

2 subject to 3x1 + 4x2 ≥ 25.

Solution

First we write our constraint in the correct form. g(x1, x2) = 3x1+4x2−25 ≥ 0. Note that ∇g(x1, x2)
is never 0⃗, so any critical point must satisfy our complementary slackness conditions. The Lagrangian is

L(x1, x2, λ) = 10− x2
1 + x2

2 + λ(3x1 + 4x2 − 25)

The conditions are

∂L
∂x1

= 0
∂L
∂x2

= 0

λ ≥ 0 3x1 + 4x2 − 25 ≥ 0 λ(3x1 + 4x2 − 25) = 0

114

First consider the λ = 0 case. The constraint is nonbinding. We solve the equations then check the
inequality.

∂L
∂x1

= 0
∂L
∂x2

= 0 λ = 0

−2x1 + 3λ = 0 −2x2 + 4λ = 0

−2x1 = 0 −2x2 = 0

x1 = 0 x2 = 0

check 3(0) + 4(0)− 25 ≥ 0

The only critical point we found failed the check. There is no maximizer where the constraint is
nonbinding. Now consider the g(x⃗) = 0 case.

∂L
∂x1

= 0
∂L
∂x2

= 0 g(x⃗) = 0

−2x1 + 3λ = 0 −2x2 + 4λ = 0 3x1 + 4x2 − 25 = 0

x1 =
3

2
λ x2 = 2λ

9

2
λ+ 8λ− 25 = 0

25

2
λ = 25

λ = 2

x1 =
3

2
(2) x2 = 2(2)

x1 = 3 x2 = 4

check λ ≥ 0

2 ≥ 0

The point (3, 4, 2) passes all of these conditions. We conclude that (3, 4) is the only possible maximizer.
Since this is not a sufficient condition, we cannot conclude (3, 4) is a maximizer. There may be no
maximizer at all.

Main Idea

To solve for the maximizer over an inequality constraint

1 Pick a case from complementary slackness

2 Set up and solve the system of equations

3 Check whether the solutions satisfy the inequalities

4 Repeat for the other case from complementary slackness

115

2.2.7

Section Summary

The important definitions and results from this section were

The notation of an inequality constraint (Definition 2.12)

The definition of an upper or lower level set (Definition 2.13)

The sign of λ at a maximizer subject to an inequality constraint (Lemma 2.16)

Complementary slackness (Definition 2.17)

Conditions for a maximizer on an inequality constraint (Theorem 2.18)

116

2.3

The Kuhn-Tucker Conditions

Goals:

1 Solve for maximizers on multiple constraints using the Kuhn-Tucker conditions

2 Recognize what each case of the Kuhn-Tucker conditions is checking

2.3.1

Multiple Equality Constraints

In economics, it is easy to imagine a firm is constrained by more than one equation:

A budget for capital and labor

Availability of labor or other inputs

A government regulation

You can’t purchase or produce a negative amount

What if we want to maximize an n-variable function f(x⃗) subject to more than one equality con-
straint?

g1(x⃗) = g2(x⃗) = · · · = gm(x⃗) = 0

The feasible set, is the intersection of the level sets gj(x⃗) = 0. We have seen that a single level set
is usually one dimension less than the space it lies in. The intersection of m level sets will usually be an
(n−m)-dimensional shape.

Notation

The gi are different functions, not partial derivatives of g. Whenever we have multiple g’s around, we
will need to write our partial derivatives using ∂ notation, for instance

∂

∂x2
g3(x⃗) not g32(x⃗)

117

2.3.1 Multiple Equality Constraints

Figure 2.19: Two level sets intersecting at a pair of (one-dimensional) curves

Figure 2.20: Three level sets intersecting at a pair of (zero-dimensional) points

Like with a single constraint, there are exceptions. Also like a single constraint, these exceptions
rely on the inadequacy of the gradient vector(s). The following definition come from linear algebra. A
corollary of the multivariable implicit function theorem characterizes the intersection of the level sets.

Definition 2.19

Vectors v⃗1, v⃗2, . . . v⃗m are linearly dependent if there are constants kj , not all 0, such that

m∑
j=1

kj v⃗j = 0⃗

If no such kj exist then they are linearly independent

118

Equivalently, vectors are linearly dependent, if one of them is a linear combination of the others.

Corollary 2.20

Let g1(x⃗), g2(x⃗), . . . gm(x⃗) be a continuously differentiable functions at a⃗. If a⃗ lies on the level sets
gj(x⃗) = cj and the ∇gj (⃗a) are linearly independent, then the intersection of the level sets gj(x⃗) = cj is
a (n−m)-dimensional shape in some neighborhood of a⃗. Specifically, it is the graph of m differentiable
functions on Rn−m.

Remark

Any set containing the zero vector is linearly dependent. Thus this corollary agrees with our criterion
for a single constraint. If the vector ∇g(⃗a) = 0⃗, then it is linearly dependent.

Two vectors are linearly dependent if they are parallel. With parallel gradients, the intersection of
m level sets can have fewer than (n−m) dimensions.

Figure 2.21: Two level sets with parallel gradients intersecting at a point

Parallel gradients can also occur when the level sets overlap, in this case the intersection can have
more than (n−m) dimensions.

Figure 2.22: Two (overlapping) level sets whose intersection is a plane

119

2.3.1 Multiple Equality Constraints

Three vectors are linearly dependent if they are coplanar. Coplanar gradient vectors can also lead to
intersections of unexpected dimension.

Figure 2.23: Three level sets with coplanar gradients intersecting on a line

Main Idea

Each additional equality constraint reduces the dimension of the feasible set by 1, unless its gradient
vector is a linear combination of the existing gradient vectors.

2.3.2

The Lagrangian for Multiple Equality Constraints

For multiple constraints, we write a Lagrangian that uses all of the constraints. We need a different
variable λ for each one. The first-order condition of this Lagrangian is a necessary condition for a local
maximizer or local minimizer.

Definition 2.21

Given the problem of maximizing an n-variable objective function f(x⃗) subject to constraints gj(x⃗) = 0

for 1 ≤ j ≤ m, the Lagrangian is a function of the n components of x⃗ andm variables λ⃗ = (λ1, . . . , λm).

L(x⃗, λ⃗) = f(x⃗) +

m∑
j=1

λjgj(x⃗)

120

Theorem 2.22

If a⃗ is a local maximizer or local minimizer of f(x⃗) subject to constraints gj(x⃗) = 0, all continuously
differentiable at a⃗, then either

1 (⃗a, λ⃗) satisfies the first-order condition of L for some λ⃗ or

2 The ∇gj (⃗a) are linearly dependent

Notation

When developing the theory, we write our constraint functions and our Lagrange multipliers using a
common letter and an index variable

g1(x⃗), g2(x⃗), . . . λ1, λ2, . . .

This makes it easier to generalize to any number of constraints, because can use Σ notation in the
Lagrangian. For a small number of constraints, using an index is inconvenient. Economists often use
different letters for each constraint and multiplier.

g(x⃗), h(x⃗), . . . λ, µ, . . .

2.3.3

A Multi-Constraint Optimization

Find the maximizer of f(x1, x2, x3) = 3x2 on the constraints x2
1+x2

3−50 = 0 and x1+x2+x3 = 0.

Solution

The Lagrangian is

L(x1, x2, x3, λ1, λ2) = 3x2 + λ1(x
2
1 + x2

3 − 50) + λ2(x1 + x2 + x3)

The first-order condition is

121

2.3.3 A Multi-Constraint Optimization

∂L
∂x1

= 0
∂L
∂x2

= 0
∂L
∂x3

= 0
∂L
∂λ1

= 0
∂L
∂λ2

= 0

2λ1x1 + λ2 = 0 3 + λ2 = 0 2λ1x3 + λ2 = 0 x2
1 + x2

3 − 50 = 0 x1 + x2 + x3 = 0

λ2 = −3

x1 =
3

2λ1
x3 =

3

2λ1

x1 = x3

x2
1 + x2

1 − 50 = 0

x1 = ±5

±5 = x3

±5 + x2 ± 5 = 0

x2 = ∓10

We conclude that (±5,∓10,±5). The value f(x1, x2, x3) = 3x2 is larger when x2 = 10. We conclude
that no point besides (−5, 10, 5) can be the maximizer of f on these constraints. Because this is not a
sufficient condition, we cannot be sure that this is the maximizer. It may be that no maximizer exists
at all.

We can visualize the maximizer of f(x1, x2, x3) = 3x2 by looking for the point in the level sets that
is farthest in the x2 direction. It appears that such a point exists at (−5, 10,−5).

Figure 2.24: The gradients of x2
1 + x2

3 − 50, x1 + x2 + x3 = 0, and f(x⃗) = 3x2 at the maximizer

122

2.3.4

The Reasoning for the Multi-Constraint Lagrangian

The partial derivatives of the Lagrangian are

Lxi =
∂f

∂xi
(x⃗) +

m∑
j=1

λj
∂gj
∂xi

(x⃗)

Lλj
=gj(x⃗)

Any solution (⃗a, λ⃗) to the first-order condition on L satisfies

fxi
(⃗a) = −

m∑
j=1

λj
∂gj
∂xi

(⃗a) for all i, so ∇f (⃗a) = −
∑

λj∇gj (⃗a).

gj (⃗a) = 0 for all j so a⃗ lies on all the constraints.

We can examine the relationship between the gradients using the same procedure we used for a
single constraint. We take a path x⃗(t) through a⃗ at t0. We assume that x⃗(t) lies in the feasible set.
This means it lies in all of the level sets gj(x⃗) = 0.

If a⃗ is a local maximizer or minimizer of f(x⃗) on the feasible set then it must be a local maximizer
or minimizer of the composition f(x⃗(t)) for all paths x⃗(t) in the feasible set. This means the t-value
corresponding to a⃗ (we will call it t0) must satisfy the first-order condition of f(x⃗(t)). The derivative
calculation should be familiar:

0 =
df

dt
(t0)

0 = ∇f(x⃗(t0)) · x⃗′(t0)

0 = ∇f (⃗a) · x⃗′(t0)

Thus ∇f (⃗a) is normal to the feasible set.

When we had a single constraint, we argued that there were two opposite normal directions to the
feasible set, and ∇g(⃗a) pointed in one of them. This relied on the fact that our feasible set was a level
set and had dimension (n− 1). If we assume that the ∇gj (⃗a) are linearly independent, then the feasible
set has dimension (n−m) at a⃗.

There is an entire m-dimensional space of vectors normal to the feasible set at a⃗. If a⃗ is a maximizer,
∇f (⃗a) must be a vector in this space.

123

2.3.4 The Reasoning for the Multi-Constraint Lagrangian

Figure 2.25: The gradient vector of the objective function and the normal plane of the feasible set at a
local maximizer of the composition: f(x⃗(t))

The feasible set lies in each level set gj(x⃗) = 0. The gradient of each gj is normal its level set. We
can put together what we know about the gradients and the shape of the feasible set.

f (⃗a) is normal to the feasible set at a local maximizer a.

Each ∇gj(x⃗) is normal to the feasible set at all points in the level set.

If the ∇gj (⃗a) are linearly independent, then the normal space is m-dimensional.

m independent vectors in a m-dimensional space must span the space. We conclude that ∇f (⃗a) is a
linear combination of the ∇gj (⃗a). This is what the first-order condition of the Lagrangian requires.

Example

If a⃗ is a maximizer of a three-variable function subject to two equality constraints, then ∇f (⃗a) must lie
in the normal plane, which is spanned by ∇g1(⃗a) and ∇g2(⃗a).

124

Figure 2.26: Two gradients spanning the normal plane of the feasible set

2.3.5

An Optimization with Dependent Gradients

When the gradients of the gj(x⃗) are linearly dependent, the feasible set may not have the expected
dimension of (n − m). Even if it does, the gradient vectors need not span the normal space. In this
case, calculus arguments cannot rule out a point from being a maximizer. Here is an example where
insisting upon the first-order condition of the Lagrangian would incorrectly rule out a maximizer.

Consider the smooth function f(x1, x2) = x2
1 + x2

2 and the constraints x2 + 2 = 0 and x2 − (x1 −
3)2 + 2 = 0. If we attempt to apply the first-order condition we obtain the following.

The constraints intersect only at (3,−2).

At (3,−2) the gradients are

∇g1(3,−2) = (0, 1) ∇g2(3,−2) = (0, 1) ∇f(3,−2) = (6,−4).

∇f cannot be written as a linear combination of ∇g1 and ∇g2

Even though it doesn’t satisfy the first-order condition, (3,−2) must be the maximizer (and mini-
mizer), since it is the only point that satisfies both constraints.

125

2.3.5 An Optimization with Dependent Gradients

Figure 2.27: (3, 2) is a maximizer, but ∇f cannot be written λ1∇g1 + λ2∇g2.

If we count dimensions, the feasible set is a 0-dimensional subspace of Rn. Its normal space is
2 − 0 = 2-dimensional, which suggests that ∇f(3,−2) can be any vector in R2. This sounds bizarre
but actually makes sense. (3,−2) is the entire feasible set. It must be a maximizer, no matter what
∇f(3,−2) is. The exception for dependent gradients in Theorem 2.22 exists to avoid ruling out a
maximizer in a situation like this.

2.3.6

The Kuhn-Tucker Conditions

The Kuhn-Tucker conditions are a robust set of necessary conditions for constrained optimizations
with inequality constraints, potentially in addition to some number of equality constraints. They combine
all of the ideas we have developed in this chapter. We will use the same Lagrangian that we would for
equality constraints.

A Lagrangian For Multiple Equality and Inequality Constraints

Given an objective function f(x⃗) and constraints of the forms gj(x⃗) ≥ 0 or gj(x⃗) = 0 the Lagrangian
is

L(x⃗, λ⃗) = f(x⃗) +

m∑
j=1

λjgj(x⃗).

Like with a single inequality constraint, complementary slackness will remove the λjgj(x⃗) when gj(x⃗)
does not bind.

126

Theorem 2.23 [The Kuhn-Tucker Conditions]

Given the objective function f(x⃗) and constraints of the forms gj(x⃗) ≥ 0 or gj(x⃗) = 0, then at any
local maximizer a⃗ one of the following must be true

1 There is some vector λ⃗ such that (⃗a, λ⃗) satisfies the Kuhn-Tucker conditions:

For each variable xi,
Lxi (⃗a, λ⃗) = 0

For each equality constraint function gj ,

gj (⃗a) = 0

For each inequality constraint function gj ,

gj (⃗a) ≥ 0 and λj ≥ 0 and λjgj (⃗a) = 0

2 The binding ∇gj (⃗a) are linearly dependent

2.3.7

Solving the Kuhn-Tucker Conditions

According to Kuhn-Tucker, what points (x1, x2) could be maximizers of f(x1, x2) = x1x
2
2 given the

constraints

12− x1 − 4x2 ≥ 0 9− x1 − x2 ≥ 0

Solution

The Lagrangian is L(x1, x2, λ1, λ2) = x1x
2
2 + λ1(12− x1 − 4x2) + λ2(9− x1 − x2). The Kuhn-Tucker

conditions are

∂L
∂x1

= x2
2 − λ1 − λ2 = 0

∂L
∂x2

= 2x1x2 − 4λ1 − λ2 = 0

12− x1 − 4x2 ≥ 0 9− x1 − x2 ≥ 0

λ1 ≥ 0 λ2 ≥ 0

λ1(12− x1 − 4x2) = 0 λ2(9− x1 − x2) = 0

The final equations carry our complementary slackness conditions. There are two ways to choose which
factor is 0 for each, giving us 2× 2 = 4 cases to check.

127

2.3.7 Solving the Kuhn-Tucker Conditions

1 λ1 = 0, λ2 = 0

x2
2 − λ1 − λ2 = 0 2x1x2 − 4λ1 − λ2 = 0

x2
2 = 0 2x1x2 = 0

x2 = 0

check 12− x1 − 4x2 ≥ 0 6− x1 − x2 ≥ 0

12− x1 ≥ 0 6− x1 ≥ 0

x1 ≤ 12 x1 ≤ 9

So (k, 0, 0, 0) satisfies the Kuhn-Tucker conditions for k ≤ 9.

2 λ1 = 0, 9− x1 − x2 = 0

x2
2 − λ1 − λ2 = 0 2x1x2 − 4λ1 − λ2 = 0 9− x1 − x2 = 0

x2
2 − λ2 = 0 2x1x2 − λ2 = 0

x2
2 = 2x1x2

x2
2 − 2x1x2 = 0

x2(x2 − 2x1) = 0

x2 = 0 covered in case 1

or x2 = 2x1

9− x1 − 2x1 = 0

x1 = 3

x2 = 6

62 − λ2 = 0

λ2 = 36

check 12− x1 − 4x2 ≥ 0 λ2 ≥ 0

12− 3− 4(6) ≥ 0 36 ≥ 0

−15 ≥ 0

(3, 6, 0, 36) does not satisfy the inequalities.

128

3 12− x1 − 4x2 = 0, λ2 = 0

x2
2 − λ1 − λ2 = 0 2x1x2 − 4λ1 − λ2 = 0 12− x1 − 4x2 = 0

x2
2 − λ1 = 0 2x1x2 − 4λ1 = 0

4x2
2 = 4λ1 2x1x2 = 4λ1

4x2
2 = 2x1x2

4x2
2 − 2x1x2 = 0

2x2(2x2 − x1) = 0

x2 = 0 covered in case 1

or 2x2 = x1

12− 2x2 − 4x2 = 0

x2 = 2

x1 = 4

22 − λ1 = 0

λ2 = 4

check 9− x1 − x2 ≥ 0 λ1 ≥ 0

9− 4− 2 ≥ 0 4 ≥ 0

(4, 2, 4, 0) satisfies the Kuhn-Tucker conditions

4 12− x1 − 4x2 = 0, 9− x1 − x2 = 0

x2
2 − λ1 − λ2 = 0 2x1x2 − 4λ1 − λ2 = 0 12− x1 − 4x2 = 0 9− x1 − x2 = 0

12− x1 − 4x2 = 0

−(9− x1 − x2) = −0

3− 3x2 = 0

x2 = 1

9− x1 − 1 = 0

x1 = 8

1− λ1 − λ2 = 0 16− 4λ1 − λ2 = 0

−(16− 4λ1 − λ2) = −0

−15 + 3λ1 = 0

λ1 = 5

16− 4(5)− λ2 = 0

λ2 = −4

check λ1 ≥ 0 λ2 ≥ 0

5 ≥ 0 −4 ≥ 0

(8, 1, 5,−4) does not satisfy the Kuhn-Tucker conditions.

The Kuhn-Tucker conditions are necessary. No point except (4, 2) or (k, 0) for k ≤ 9 can be a maximizer.

129

2.3.7 Solving the Kuhn-Tucker Conditions

By evaluating we see

f(4, 2) = 16 f(k, 0) = 0

So only (4, 2) could be a maximizer. We cannot conclude that it is a maximizer, until we learn a relevant
sufficient condition.

Strategy

In general our method for solving the Kuhn Tucker conditions is

Pick an equality from a factor of each complementary slackness condition.

Solve the resulting system of equations.

Discard any solutions that violate the remaining inequalities.

Repeat for a different choice of equalities.

With m inequality constraints, we will need to repeat for all 2m combinations of equalities.

2.3.8

Visualizing the Kuhn-Tucker Conditions

Each choice of equalities mutates the Kuhn-Tucker conditions into the necessary conditions from
Theorem 2.22, where the binding gj(x⃗) ≥ 0 are treated as equality constraints. The following diagram
shows how each choice corresponds to a different piece of the feasible set, where different constraints
bind.

∇g1

∇g2

x1

x2

g1(x⃗) ≥ 0 and λ1 = 0
g2(x⃗) = 0 and λ2 ≥ 0

L(x⃗, λ⃗) = f(x⃗) + λ2g2(x⃗)
∇f(x⃗) = −λ2∇g2(x⃗)

g1(x⃗) ≥ 0 and λ1 = 0
g2(x⃗) ≥ 0 and λ2 = 0

L(x⃗, λ⃗) = f(x⃗)

∇f(x⃗) = 0⃗

g1(x⃗) = 0 and λ1 ≥ 0
g2(x⃗) = 0 and λ2 ≥ 0

L(x⃗, λ⃗) = f(x⃗) + λ1g1(x⃗) + λ2g2(x⃗)
∇f(x⃗) = −λ1∇g1(x⃗)− λ2∇g2(x⃗)

g1(x⃗) = 0 and λ1 ≥ 0
g2(x⃗) ≥ 0 and λ2 = 0

L(x⃗, λ⃗) = f(x⃗) + λ1g1(x⃗)
∇f(x⃗) = −λ1∇g1(x⃗)

Figure 2.28: The four regions covered by two pairs of inequalities with complementary slackness

130

In the case of multiple binding inequality constraints, the condition that λj ≥ 0 forces ∇f (⃗a) to lie
in the cone made by −∇gj(x⃗).

∇g1

∇g2

−∇g1

−∇g2

∇f

x1

x2

Figure 2.29: The cone where ∇f must lie if both constraints bind at a maximizer

2.3.9

Proving the Necessity of the Kuhn-Tucker Conditions

To justify the necessity of the Kuhn-Tucker conditions, we can list each condition and describe why
it must apply.

1 A given a⃗ will satisfy some binding equations gj(x⃗) = 0.

2 For the constraints that do not bind, setting λj = 0 turns L(x⃗, λ⃗) into the Lagrangian for f with
only the binding equality constraints. If a⃗ is a local maximizer, it must satisfy Theorem 2.22,
specifically, ∂L

∂xi
(⃗a) = 0.

3 For each inequality constraint, a maximizer must satisfy gj (⃗a) ≥ 0 to be feasible.

4 Finally, if every path from a⃗ into the feasible region decreases f , then all λj ≥ 0.

We have not given a convincing argument for the last statement yet. A formal proof is just below,
but it may be more illuminating to convince yourself graphically. Try drawing a few ∇f that lie outside
the cone between −∇g1 and −∇g2 in the previous figure. For each one, you should be able to identify
a vector x⃗′(t) that points into the feasible region but makes an acute angle with ∇f .

Here is a formal proof that λj ≥ 0 at a maximizer.

Proof

Pick any inequality constraint gk(x⃗) ≥ 0. If gk(x⃗) ≥ 0 is not binding at a⃗, then λk = 0 and we are
done.

131

2.3.9 Proving the Necessity of the Kuhn-Tucker Conditions

We will therefore consider the case where gk (⃗a) ≥ 0 is binding and show λ ≥ 0. Let S be the inter-
section of all the binding constraints except gk(x⃗) = 0. Since the gradients of the binding constraints
a linearly independent, we can conclude:

The gradients of the binding constraints other than ∇gk (⃗a) span the normal space of S at a⃗

∇gk (⃗a) is not a linear combination of these gradients, so it does not lie in the normal space of S
at a⃗

There must be a path x⃗(t) in S through a⃗ such that x⃗′(t0) is not orthogonal to ∇gk (⃗a). We can pick
such a path so that ∇gk (⃗a) · x⃗′(t0) > 0. If the first path we try produces a negative dot product, just
traverse x⃗(t) backwards instead. First we show that, in some neighborhood of t0, x⃗(t) lies in the feasible
region for all t > t0. We check that it satisfies each constraint.

a⃗ lies in the interior of each upper level set gj(x⃗) ≥ 0 for each nonbinding gj . x⃗(t) will travel for
some distance before leaving the upper level set.

Since x⃗(t) was chosen to lie in S it lies in the level set gj(x⃗) = 0 for all binding gj except gk.

Since ∇gk (⃗a) · x⃗′(t0) > 0, x⃗(t) must travel into the upper level set gk(x⃗) ≥ 0.

Thus in some neighborhood of t0, x⃗(t) lies in the feasible set for t > t0. Since a⃗ is a local maximizer,
f(x⃗(t0)) ≥ f(x⃗(t)) for t > t0 in this neighborhood. Thus df

dt (t0) ≤ 0. We use the chain rule to examine
this inequality.

df

dt
(t0) ≤ 0

∇f (⃗a) · x⃗′(t0) ≤ 0

−
m∑
j=1

λj∇gj (⃗a) · x⃗′(t0) ≤ 0

We pause to examine the terms of this summation. Most are 0. Here is the reasoning.

For nonbinding gj(x⃗), λj = 0.

For binding gj(x⃗) except j = m, we have ∇gj (⃗a) · x⃗′(t0) = 0, since ∇gj (⃗a) is a normal vector of
S and x⃗(t) lies in S.

Finally, ∇gk (⃗a) · x⃗′(t0) > 0 by our choice of x⃗(t).

We apply these to our inequality.

−
m∑
j=1

λj∇gj (⃗a) · x⃗′(t0) ≤ 0

−λk∇gk (⃗a) · x⃗′(t0) ≤ 0

λk ≥ 0

132

2.3.10

Kuhn-Tucker with Non-Negativity Constraints

If we demand that xi ≥ 0 for each i, then we have added n new constraints to our Langrangian.
We will use µi for the Lagrange multipliers of the xi.

L(x⃗, λ⃗, µ⃗) = f(x⃗) +

m∑
j=1

λjgj(x⃗) +

n∑
i=1

µixi

This is unwieldy. If we are clever, we can do better.

For 1 ≤ k ≤ n, the inequality conditions for µk are

∂L
∂µk

= xk ≥ 0 and µk ≥ 0

If the constraint xk ≥ 0 is not binding, then µk = 0. The µkxk term is 0 in L and its partial
derivatives. We can remove it, but we will still need to verify that xk ≥ 0 is satisfied.

If the constraint is binding, then we can still remove the µkxk term from L.

The term goes to 0 anyway in Lxi
for i ̸= k.

In Lxk
, there is a single +µk term. Lxk

is supposed to be 0, whereas µk ≥ 0. We can
replicate this effect by removing µkxk from L, but requiring that the remaining terms of Lxk

have a sum less than or equal to 0.

For each k, we can remove the variable µk and the µkxk term from our Lagrangian in exchange for
some new conditions.

133

2.3.10 Kuhn-Tucker with Non-Negativity Constraints

Corollary 2.24 [The Kuhn-Tucker Conditions with Non-Negativity]

Given the objective function f(x⃗) and constraints of the forms gj(x⃗) ≥ 0 or gj(x⃗) = 0, along with
xi ≥ 0 for each i, then at any local maximizer a⃗ one of the following must be true.

1 There is some vector λ⃗ such that (⃗a, λ⃗) satisfies the Kuhn-Tucker Conditions with Non-
Negativity Constraints:

For each i,

ai ≥ 0 and
∂L
∂xi

(⃗a, λ⃗) ≤ 0 and ai
∂L
∂xi

(⃗a, λ⃗) = 0

For each equality constraint function gj ,

gj (⃗a) = 0

For each inequality constraint function gj ,

gj (⃗a) ≥ 0 and λj ≥ 0 and λjgj (⃗a) = 0

2 The binding constraints (including any xi = 0) have linearly dependent gradients at a⃗.

2.3.11

Section Summary

The most important definitions and results from this section were

The shape of an intersection of level sets (Corollary 2.20)

The Lagrangian for multiple constraints (Definition 2.21)

First-order condition for multiple equality constraints (Theorem 2.22)

The Kuhn-Tucker conditions (Theorem 2.23)

The Kuhn-Tucker conditions with non-negativity (Corollary 2.24)

134

Chapter 3

Comparative Statics

3.1

The Implicit Function Theorem

Goals:

1 Identify when one variable of an implicit equation can be written as a function of the other(s)

2 Compute the derivative of one variable with respect to another

3 Determine how the optimal choice responds to changes in an exogenous parameter

3.1.1

Comparative Statics

Comparative statics study situations with one or more choice variables xi and one or more exoge-
nous parameters αj .

Example

A consumer maximizing her utility has the choice variable

q: the quantity of a product they buy

and the exogenous parameter

p: the price of that product

136

Example

From the point of view of a producer, the choice variables might be

q: the quantity of a product they produce

p: the price they sell for

the exogenous parameters may include

w, r: the price of labor or capital

t, s: a tax or subsidy imposed by the government

some aspect of the demand function

Remark

The choice variables are the variables whose value is chosen by the agent who wants to maximize the
function.

In economics, we assume that choosers are rational and well-informed. We assume they will learn the
value of the parameters. After that, they will pick the value of the choice variables that maximizes their
objective function. Comparative statics ask how the outcome changes as the value of the parameter
changes. We will present the tools to compute two types of comparative statics

1 How does the optimal value of a choice variable change as a parameter changes?

2 How does the value of the objective function change as a parameter changes?

Notation

Given an objective function f(x, α), with choice variable x and parameter α, we expect that different
values of α will lead the chooser to pick different values of x. The chooser’s optimal choice is a function
of α that we write x∗(α).

The first-order condition tells us that for each α, x∗(α) must satisfy the first-order condition:

fx(x
∗(α), α) = 0

Without an expression for x∗(α), trying to understand its rate of change raises a sequence of questions.

1 What is dx∗(α)
dα ?

137

3.1.1 Comparative Statics

2 How do we know that x∗(α) is differentiable?

3 How do we know that x∗(α) is even a function?

Given a specific f , we can solve the first-order condition algebraically. If we can tell which solution
is the maximizer (assuming one exists), then we can write an expression for x∗ as a function of α and
answer all these questions. In the case of a general or abstract f , this may not be possible. Fortunately,
mathematics has the vocabulary to describe these questions in abstract. It also has a powerful tool to
answer them.

3.1.2

Explicit Functions and Implicit Equations

Definition 3.1

An explicit function equates a function or dependent variable to an expression entirely in terms of the
independent variables.

Example

The following equations describe explicit functions.

f(x) = x3 −
√
x+ 7

y = sin(x2)

z = 3xy + x2 − 2

g(x1, x2, x3) = ex1 cos(x2x3)

Since each input has at most one output, graphs of explicit functions pass the vertical line test. We
also have a variety of tools for differentiating explicit functions (though not all are differentiable).

We do not have the luxury of always working with explicit functions. We use the following vocabulary
when we wish to draw a contrast with explicit functions.

Definition 3.2

An implicit equation in two or more variables does not necessarily have any dependent variable which
is equated to an expression in the others.

Sometimes we can solve an implicit equation to obtain an explicit function, but other times we
cannot.

138

Example

2x+ 3y = 12 =⇒ y = 4− 2

3
x

x2
1 + x2

2 + x2
3 = 25 =⇒ x3 = ±

√
25− x2

1 − x2
2 (multiple outputs for each input, not a function)

13− 3y3 + xy4 = y5 =⇒ x =
y5 − 13 + 3y3

y4
(can solve for x but not for y)

x3 + y3 = 6xy =⇒ y = ??? (requires the cubic formula, not a function)

The solutions to any implicit equation form a level set of some function. We obtain the function by
rewriting the equation in a form like:

F (x, y) = c or F (x⃗) = c

3.1.3

An Implicit Equation

Consider the implicit equation x3 + y3 = 6xy

a Write the equation in the form F (x, y) = c.

b Does this equation have a graph?

c Can we solve it to obtain an explicit function?

Solution

a We can write x3 + y3 − 6xy = 0

b Yes. The graph is the set of points (x, y) that satisfy the equation. Every equation has a graph,

though some graphs are the empty set.

139

3.1.3 An Implicit Equation

c We could look up the cubic formula and solve this. The cubic formula, like the quadratic formula,

returns multiple values for the variable. The result is not a function. We can see this in the graph,
which fails the vertical line test.

Figure 3.1: The graph of x3 + y3 − 6xy = 0

Sometimes we cannot write y as an explicit function of x in a way that describes the whole graph.
If we are only interested in rates of change, we can restrict our attention to a small neighborhood of the
graph. At most points, this neighborhood does look like the graph of some function y = f(x).

Figure 3.2: A neighborhood in which the graph x3 + y3 − 6xy = 0 is the graph of an explicit function

This is not always possible. Consider the part of x3+y3−6xy = 0 near (0, 0). In any neighborhood
we choose, there are three branches of the graph that extend to the right. No matter how small a
neighborhood we choose around (0, 0), the graph will fail the vertical line test and cannot be written as
y = f(x).

140

3.1.4

The Implicit Function Theorem

The implicit function theorem tells us when a point on the graph of an implicit equation has a
neighborhood that is identical to the graph of an explicit function. The basic version takes an implicit
equation in two variables and writes a function that expresses one (the dependent variable) in terms of
the other (the independent variable).

Theorem 3.3 [The Implicit Function Theorem]

Suppose F (x, y) is a continuously differentiable function and (a, b) is a point on F (x, y) = c. If
Fy(a, b) ̸= 0, then there exists a differentiable function f(x) such that y = f(x) and F (x, y) = c
describe the same graph in some neighborhood of (a, b).

The theorem does not tell us what the function f(x) is, only that it exists. Even so, we can express
its derivatives in terms of F .

Corollary 3.4

The derivative of f with respect to x at a is given by

f ′(a) = −Fx(a, b)

Fy(a, b)

The derivation of this formula is famous and not too difficult. To compute the derivative of f , we
parameterize a path in the graph y = f(x). Unlike our previous parametrizations, we will use x as the
parameter. Differentiating x with respect to x is most palatable with Leibniz notation.

x = x
dx

dx
= 1

y = f(x)
dy

dx
= f ′(x)

The points (x, f(x)) lie in F (x, y) = c near (a, b). Thus the composition F (x, f(x)) is the constant
function c. Differentiating F (x, f(x)) = c with respect to the parameter x to produces an equation that
contains f ′(x). We solve this equation to obtain an expression for f ′(x).

141

3.1.4 The Implicit Function Theorem

F (x, f(x) = c (y = f(x) lies in F (x, y) = c)

dF (x, f(x))

dx
= 0 (derivative of a constant is 0)

Fx(x, f(x))
dx

dx
+ Fy(x, f(x))

df(x)

dx
= 0 (chain rule)

Fx(x, f(x))(1) + Fy(x, f(x))f
′(x) = 0 (evaluate derivative of x)

f ′(x) = −Fx(x, f(x))

Fy(x, f(x))
(solve for f ′(x))

f ′(a) = −Fx(a, b)

Fy(a, b)
(evaluate at x = a)

The implicit function theorem guarantees that f exists and is differentiable in a neighborhood of a.
Since we don’t know how big this neighborhood is, x = a is the only point at which we can be sure
f ′(x) exists.

We often apply this formula before checking whether the implicit function theorem applies. Assuming
F is continuously differentiable, the theorem will only fail when Fy(a, b) = 0. Conveniently, this formula
will be undefined in that case.

We can also determine the derivative of f geometrically. Near (a, b), the graph y = f(x) is the level
set F (x, y) = c. We know the ∇F (a, b) = (Fx(a, b), Fy(a, b)) is normal to the level set.

The gradient has a slope of
Fy(a,b)
Fx(a,b)

. The tangent line, which is perpendicular, has a negative

reciprocal slope: −Fx(a,b)
Fy(a,b)

. The slope of the tangent line is also the derivative f ′(a).

Figure 3.3: The gradient of F and the tangent line whose slope is f ′(a)

142

3.1.5

Applying the Implicit Function Theorem

If x and y satisfy x3 − 2xy2 + 3y = −13, show that y can be written as a function f(x) of x near
(2, 3) and compute f ′(2)

Solution

We may first want to check that (2, 3) satisfies the implicit equation.

(2)2 − 2(2)(3)2 + 3(3) = −13

In order to apply the implicit function theorem, we need to know that F (x, y) = x3 − 2xy2 + 3y has
continuous partial derivatives. It is a polynomial, so it does. Finally, we need to show Fy(2, 3) ̸= 0.

Fy(x, y) = −4xy + 3

Fy(2, 3) = −4(2)(3) + 3

Fy(2, 3) = −21 ̸= 0

Therefore, by the implicit function theorem, there is a function f(x) such that y = f(x) and x3−2xy2+
3y = −13 describe the same graph near (2, 3). The derivative of f at x = 2 is given by Corollary 3.4.

f ′(2) = −Fx(2, 3)

Fy(2, 3)

= −3(2)2 − 2(3)2

−4(2)(3) + 3

= − −6

−21

= −2

7

Figure 3.4: The graph of x3 − 2xy2 + 3y = −13 and its tangent line at (2, 3)

143

3.1.6

The Derivative of the Optimal Choice

In comparative statics, we are interested in the function x∗(α), which is a solution to the equation
fx(x, α) = 0. We apply the implicit function theorem where:

α takes the role of the independent variable “x”.

x takes the role of the dependent variable “y”.

fx(x, α) takes the role of the two-variable function “F”.

(b, a) is a point on the graph fx(x, α) = 0.

The derivatives of F are second derivatives of f .

The implicit function theorem requires that

Fx(b, a) = fxx(b, a) ̸= 0.

It concludes there is a differentiable function x∗(α) such that x = x∗(α) matches the graph of fx(x, α) =
0 in a neighborhood of (b, a).

Corollary 3.5

Given a function f(x, α), suppose that

1 a is a value of α and b = x∗(a)

2 x∗(α) satisfies fx(x
∗(α), α) = 0 near (b, a)

3 f(x, α) has continuous second derivatives near (b, a)

4 fxx(b, a) ̸= 0

Then

dx∗(a)

dα
= −fxα(b, a)

fxx(b, a)

This computes the derivative at a point. If, in some interval of α values, every point (x∗(a), a)
satisfies these conditions, then we can extend this to a derivative function for x∗(α).

dx∗(α)

dα
= −fxα(x

∗(α), α)

fxx(x∗(α), α)

144

Remark

When working with comparative statics, we can reasonably assume the requirements of the implicit
function theorem.

1 If an optimal choice exists, then it must satisfy the first-order condition.

2 It makes sense to work with smooth functions when modeling empirical data.

3 At a maximizer, fxx is likely (though not required) to be negative. Alternately, assuming fxx < 0
on the entire domain guarantees that x∗(α) is actually the global maximizer for each α.

3.1.7

The Construction of f(x)

Here we will give a construction of the function y = f(x) that matches the graph of F (x, y) = c
near a point (a, b). The same argument works for more variables, but the pictures are harder to draw.

Constructing f(x) requires the following tools:

1 Lemma 1.11: If f ′(x) > 0 then f is increasing.

2 Definition of continuity: The values of F can be kept arbitrarily close to F (a, b) by restricting to
points sufficiently close to (a, b).

3 The intermediate value theorem: If f(x) is continuous and f(a−) < c < f(a+) then there is a
value k between a− and a+ such that f(k) = c.

The implicit function theorem requires that Fy(a, b) ̸= 0. There are two cases to consider, but the
arguments are analogous. We will consider the case Fy(a, b) > 0.

145

3.1.7 The Construction of f(x)

1 F is continuously differentiable, so
there is a neighborhood of (a, b) where
Fy(x, y) > 0.

2 Within this neighborhood, we can travel
h units in the y-direction from (a, b). Let
F (a, b+ h) = c+ and F (a, b− h) = c−

3 Since Fy(x, y) > 0, we have c+ > c and
c− < c.

4 Since F is continuous, there is a neigh-
borhood of (a, b+h) where F (x, y) > c.
There is a neighborhood of (a, b − h)
where F (x, y) < c.

5 We consider segments from (x, b + h)
to (x, b − h), with one endpoint in each
neighborhood.

6 Apply the intermediate value theorem,
since F (x, b − h) < c < F (x, b + h),
there is a k between b−h and b+h such
that F (x, k) = c.

7 Since Fy(x, y) > 0, F is increasing along
the segment, so it cannot take the value
c more than once. The k in the previous
step is unique.

8 Repeat this for every segment of the form
(x, b+h) to (x, b−h), and define f(x) =
k.

Fy(x, y) > 0

F (a, b+ h) = c+ > c

F (a, b− h) = c− < c

(a, b)

Fy(x, y) > 0

F (x, y) > c

F (x, y) < c

(a, b)

n some in

Fy(x, y) > 0

F (x, b+ h) > c

F (x, b− h) < c

(x, b+ h)

(x, b− h)

(a, b)(x, k)

Fy(x, y) > 0

y = f(x)

146

3.1.8

The Implicit Function Theorem with More Variables

We can also apply the implicit function theorem to an implicit equation of n > 2 variables. In this
case, one dependent variable can be expressed as a function of n− 1 independent variables.

Theorem 3.6 [The Multivariable Implicit Function Theorem]

Suppose F (x⃗, y) is a continuously differentiable function and F (⃗a, b) = c. If Fy (⃗a, b) ̸= 0, then there
exists a differentiable function f(x⃗) such that y = f(x⃗) and F (x⃗, y) = c describe the same graph in
some neighborhood of (⃗a, b).

Since f(x⃗) is an n− 1 variable function, the derivatives we can compute are the partial derivatives.
The formula for these derivatives is analogous to the single-variable version.

Corollary 3.7

For each variable xk, the partial derivative of f with respect to xk at a⃗ is given by

fxk
(⃗a) = −Fxk

(⃗a, b)

Fy (⃗a, b)

We can now justify our earlier characterization of level sets. At the time we made no mention
of dependent and independent variables. This lack of distinction actually makes the implicit function
theorem easier to apply.

Remark

There is nothing special about the letter y, nor the fact that it is the last variable of F . The variable
“y” in the implicit function theorem can apply to any variable of an implicit equation, so long as the
partial derivative with respect to that variable is not zero.

147

3.1.8 The Implicit Function Theorem with More Variables

Figure 3.5: A point where x3 + y3 − 6xy = 0 cannot be written in the form y = f(x) because it fails
the vertical line test but can be rewritten as x = f(y)

If we are not picky about which variable is written as a function of the others, then the implicit
function theorem only fails when all the partial derivatives are 0. As long as the gradient of the function
is not the zero vector, one component can play the role of the dependent variable. This is exactly what
our corollary requires.

Corollary 2.5

Let g(x⃗) be a continuously differentiable function at a⃗. If a⃗ lies on the level set g(x⃗) = c and ∇g(⃗a) ̸= 0⃗,
then the level set g(x⃗) = c is a (n− 1)-dimensional shape in some neighborhood of a⃗. Specifically, it is
the graph of a differentiable function of n− 1 of the variables of Rn.

The “differentiable function” is the function f produced by the implicit function theorem.

We can also apply this version of the implicit function theorem and its corollary to comparative
statics. Consider a function of one choice variable and multiple parameters. We write this objective
function as f(x, α⃗). The implicit function theorem and its corollary can compute the partial derivatives
of x∗(α⃗).

148

Corollary 3.8

Given a function f(x, α⃗), suppose that

1 a⃗ is a value of α⃗ and b = x∗(⃗a).

2 x∗(α⃗) satisfies fx(x
∗(α⃗), α⃗) = 0 near (b, a⃗)

3 f(x, α⃗) has continuous second derivatives near (b, a⃗)

4 fxx(b, a⃗) ̸= 0

Then
∂x∗(⃗a)

∂αk
= −fxαk

(b, a⃗)

fxx(b, a⃗)
.

We can justify the multivariable implicit function and Corollary 3.7 using arguments similar to the
single-variable versions. The construction of f is the same for both versions, except that x⃗ replaces x.
The computation of the partial derivatives of f requires more adaptation.

Since fk(x⃗) is a partial derivative, we treat xk as a parameter. The other xi are constants, held
equal to the corresponding components of a⃗.

xi =

{
ai if i ̸= k

xk if i = k

dxi

dxk
=

{
0 if i ̸= k

1 if i = k

y = f(x⃗)
dy

dxk
= fxk

(x⃗)

The strategy is the same. We differentiate F (x⃗, f(x⃗)) with respect to xk, solve for fxk
(x⃗), and evaluate

at xk = ak.

F (x⃗, f(x⃗)) = c ((x⃗, f(x⃗)) lies in F (x⃗, y) = c)

dF (x⃗, f(x⃗))

dxk
= 0 (derivative of a constant is 0)

n∑
i=1

Fxi
(x⃗, f(x⃗))

dxi

dxk
+ Fy(x⃗, f(x⃗))fxk

(x⃗) = 0 (chain rule)

Fxk
(x⃗, f(x⃗))

dxk

dxk
+ Fy(x⃗, f(x⃗))fxk

(x⃗) = 0 (
dxi

dxk
= 0 for i ̸= k)

Fxk
(x⃗, f(x⃗))(1) + Fy(x⃗, f(x⃗))fxk

(x⃗) = 0 (evaluate derivative of xk)

fxk
(x⃗) = −Fxk

(x⃗, f(x⃗))

Fy(x⃗, f(x⃗))
(solve for fxk

(x⃗))

fxk
(⃗a) = −Fxk

(⃗a, b)

Fy (⃗a, b)
(evaluate at x⃗ = a⃗)

149

3.1.9

The Implicit Function Theorem for Multiple Equations

We have seen two instances previously where the solution to multiple implicit equations was relevant.

1 The feasible set of multiple equality constraints is the intersection of multiple level sets.

2 Critical points of a multivariable function satisfy fxi
(x⃗) = 0 for each i.

A graph of the form y = f(x⃗) in Rn+1 will have dimension n. In general, each equation we wish
to satisfy lowers the dimension of our space of solutions by 1. If we want to express an intersection of
level sets, y = f(x⃗) will not have the right dimension.

The way to handle this loss of dimension in an explicit function is to increase the number of dependent
variables. Specifically, if we have n-variables x⃗ and m-variables y⃗ then the graph of a family of functions
yj = fj(x⃗) will have dimension n in Rn+m

The most general version of the implicit function theorem states when a family of implicit equations
can be expressed as a family of explicit functions instead.

Notation

Given a family of functions

F(x⃗, y⃗) = (F1(x⃗, y⃗), F2(x⃗, y⃗), . . . , Fm(x⃗, y⃗))

the derivative of F with respect to yj is the family of functions

∂F
∂yj

(x⃗, y⃗) =

(
∂F1

∂yj
(x⃗, y⃗),

∂F2

∂yj
(x⃗, y⃗), . . . ,

∂Fn

∂yj
(x⃗, y⃗)

)

Note that we are using subscripts here to indicate different components of the vector F , not as
partial derivatives.

Theorem 3.9 [The Implicit Function Theorem for Multiple Dependent Variables]

Suppose y⃗ is an m-vector and F(x⃗, y⃗) is a family of m continuously differentiable functions such that

F (⃗a, b⃗) = (c1, . . . , cm). If the vectors ∂F
∂yj

(⃗a, b⃗) are linearly independent, then there exists a family

of differentiable functions (fj(x⃗)) such that the equations yj = fj(x⃗) describe the same graph as

F(x⃗, y⃗) = (c1, . . . , cm) in some neighborhood of (⃗a, b⃗).

We can use the chain rule to solve for partial derivatives
∂fj(a⃗,⃗b)

∂xk
, but the derivative of any equation

Fj(x⃗, y⃗) = cj with respect to xk will contain the derivatives of all the fj . To compute the derivative
we want, we need to differentiate all of the implicit equations and solve a system of equations. Here is
the simplest example.

150

Example

Consider two implicit equations F1(x, y1, y2) = c1 and F2(x, y1, y2) = c2. Assuming Fy1 and Fy2 are
linearly independent, the implicit function guarantees differentiable explicit functions y1 = f1(x) and
y2 = f2(x). Differentiating the original implicit equations with respect to x gives

∂F1

∂x

dx

dx
+

∂F1

∂y1
f ′
1(x) +

∂F1

∂y2
f ′
2(x) = 0

∂F2

∂x

dx

dx
+

∂F2

∂y1
f ′
1(x) +

∂F2

∂y2
f ′
2(x) = 0

We can use this system to solve for f ′
1(x) and f ′

2(x).

3.1.10

The Derivative of Optimal Choice with Multiple Choice Variables

Suppose your utility is a function of two choice variables and one exogenous parameter.

u(x1, x2, α)

Your optimal choices x∗
1(α) and x∗

2(α) satisfy the following implicit equations:

u1(x
∗
1(α), x

∗
2(α), α) = 0

u2(x
∗
1(α), x

∗
2(α), α) = 0.

By the implicit function theorem, we can write x∗
1(α) and x∗

2(α) as differentiable explicit functions of α
if their derivatives with respect to x1 and x2 are linearly independent. Here are those derivatives.

∂(u1, u2)

∂x1
(x∗

1(α), x
∗
2(α), α) = (u11(x

∗
1(α), x

∗
2(α), α), u21(x

∗
1(α), x

∗
2(α), α))

∂(u1, u2)

∂x2
(x∗

1(α), x
∗
2(α), α) = (u12(x

∗
1(α), x

∗
2(α), α), u22(x

∗
1(α), x

∗
2(α), α))

These are the columns of the second upper left square minor of the Hessian of u. Columns of a matrix
are independent, if the matrix has a nonzero determinant.

|Hu(x∗
1(α), x

∗
2(α), α)2| =

∣∣∣∣ u11(x
∗
1(α), x

∗
2(α), α) u12(x

∗
1(α), x

∗
2(α), α)

u21(x
∗
1(α), x

∗
2(α), α) u22(x

∗
1(α), x

∗
2(α), α)

∣∣∣∣ ̸= 0

Assuming this holds, we can use the chain rule to differentiate both implicit equations with respect to
α. We obtain

u11(x
∗
1(α), x

∗
2(α), α)

dx∗
1(α)

dα
+ u12(x

∗
1(α), x

∗
2(α), α)

dx∗
2(α)

dα
+ u1α(x

∗
1(α), x

∗
2(α), α)

dα

dα
= 0

u21(x
∗
1(α), x

∗
2(α), α)

dx∗
1(α)

dα
+ u22(x

∗
1(α), x

∗
2(α), α)

dx∗
2(α)

dα
+ u2α(x

∗
1(α), x

∗
2(α), α)

dα

dα
= 0

151

3.1.10 The Derivative of Optimal Choice with Multiple Choice Variables

In a concrete example we could solve for
dx∗

1(α)
dα and

dx∗
2(α)
dα directly using algebra. If that seems difficult

or the problem is abstract, we can borrow an approach from linear algebra. We write this system of
equations as a matrix product.

[
u11(x

∗
1(α), x

∗
2(α), α) u12(x

∗
1(α), x

∗
2(α), α)

u21(x
∗
1(α), x

∗
2(α), α) u22(x

∗
1(α), x

∗
2(α), α)

] dx∗
1(α)

dα
dx∗

2(α)

dα

 =

[
−u1α(x

∗
1(α), x

∗
2(α), α)

−u2α(x
∗
1(α), x

∗
2(α), α)

]

Cramer’s rule writes the solution to a matrix equation as a ratio of determinants.

dx∗
1(α)

dα
=

∣∣∣∣ −u1α(x
∗
1(α), x

∗
2(α), α) u12(x

∗
1(α), x

∗
2(α), α)

−u2α(x
∗
1(α), x

∗
2(α), α) u22(x

∗
1(α), x

∗
2(α), α)

∣∣∣∣∣∣∣∣ u11(x
∗
1(α), x

∗
2(α), α) u12(x

∗
1(α), x

∗
2(α), α)

u21(x
∗
1(α), x

∗
2(α), α) u22(x

∗
1(α), x

∗
2(α), α)

∣∣∣∣
dx∗

2(α)

dα
=

∣∣∣∣ u11(x
∗
1(α), x

∗
2(α), α) −u1α(x

∗
1(α), x

∗
2(α), α)

u21(x
∗
1(α), x

∗
2(α), α) −u2α(x

∗
1(α), x

∗
2(α), α)

∣∣∣∣∣∣∣∣ u11(x
∗
1(α), x

∗
2(α), α) u12(x

∗
1(α), x

∗
2(α), α)

u21(x
∗
1(α), x

∗
2(α), α) u22(x

∗
1(α), x

∗
2(α), α)

∣∣∣∣
Notice the denominator in each formula is |Hu(x∗

1(α), x
∗
2(α), α)2|. We replace the corresponding column

with the right side of the equation to obtain the numerator.

Cramer’s rule can apply to any number of variables, so we can extend this procedure to more than
two choice variables. We can also handle multiple parameters. This method would compute partial
derivatives of x∗

i (α⃗) with respect to some αj .

Main Ideas

The optimal choice of multiple variables satisfies the multivariable first-order condition.

The implicit function theorem applies to the optimal choice variables, if the Hessian minor cor-
responding to the choice variables has a nonzero determinant. If the optimal choice satisfies the
second-order condition, this is automatic.

We can differentiate the multivariable first-order condition with respect to a parameter and obtain
a linear system of equations in the derivatives of the choice variables.

Cramer’s rule is a reliable way to solve such systems.

152

3.1.11

Section Summary

The key definitions and results from this section were

Explicit functions and implicit equations (Definitions 3.1 and 3.2)

The implicit function theorem (Theorem 3.3)

The derivative of the function guaranteed by the implicit function theorem (Corollary 3.4)

The derivative of the function x∗(α) (Corollary 3.5)

153

3.2

The Envelope Theorem

Goals:

1 Use the envelope theorem to compute the derivative of value functions.

3.2.1

Value Functions

Definition 3.10

Suppose we have

f(x, α), a differentiable function.

x is a choice variable

α is a parameter

x∗(α) is the x that maximizes f(x, α) for a given α.

Then the outcome that will occur for each α is the value function

V (α) = f(x∗(α), α)

Vocabulary

In the case that f has an economic meaning, we sometimes use the term indirect, along with the ∗
notation, to refer to its value function of f .

If u(x, α) is a utility function then u∗(α) = u(x∗(α), α) is the indirect utility function.

If π(x, α) is a profit function then π∗(α) = π(x∗(α), α) is the indirect profit function.

x∗(α) is a solution to fx(x, α) = 0. Assuming f is continuously differentiable, the implicit function
guarantees that x∗(α) is a differentiable function. This means that V is a differentiable function. If we
want to understand how a change in α affects the value of V , we want to compute V ′(α).

154

V ′(α) computes how a change in a parameter affects the an outcome, assuming the agents involved
make the optimal choices. This derivative can answer a variety of questions in economics.

Example

How will increasing a tax impact company profits?

Will increasing a subsidy increase consumer well-being?

In the case that we have an expression for f , computing V ′(α) is not difficult:

1 Solve for x∗(α)

2 Substitute x∗(α) into f(x, α) to obtain an expression for V (α)

3 Differentiate V (α)

But is there a better way?

3.2.2

The Envelope Theorem

The envelope theorem gives us an alternative method. We compute V ′(α) by parametrizing the
values of α and x∗ in a neighborhood where x∗(α) is differentiable. We use α as the parameter.

α = α
dα

dα
= 1

x = x∗(α)

We can apply the chain rule to V (α) = f(x∗(α), α). We use the fact that x∗(α) satisfies the first-order
condition for all α. Specifically, have fx(x

∗(α), α) = 0.

V ′(α) =
df(x, α)

dα

= fx(x
∗(α), α)

dx∗(α)

dα
+ fα(x

∗(α), α)
dα

dα
(chain rule)

= (0)
dx∗(α)

dα
+ fα(x

∗(α), α)(1) (FOC)

= fα(x
∗(α), α)

155

3.2.2 The Envelope Theorem

Remark

This computation requires us to know that x⃗∗(α) is a differentiable function. Here are two ways to
verify this.

1 For a concrete function, compute x⃗∗(α). Verify directly that it is differentiable.

2 In more abstract settings, apply the implicit function theorem. Check that

f has continuous second derivatives

fxx(x
∗(α), α) ̸= 0 for all α.

.

Theorem 3.11 [The Envelope Theorem, Single-Variable]

Suppose

f(x, α) is a differentiable function, and

x∗(α) that maximizes f for each α is a differentiable function.

The following two derivatives are equal:

V ′(α)︸ ︷︷ ︸
derivative of

value function

= fα(x
∗(α), α)︸ ︷︷ ︸

partial derivative

of original function

The envelope theorem allows us to compute a partial derivative of f instead of the total derivative
of V . In some sense, the envelope theorem is saying that the change in x∗ does not matter. This makes
sense, because at a maximizer, we cannot increase the value of the function by changing x.

This is an interesting insight into the behavior of value functions, but all we have done is traded one
derivative for another. We still need to compute x∗(α) to evaluate the partial derivative. It is natural
to ask: does the envelope theorem save us any work in practice?

Compare the following methods of computing V ′(α):

Without the envelope theorem

1 Compute x∗(α)

2 Substitute into f(x, α) to get V (α)

3 Differentiate V (α)

With the envelope theorem

1 Compute x∗(α)

2 Partially differentiate f(x, α)

3 Substitute x∗(α)

156

Remark

In concrete situations, the first method gives us a more complicated function to differentiate. In abstract
situations, the first method may be impossible or give us an answer in a less useful form.

The envelope theorem can also be justified visually. If we pick a specific a, we can compare two
functions

1 The value function: V (α) = f(x∗(α), α), which uses the best x for each α

2 The stubborn function: V0(α) = f(x∗(a), α), which sticks with the best x for a, even if α
changes.

The stubborn function has the following properties

Since its x-coordinate is constant, the derivative of V0 is equal to the partial derivative fα.

V0(a) = V (a)

For any other α, x∗(a) cannot be a better choice than x∗(α). Thus V0(α) ≤ V (α).

The graph y = V0(α) meets y = V (α) at a but does not go above it. They must be tangent, which
means their derivatives are equal.

V ′(a) = V ′
0(a) = fα(x

∗(a), a)

Figure 3.6: The graphs of the value function and stubborn function and their tangent line

The envelope theorem gets its name from the fact that y = V (α) envelopes all of the stubborn
functions y = V0(α), generated by choosing different values of a.

157

3.2.3

Generalizations of the Envelope Theorem

There are several ways to generalize the envelope theorem. First we can consider a function of more
choice variables or more parameters.

1 If f is a function of n choice variables, then each choice variable has an optimal value that depends
of α. We obtain a family of functions x∗

i (α). We can write them as a vector x⃗∗(α). The value
function is

V (α) = f(x⃗∗(α), α)

2 If f is a function of m parameters αj , we can express the parameters as a vector α⃗. The optimal
choice of each choice variable is a function of all the αj . The value function also a function of all
the αj .

V (α⃗) = f(x⃗∗(α⃗), α⃗)

Since the x∗
i (α⃗) satisfy the family of equations fxi

(x⃗, α⃗) = 0, we need the multi-equation version of the
implicit function theorem to justify their existence and differentiability.

The value function is a function of multiple parameters, so the envelope theorem computes its partial
derivatives.

Theorem 3.12 [The Envelope Theorem, Multivariable]

Suppose

f(x⃗, α⃗) is a differentiable function

x⃗∗(α⃗) that maximizes f for each α⃗ is a differentiable function

For any region of Rm where x⃗∗(α⃗) is differentiable and any coordinate αk of α⃗ we have:

Vαk
(α⃗) = fαk

(x⃗∗(α⃗), α⃗)

We can again show this with a parametrization. Since we need the partial derivative, we treat αk as
a parameter. The other αj are constants, held equal to the corresponding components of some fixed a⃗.
This parametrization will not cover the entire domain of α⃗, only those that lie in the αk-direction from
a⃗.

αj =

{
aj j ̸= k

αk j = k

dαj

dαk
=

{
0 if j ̸= k

1 if j = k

x⃗ = x⃗∗(α⃗)

In general, x∗
i is a multivariable function of α⃗. In this parametrization, xi is a function only of the

parameter αk. By the first-order condition, x⃗∗(α⃗) satisfies fxi(x⃗
∗(α⃗), α⃗) = 0 for each xi. We can apply

158

the chain rule to V (α⃗) = f(x⃗∗(α⃗), α⃗) to compute Vαk
(α⃗).

Vαk
(α⃗) =

df(x⃗∗(α⃗), α⃗)

dαk

=

n∑
i=1

fxi(x⃗
∗(α⃗), α⃗)

dx∗
i (α⃗)

dαk
+

m∑
j=1

fαj (x⃗
∗(α⃗), α⃗)

dαj

dαk

=

n∑
i=1

(0)
dx∗

i (α⃗)

dαk
+
∑
j ̸=k

fαj (x⃗
∗(α⃗), α⃗)(0) + fαk

(x⃗∗(α⃗), α⃗)(1)

= fαk
(x⃗∗(α⃗), α⃗)

This is valid for any α⃗ that lies on our path through a⃗ in the αk-direction. We can apply this
reasoning to any a⃗ though, so the computation holds for the entire domain of x⃗∗(α⃗).

Our final generalization of the envelope theorem assumes that x⃗∗(α⃗) is the optimal choice given an
equality constraint, g(x⃗, α⃗) = 0.

Theorem 3.13 [The Envelope Theorem, Constrained]

Suppose

f(x⃗, α⃗) is a differentiable objective function

g(x⃗, α⃗) is a differentiable constraint function

x⃗∗(α⃗) that maximizes f subject to g(x⃗, α⃗) = 0 for each α⃗ is a differentiable function

λ∗(α⃗) is the value of λ that solves the first-order conditions of L along with x⃗∗(α⃗) and α⃗.

For any region of Rm where x⃗∗(α⃗) and λ∗(α⃗) are differentiable and any coordinate αk of α⃗ we have:

Vαk
(α⃗) = Lαk

(x⃗∗(α⃗), α⃗, λ∗(α⃗))

Proving this version requires us to use the fact that g(x⃗∗(α⃗), α⃗) = 0 for all α⃗. This means that

L(x⃗∗(α⃗), α⃗, λ∗(α⃗)) = f(x⃗∗(α⃗), α⃗) + λ∗(α⃗)g(x⃗∗(α⃗), α⃗)

= f(x⃗∗(α⃗), α⃗) + λ∗(α⃗)(0)

= V (α⃗)

x⃗∗(α⃗) does not necessarily satisfy the first-order condition of f , but for a fixed α it does satisfy the first
order condition of L(x⃗∗(α⃗), λ∗(α)). Specifically:

Lxi
(x⃗∗(α⃗), λ∗(α)) = 0

Lλ(x⃗
∗(α⃗), λ∗(α)) = 0

159

3.2.3 Generalizations of the Envelope Theorem

We can use the same parametrization as the unconstrained case, with the understanding that x⃗∗(α⃗)
now describes the maximizer of the constrained optimization and with λ∗(α⃗) the corresponding λ value.

Vαk
(α⃗) =

df(x⃗∗(α⃗), α⃗)

dαk

=
dL(x⃗∗(α⃗), α⃗, λ∗(α⃗))

dαk

=

n∑
i=1

Lxi(x⃗
∗(α⃗), α⃗, λ∗(α⃗))

dx∗
i (α⃗)

dαk
+

m∑
j=1

Lαj (x⃗
∗(α⃗, α⃗, λ∗(α⃗))

dαj

dαk
+ Lλ(x⃗

∗(α⃗), α⃗, λ∗(α⃗))
dλ∗(α⃗)

dαk

=

n∑
i=1

(0)
dx∗

i (α⃗)

dαk
+
∑
j ̸=k

Lαj (x⃗
∗(α⃗), α⃗, λ∗(α⃗))(0) + Lαk

(x⃗∗(α⃗), α⃗, λ∗(α⃗))(1) + (0)
dλ∗(α⃗)

dαk

= Lαk
(x⃗∗(α⃗), α⃗, λ∗(α⃗))

Further Generalizations

We can extend this reasoning to multiple equality constraints without any trouble.

We can also also extend the envelope theorem to inequality constraints, where we set λ∗(α⃗) = 0 for
any α⃗ such that the constraint is not binding at the maximizer x⃗∗(α⃗). If x⃗∗ and λ∗ are differentiable
functions of α in this setting, we can still conclude that

Vαk
(α⃗) = Lαk

(x⃗∗(α⃗), α⃗, λ∗(α⃗))

However, we expect x⃗∗(α⃗) will not be differentiable at the transition between the binding and
nonbinding cases.

Proving the inequality case is identical to the equality case, except

Lλ(x⃗(t), α⃗(t), λ(t))︸ ︷︷ ︸
=0 if binding

λ′(t)︸︷︷︸
=0 if

nonbinding

= 0

Remark

The generalizations of the envelope theorem require that x⃗∗(α⃗) is a differentiable function. Like in the
single-variable case, it usually makes sense to solve for x⃗∗(α⃗) and directly verify that it is differentiable. If
we need to use the implicit function theorem instead, we need the multivariable version. The requirement
for that is

|Hfx⃗(x⃗, α⃗)| ≠ 0 or |HLx⃗,λ(x⃗, α⃗)| ≠ 0

depending on whether there is a constraint.

160

3.2.4

Section Summary

The most important definitions and results from this section were

The definition of a value function (Definition 3.10)

Three versions of the envelope theorem (Theorems 3.11, 3.12 and 3.13)

161

3.2.4 Section Summary

162

Chapter 4

Sufficient Conditions

4.1

The Extreme Value Theorem

Goals:

1 Recognize when the extreme value theorem applies.

2 Apply the extreme value theorem to identify a maximizer.

4.1.1

The Extreme Value Theorem

In previous examples, we often found that only one point satisfied the necessary conditions for a
maximizer. Still we did not conclude that this point was a maximizer. We would have found it very
useful to know that a maximizer existed in these circumstances. We then could have identified our point
as that maximizer. Even if we only narrowed our search down to two or three potential maximizers, the
information that one of them is in fact the maximizer would have been helpful.

This is what the extreme value theorem does for us.

Theorem 4.1 [The Extreme Value Theorem]

If f(x⃗) is a continuous function and S is a closed and bounded subset of the domain of f , then there
exists an x⃗∗ that maximizes f(x⃗) subject to x⃗ ∈ S.

In order to apply this theorem, we need to be able to identify when a region S is closed and bounded.
Here are the definitions of those terms.

Definition 4.2

Let S be a subset of Rn.

S is closed if it contains all of the points on its boundary.

S is bounded if there is some upper limit to how far its points get from the origin (or any other
fixed point). If there are points of S arbitrarily far from the origin, then S is unbounded.

164

For one-variable functions, we can use the fact that a union of finitely many closed intervals (or
isolated points) is closed. If the intervals are each finite length, then the union is also bounded.

x−4 −2 0 2 4

Figure 4.1: A finite union of closed intervals

The same holds for curves. A curve must include its endpoints, or have no endpoints to be closed.

x1

x2

Figure 4.2: A closed curve

x1

x2

Figure 4.3: The graph x2
1 + x2

2 = 9 is
closed.

Generally, a region defined by a strict inequality will not contain its boundary points and thus will
not be closed.

x1

x2

Figure 4.4: x2
1 + x2

2 ≤ 9 is closed.

x1

x2

Figure 4.5: x2
1 + x2

2 < 9 is not closed.

If multiple inequalities are involved and relevant, they must all be nonstrict in order to avoid removing
boundary points. An interesting case is the removal of a single interior point. If we exclude that point
from S, then that point becomes a boundary point. Any neighborhood of it contains points in S and a
point not in S.

165

4.1.1 The Extreme Value Theorem

x1

x2

Figure 4.6: −2 ≤ x1 ≤ 2 and
−3 < x2 < 3 is not closed.

x1

x2

Figure 4.7: −2 ≤ x1 ≤ 2 and
−3 ≤ x2 ≤ 3 and (x1, x2) ̸= (1, 2) is not

closed.

Boundedness is a simpler concept and easy to check. If you can draw a circle around S, it is bounded.
If no circle is big enough, it is unbounded.

x1

x2

Figure 4.8: −2 ≤ x1 ≤ 2 and
−3 ≤ x2 ≤ 3 is bounded.

x1

x2

Figure 4.9: −2 ≤ x1 ≤ 2 is unbounded.

The examples above are a good way to visually recognize a closed and bounded set. What if we have
an equation or inequality instead of a graph? The following theorems answer some of these questions.

Theorem 4.3

If f(x⃗) is a continuous function, then any level set or upper level set of f is closed.

166

Theorem 4.4

1 The intersection of any number of closed sets is closed.

2 The union of any finite number of closed sets is closed.

The second theorem is specifically useful for feasible sets defined by multiple constraints. Under our
formulation of constrained optimization, the feasible set is an intersection of level sets and upper level
sets. As long as the constraint functions are continuous, the feasible set will be closed.

The extreme value theorem is a standard result in analysis. While we will not prove it, we can at
least demonstrate that each hypothesis is necessary.

Example

Consider f(x) = x2 on the region S = {x : x ≥ 0}. f(x) is continuous and S is closed but not
bounded. f(x) grows without bound in S and has no maximum.

2 4

2

4

x

y

Figure 4.10: The graph of y = x2 over [0,∞)

Example

Consider

f(x) =

{
x2 if x < 2

0 if x ≥ 2

on the region S = {x : 0 ≤ x ≤ 2}. S is closed and bounded, but f(x) is not continuous. f(x)
approaches a value of 4 but never reaches it. There is no maximizer a. For any a < 2, there is a b closer
to 2 with f(b) > f(a).

167

4.1.1 The Extreme Value Theorem

2 4

2

4

x

y

Figure 4.11: The graph of y = f(x) over [0, 2]

Example

Consider f(x) = x2 on the region S = {x : 0 ≤ x < 2}. f(x) is continuous and S is bounded but not
closed. Again f(x) approaches a value of 4 but never reaches it. There is no maximizer a. For any a
in S, there is a b closer to 2 with f(b) > f(a).

2 4

2

4

x

y

Figure 4.12: The graph of y = x2 over [0, 2)

168

4.1.2

Applying the Extreme Value Theorem

Find the maximizer(s) of f(x1, x2) = x2
1 + x2

1x2 + 2x2
2 subject to 8− x2

1 − x2
2 ≥ 0.

−4 −2 2 4

−4

−2

2

4

x1

x2

Figure 4.13: The feasible set

Solution

Apply the necessary conditions for maximizers subject to an inequality. The Lagrangian is

L(x1, x2, λ) = x2
1 + x2

1x2 + 2x2
2 + λ(8− x2

1 − x2
2)

The conditions are

Lx1
(x1, x2, λ) = 2x1 + 2x1x2 − 2λx1 = 0

Lx2
(x1, x2, λ) = x2

1 + 4x2 − 2λx2 = 0

8− x2
1 − x2

2 ≥ 0, λ ≥ 0 and λ(8− x2
1 − x2

2) = 0

We solve each case of the complementary slackness.

1 Set λ = 0

2x1 + 2x1x2 = 0 x2
1 + 4x2 = 0

2x1(1 + x2) = 0

if x1 = 0 02 + 4x2 = 0

x2 = 0

if x2 = −1 x2
1 + 4(−1) = 0

x1 = ±2

Check that (0, 0, 0) and (±2,−1, 0) satisfy 8− x2
1 − x2

2 ≥ 0. They do.

2 Set 8− x2
1 − x2

2 = 0. We need to solve

2x1 + 2x1x2 − 2λx1 = 0 x2
1 + 4x2 − 2λx2 = 0 8− x2

1 − x2
2 = 0

169

4.1.2 Applying the Extreme Value Theorem

One good approach is to factor

2x1 + 2x1x2 − 2λx1 = 0

2x1(1 + x2 − λ) = 0

x1 = 0 or λ = 1 + x2

We treat these two cases separately.

a If x1 = 0,

8− (0)2 − x2
2 = 0

x2 = ±2
√
2 (0)2 + 4(±2

√
2)− 2λ(±2

√
2) = 0

±8
√
2 = ±4

√
2λ

2 = λ

b If λ = 1 + x2,

x2
1 + 4x2 − 2(1 + x2)x2 = 0

x2
1 = 2x2

2 − 2x2

8− (2x2
2 − 2x2)− x2

2 = 0

3x2
2 − 2x2 − 8 = 0

−(3x2 + 4)(x2 − 2) = 0

if x2 = 2

λ = 1 + 2 x2
1 = 8− (2)2

λ = 3 x1 ± 2

if x2 = −4

3

λ = 1− 4

3
x2
1 = 8−

(
4

3

)2

λ = −1

3
x1 =± 2

√
14

3

We verify that (0,±2
√
2, 2), (±2, 2, 3) and

(
± 2

√
14
3 , 4

3 ,−
1
3

)
satisfy λ ≥ 0. The third one does

not.

Now we can apply the extreme value theorem. The function f(x1, x2) is continuous. The feasible
set is the upper level set of a continuous function: 10− x2

1 − x2
2 ≥ 0, so it is closed. The feasible set is

a disk, so it is bounded. The extreme value theorem tells us a maximizer must exist.

Only a point that satisfies our necessary condition can be that maximizer. To determine which one,

170

we evaluate f(x1, x2) at each.

f(0, 0) = (0)2 + (0)2(0) + 2(0)2 = 0

f(±2,−1) = (±2)2 + (±2)2(−1) + 2(−1)2 = 2

f(0,±2
√
2) = (0)2 + (0)2(±2

√
2) + 2(±2

√
2)2 = 16

f(±2, 2) = (±2)2 + (±2)2(2) + 2(2)2 = 20

Because they produce the greatest values among the candidates, the maximizers are (2, 2) and (−2, 2).

Figure 4.14: The maximizers of y = x2
1 + x2

1x2 + 2x2
2 subject to 8− x2

1 − x2
2 ≥ 0

Main Ideas

The algebraic expressions tell us when the objective function is continuous and the feasible set is
closed.

Draw the feasible set to decide whether it is bounded.

If the EVT applies, we can evaluate f at all of the points that passed our necessary conditions.
The one that attains the greatest value is the maximizer.

171

4.1.3

Section Summary

The most important definitions and results from this section were

The extreme value theorem (Theorem 4.1)

The meaning of closed and bounded (Definition 4.2)

Level sets, upper level sets, and their intersections are closed (Theorems 4.3 and 4.4)

172

4.2

The Bordered Hessian

Goals:

1 Use the bordered Hessian to identify local maximizers of a function subject to a constraint.

4.2.1

The Bordered Hessian

We used the Hessian matrix to recognize maximizers and minimizers in unconstrained optimization.
This worked because the Hessian computed the second derivative over a straight line a⃗+ tv⃗. An equality
constraint does not usually contain straight lines. The test for the second derivative will need to take
account of the shape of the level set g(x⃗) = 0.

Definition 4.5

Given a constrained optimization problem with Hessian L, the matrix HL(λ, x⃗) is called the bordered
Hessian of the constrained optimization problem.

Example

The 2-variable bordered Hessian has the form

HL(λ, x1, x2) =

 Lλλ Lλ1 Lλ2

Lλ1 L11 L12

Lλ1 L12 L22

 =

 0 g1 g2
g1 f11 + λg11 f12 + λg12
g2 f21 + λg21 f22 + λg22

Why is this called “bordered?”

The bottom right 2× 2 minor looks like a Hessian.

It is bordered to the left and above by ∇g.

Notice that we have switched the order of variables in our Lagrangian. This is common when writing
the bordered Hessian. Placing the border on the top allows us to write our condition for a local maximizer
in a familiar way. If we instead prioritized consistency, we could keep the λ last and modify our condition.

173

4.2.1 The Bordered Hessian

Theorem 4.6

Let f(x⃗) be an n-variable function and g(x⃗) = 0 be a constraint. If (ℓ, a⃗) satisfies the first-order
condition of the Lagrangian and the upper left square minors of HL(ℓ, a⃗) satisfy

(−1)i|Mi| < 0 2 ≤ i ≤ n+ 1,

then a⃗ is a strict local maximizer of f among points on the constraint.

Remark

We do not test |M1|, since M1 = [0].

We generally do not need to worry about M2 either, since

|M2| =
∣∣∣∣ 0 g1
g1 f11 + λg11

∣∣∣∣ = −(g1)
2

Notice the inequality is reversed from the unconstrained second-order condition.

Variant of Theorem 4.6

Let f(x⃗) be an n-variable function and g(x⃗) = 0 be a constraint. If (ℓ, a⃗) satisfies the first-order
condition of the Lagrangian and the upper left square minors of HL(ℓ, a⃗) satisfy

|Mi| < 0 2 ≤ i ≤ n+ 1,

then a⃗ is a strict local minimizer of f among points on the constraint.

Remark

We might hope to quickly extend this to a global condition, but unfortunately, HL only tells us about
the second derivatives at a critical point. Deriving a condition that works for all points on the constraint
is possible but more complicated.

174

4.2.2

Using the Bordered Hessian

Let f(x1, x2) = x2
1 + x2

2 on the domain

D = {(x1, x2) : x1 > 0, x2 > 0}

Find the critical point of f on the constraint x4
1 + x4

2 = 2. Classify it as a local maximizer or local
maximizer of f (or neither) on the constraint.

Solution

The Lagrangian is
L(x1, x2, λ) = x2

1 + x2
2 + λ(2− x4

1 − x4
2)

Here are the first-order conditions. We can solve them, using the fact that x1 > 0 and x2 > 0.

2x1 − 4λx3
1 = 0 2x2 − 4λx3

2 = 0 2− x4
1 − x4

2 = 0

x2
1 =

1

2λ
x2
2 =

1

2λ

x2
1 = x2

2

x1 = x2

2− x4
1 − x4

1 = 0

2 = 2x4
1

1 = x1

1 = x2

1 =
1

2λ

λ =
1

2

The critical point is
(
1, 1, 1

2

)
. Switching the order of the variables, we compute

HL(λ, x1, x2) =

 0 −4x3
1 −4x3

2

−4x3
1 2− 12λx2

1 0
−4x3

2 0 2− 12λx2
2

HL

(
1

2
, 1, 1

)
=

 0 −4 −4
−4 −4 0
−4 0 −4

The determinants of the upper left square minors are

|M2| =
∣∣∣∣ 0 −4
−4 −4

∣∣∣∣ = −16

|M3| =

∣∣∣∣∣∣
0 −4 −4
−4 −4 0
−4 0 −4

∣∣∣∣∣∣ = 0 + 4

∣∣∣∣ −4 0
−4 −4

∣∣∣∣− 4

∣∣∣∣ −4 −4
−4 0

∣∣∣∣ = 128

175

4.2.2 Using the Bordered Hessian

(−1)2(−16) < 0 and (−1)3(128) < 0. According to Theorem 4.6, (1, 1) is a strict local maximizer.

∇f(1, 1)

x1

x2

Figure 4.15: The level sets of x2
1 + x2

2 and the constraint x4
1 + x4

2 = 2

4.2.3

The Multi-Constraint Bordered Hessian

For more variables, the test requires more determinants.

Theorem 4.7

Let f(x⃗) be an n-variable function and {gj(x⃗) = 0} be a set of m constraint equations. If (ℓ⃗, a⃗) satisfies

the first-order condition of the Lagrangian and the upper left square minors of HL(ℓ⃗, a⃗) satisfy

(−1)i|Mi| < 0 2m ≤ i ≤ n+m,

then a⃗ is a strict local maximizer of f(x⃗) among the feasible points.

176

4.2.4

The Bordered Hessian and Inequality Constraints

If we combine the determinant of the bordered Hessian with the requirement that ℓ > 0, then we can
guarantee that f(x⃗) < f (⃗a) on the equality constraint and in the direction of ∇g(⃗a) from the equality
constraint. This guarantees a neighborhood of some size in which a⃗ is a maximizer among feasible
points.

4.2.5

Section Summary

The most important definitions and results from this section were

The definition of the bordered Hessian (Definition 4.5)

The bordered Hessian determinant test for a maximizer (Theorems 4.6)

177

4.3

Separation

Goals:

1 Use normal vectors to describe half-spaces of a hyperplane.

2 Apply optimization by separation arguments.

4.3.1

Upper Level Sets and Optimization

Recall our necessary conditions for a maximizer of f(x⃗) subject to g(x⃗) ≥ 0. If the constraint is
binding, we learned to check that ∇f (⃗a) is parallel to ∇g(⃗a), meaning the level sets are parallel. We
also check that λ ≥ 0, meaning that ∇f (⃗a) points away from the feasible set. However, these checks
are not sufficient. We will construct an example that passes these conditions but isn’t a maximizer.

Recall the following definition

Definition 2.13

The upper level sets of a function f(x⃗) with domain D are the sets

{x⃗ ∈ D | f(x⃗) ≥ c} for some number c

The lower level sets are
{x⃗ ∈ D | f(x⃗) ≤ c} for some number c

The following characterization will be important to our arguments.

Lemma 2.14

Suppose ∇f(x⃗) ̸= 0⃗, and x⃗(t) is a path that passes through a⃗ in the level set f(x⃗) = c at t0

If x⃗′(t0) makes an acute angle with ∇f (⃗a), then x⃗(t) travels into the upper level set f(x⃗) ≥ c.

If x⃗′(t0) makes an obtuse angle with ∇f (⃗a), then x⃗(t) travels into the lower level set f(x⃗) ≤ c.

178

Consider the following diagram of a feasible set and an upper level set. The point a⃗ satisfies
∇f (⃗a) = −λ∇g(⃗a) and λ ≥ 0, but we can see that there are also feasible points in the interior of the

upper level set, like b⃗. f (⃗b) may be greater than f (⃗a).

∇f (⃗a)

∇g(⃗a) a⃗

b⃗
x1

x2

Figure 4.16: An upper level set and feasible set for which a⃗ is not a maximizer

We would like a condition to rule out this behavior. Suppose that a line separates the upper level
set f(x) ≥ c from the feasible set. This prevents any higher values of f from appearing in the feasible
set.

a⃗

x1

x2

Figure 4.17: The upper level set of f , a feasible set, and a separating line

4.3.2

Hyperplanes and Half-Spaces

To formalize this reasoning, we first present the notation for a separating line and generalize it to
higher dimensions. Every line h in R2 has a normal vector v⃗. h divides R2 into two half-planes:

h+ on the side of v⃗

h− on the other side.

179

4.3.2 Hyperplanes and Half-Spaces

h

h+

h− v⃗

a⃗
x1

x2

Figure 4.18: A line, its normal vector v⃗, and its half spaces

For any point x⃗, the vector that points from a⃗ to x⃗ is

x⃗− a⃗.

The angle of this vector with v⃗ tells us which half-plane contains x⃗. The dot product tells us whether
this angle is acute, obtuse or right.

Lemma 4.8

Suppose h is a line in R2 with normal vector v⃗, and a⃗ is a point on h. For any point x⃗

v⃗ · (x⃗− a⃗)

> 0 if x⃗ lies in h+

= 0 if x⃗ lies on h

< 0 if x⃗ lies in h−

Figure 4.19: The angle between a vector and the normal vector of a line

180

The analogous object in R3 is a plane h. It has a normal vector and divides R3 into two half-spaces
h+ and h−. The sign of v⃗ · (x⃗− a⃗) tests which half-space x⃗ lies in. Specifically, x⃗ lies on the plane, if
v⃗ · (x⃗− a⃗) = 0.

Figure 4.20: A plane, its normal vector v⃗, and a vector on it

This reasoning works in any dimension to define a set of points whose displacement from a known
point a⃗ is orthogonal to a normal vector v⃗.

Definition 4.9

In R2, v⃗ · (x⃗− a⃗) = 0 defines a line.

In R3, v⃗ · (x⃗− a⃗) = 0 defines a plane.

In Rn, v⃗ · (x⃗− a⃗) = 0 defines a hyperplane, a linear (n− 1)-dimensional subspace.

When dimension is general or ambiguous, we use the term hyperplane as a catch-all term. We can
rewrite our dot product lemma to reflect the n-dimensional case.

Variant of Lemma 4.8

Suppose h is a hyperplane with normal vector v⃗ and a⃗ is a point on h. For any point x⃗

v⃗ · (x⃗− a⃗)

> 0 if x⃗ lies in h+

= 0 if x⃗ lies on h

< 0 if x⃗ lies in h−

181

4.3.2 Hyperplanes and Half-Spaces

For a more concise test, we can let k = v⃗ · a⃗. We can rewrite our dot product

v⃗ · (x⃗− a⃗) = v⃗ · x⃗− v⃗ · a⃗ = v⃗ · x⃗− k

and the lemma

v⃗ · x⃗

> k if x⃗ lies in h+

= k if x⃗ lies on h

< k if x⃗ lies in h−

4.3.3

Optimization by Separation

In Figure 4.17, a line separates the upper level set of f and the feasible set. The point where they
meet appears to be a maximizer of f . We now have the notation to formalize this argument.

Theorem 4.10

Suppose we have a continuous objective function f(x⃗) and some constraint(s). Suppose x⃗∗ is in the
feasible set and let f(x⃗∗) = c. If there is a hyperplane h such that

1 the upper level set f(x⃗) ≥ c has no points in h−

2 the feasible set has no points in h+

then x⃗∗ is a maximizer of f(x⃗) subject to the constraint(s).

This method is called optimization by separation and h is a separating hyperplane. It is a
sufficient condition, but it requires us to know the proper hyperplane h.

Notice both the upper level set and the feasible set may contain have points on h. In fact, x⃗∗ is
one of them. What if they share an additional point a⃗ in h? a⃗ must lie on the boundary of the upper
level set, arbitrarily close to points for which f(x⃗) < c. Since f(x⃗) is continuous, f (⃗a) = c. We can still
conclude that x⃗∗ is a maximizer, but not a unique maximizer.

182

h

a⃗

b⃗

x1

x2

Figure 4.21: An upper level set of f and the feasible set intersecting multiple times along their
separating line

We can modify this theorem by stipulating that x⃗∗ is either

1 the only point of the upper level set on h or

2 the only feasible point on h.

In this case we can conclude that x⃗∗ is the unique maximizer.

If we want to avoid talking directly about the hyperplane h, we can think of v⃗ · x⃗ as a function of x⃗.
Its level sets are the hyperplanes v⃗ · x⃗ = k. The value of v⃗ · x⃗ increases as we travel in the direction of v⃗.

k > k< k

v⃗

x⃗∗

x1

x2

Figure 4.22: Some level sets of v⃗ · x⃗ that intersect an upper level set of f and a feasible set

Our separation argument can be rephrased to require that the upper level set meets only higher
values of v⃗ · x⃗ while the feasible set meets only lower values of v⃗ · x⃗. We can verify this algebraically.

Suppose x⃗ be a point in the upper level set of f(x⃗). Lemma 4.8 states that x⃗ does not lie in h−, if

v⃗ · (x⃗− x⃗∗) ≥ 0

v⃗ · x⃗ ≥ v⃗ · x⃗∗

183

4.3.3 Optimization by Separation

This inequality indicates that the value of v⃗ · x⃗ at x⃗∗ is less than or equal to the value at any other
point in the upper level set. In other words, x⃗∗ minimizes the function v⃗ · x⃗ subject to the constraint
f(x⃗) ≥ c.

To show that the feasible set has no points in h+ we can check that for each feasible x⃗:

v⃗ · (x⃗− x⃗∗) ≤ 0

v⃗ · x⃗ ≤ v⃗ · x⃗∗

This means that the value of v⃗ · x⃗ at x⃗∗ is greater than or equal to the value at any other x⃗ in the
feasible set. In other words, x⃗∗ maximizes the function v⃗ · x⃗ subject to the constraints of the original
optimization problem. We can restate Theorem 4.10 in terms of this new vocabulary.

Alternate Formulation of Theorem 4.10

Suppose we have a continuous objective function f and some constraints. If f(x⃗∗) = c and for some
v⃗ ̸= 0⃗ we have

1 x⃗∗ minimizes v⃗ · x⃗ subject to f(x⃗) ≥ c

2 x⃗∗ maximizes v⃗ · x⃗ subject to the constraints

Then x⃗∗ maximizes f(x⃗) given the constraints.

We can see that this is a condition for a maximizer without knowing much about hyperplanes. If
the feasible points all have values of v⃗ · x⃗ less than or equal to k and the upper level sets all have values
greater than or equal to k, then the feasible set and the upper level can only meet where v⃗ · x⃗ = k.

4.3.4

The Tangent Hyperplane

An observant reader will have noticed that our separating lines have always been tangent to the level
curve f(x⃗) = c. This is not a coincidence. It occurs in higher dimensions as well, where the tangent
lines become tangent hyperplanes.

Definition 4.11

Suppose a point a⃗ lies on level set f(x⃗) = c, and ∇f (⃗a) ̸= 0⃗. The tangent hyperplane to f(x⃗) = c
at a⃗ is the hyperplane containing of all the tangent lines to f(x⃗) = c at a⃗. Its normal vector is ∇f (⃗a).
Its equation is

∇f (⃗a) · (x⃗− a⃗) = 0

184

If ∇f (⃗a) ̸= 0, the only candidate for a separating hyperplane is the tangent hyperplane to f(x⃗) = c.
Any other hyperplane would contain some vector w⃗ such that ∇f (⃗a) · w⃗ > 0, meaning it would cut into
the upper level set of f at a⃗.

On the other hand, we have seen examples where a tangent line fails to keep the upper level set out
of h−.

∇f (⃗a)

a⃗

x1

x2

Figure 4.23: An upper level set that crosses its own tangent line

For this reason, optimization by separation is only realistic for functions with nicely shaped level sets.
We will discover a class of such functions in the next section.

4.3.5

Section Summary

The most important definitions and results from this section were

Hyperplanes and the dot product test (Definition 4.9 and Lemma 4.8)

Optimization by separation, both formulations (Theorem 4.10 and its variant)

Equation of a tangent hyperplane to a level set (Definition 4.11)

185

4.4

Concave Programming

Goals:

1 Understand the geometric consequences of concavity on constrained optimizations.

2 Apply sufficient conditions for maximizers of concave functions with concave constraints.

4.4.1

Kuhn-Tucker Sufficiency

When is a separation argument possible? When does the tangent hyperplane separate the upper level
set from the feasible set? Concavity is one way to guarantee this. There is an a rich theory and toolset
for optimization that is specific to concave functions. This is the field of concave programming. Here
is our main result.

Theorem 4.12

Given an objective function f(x⃗) and constraints gj(x⃗) ≥ 0, suppose (x⃗∗, λ⃗∗) satisfies the Kuhn-Tucker
conditions:

Lxi(x⃗
∗, λ⃗∗) = 0 for all i

gj(x⃗
∗) ≥ 0 and λ∗

j ≥ 0 with complementary slackness for each j

If f(x⃗) and the gj(x⃗) are all concave functions, then x⃗∗ maximizes f(x⃗), subject to the constraints.

It is worth understanding the full argument of this theorem that follows, but the essential ideas are:

1 The upper level sets of a concave function are convex sets. This applies not only to f(x⃗) ≥ c but
also to the feasible set, which is an intersection of the upper level sets: gj(x⃗) ≥ 0.

2 Using this convexity, we can show that the tangent hyperplane to f(x⃗) = c separates the upper
level set f(x⃗) ≥ c from the feasible set.

186

∇f(x⃗∗)

x1

x2

Figure 4.24: A feasible region defined by multiple concave inequalities separated from the upper level
set of f by a tangent line

Remark

This sufficient condition is especially powerful because once we find a point that satisfies Kuhn-Tucker,
we can stop looking. If, by luck or cleverness, we find a solution in the first case of complementary
slackness we try, then we have found the maximizer. We need not examine the other cases at all.

4.4.2

Applying the Kuhn-Tucker Sufficient Condition

Find the maximum value of f(x1, x2) = 4x1 + x2 on the region

S = {(x1, x2) : 25− 7x1 − x2 ≥ 0, x2 ≥ 0, x2 + x2
1 − 5 ≥ 0, and 25− x2

1 − x2
2 ≥ 0}

x2 + x2
1 − 5 = 0

25− x2
1 − x2

2 = 0

25− 7x1 − x2 = 0

x1

x2

Figure 4.25: The feasible set S

187

4.4.2 Applying the Kuhn-Tucker Sufficient Condition

Solution

Increasing x1 seems to be the most important factor in increasing f , but larger x2 helps too. We should
draw and examine the region S. The set x2 +x2

1 − 5 ≥ 0 appears to be nonconvex. On the other hand,
based on our diagram, that inequality appears not to bind. We will instead maximize f over the region

T = {(x1, x2) : 25− 7x1 − x2 ≥ 0, x2 ≥ 0, and 25− x2
1 − x2

2 ≥ 0}

S is a subset of T so a maximizer in T that lies in S is a maximizer in S. This modified problem has
the following Lagrangian:

L(x1, x2, λ1, λ2, λ3) = 4x1 + x2 + λ1(25− 7x1 − x2) + λ2x2 + λ3(25− x2
1 − x2

2).

The Kuhn-Tucker conditions are

Lx1 = 4− 7λ1 − 2λ3x1 = 0

Lx2 = 1− λ1 + λ2 − 2λ3x2

25− 7x1 − x2 ≥ 0 λ1 ≥ 0 λ1(25− 7x1 − x2) = 0

x2 ≥ 0 λ2 ≥ 0 λ2x2 = 0

25− x2
1 − x2

2 ≥ 0 λ3 ≥ 0 λ3(25− x2
1 − x2

2) = 0

We might guess that 25−7x1−x2 = 0 and 25−x2
1−x2

2 = 0 are binding at the maximizer and x2 ≥ 0 is
not. Based on that guess, we first consider the case where λ2 = 0. Next we use the binding constraints
to solve for x1 and x2.

25− 7x1 − x2 = 0 25− x2
1 − x2

2 = 0

25− 7x1 = x2

25− x2
1 − (25− 7x1)

2 = 0

25− x2
1 − 49x2

1 + 350x1 − 625 = 0

−50x2
1 + 350x1 − 600 = 0

−50(x1 − 3)(x1 − 4) = 0

x1 = 3 or 4

25− 7(3) = 4 = x2 or

25− 7(4) = −3 = x2

We can look ahead and see that x2 = −3 will not satisfy our inequalities, so we set (x1, x2) = (3, 4).
We use the remaining equations to solve for the λ1 and λ3.

4− 7λ1 − 2λ3x1 = 0 1− λ1 − 2λ3x2 = 0

4− 7λ1 − 6λ3 = 0 1− λ1 − 8λ3 = 0

1− 8λ3 = λ1

4− 7 + 56λ3 − 6λ3 = 0

50λ3 = 3

λ3 =
3

50

1− 24

50
= λ1

13

25
= λ1

188

Our solution is
(
3, 4, 13

25 , 0,
3
50

)
. We check, and it satisfies the remaining inequalities.

λ1 =
13

25
≥ 0

x2 = 4 ≥ 0

λ3 =
3

50
≥ 0

There are 7 other cases of complementary slackness to check, but we can avoid them. Our sufficiency
theorem applies to (3, 4). We only need to check for concavity of the relevant functions.

4x1 + x2 is concave because it is linear.

25− 7x1 − x2 is concave because it is linear.

x2 is concave because it is linear.

25− x2
1 − x2

2 is strictly concave because its hessian is

[
−2 0
0 −2

]
, which is negative definite for

all (x1, x2).

We ignored the constraint x2 + x2
1 − 5 ≥ 0.

Based on these checks, the theorem applies, and (3, 4) must be a maximizer of f on T . Since (3, 4)
satisfies

x2 + x2
1 − 5 = 4 + 9− 5 ≥ 0

it lies in S as well. Since S ⊆ T , we conclude (3, 4) is also a maximizer of f in S. The maximum value
is f(3, 4) = 4(3) + (4) = 16.

Main Idea

The most common methods to check concavity are

linear functions are concave

functions with negative definite Hessians are strictly concave

If the functions are concave, and we guess the right combination of binding constraints, then we only
need to check the Kuhn-Tucker conditions for that case.

189

4.4.2 Applying the Kuhn-Tucker Sufficient Condition

Remark

The underlying separation argument was between the convex upper level set f(x1, x2) ≥ 16 and the
convex set

T = {(x1, x2) : 25− 7x1 − x2 ≥ 0, x2 ≥ 0 and 25− x2
1 − x2

2 ≥ 0}

Since (3, 4) is a maximizer on T , it is a maximizer on S.

∇f(3, 4)

x1

x2

Figure 4.26: A convex set T containing S, an upper level set, and a separating line

The reasoning of this example also suggests the following variant.

Variant of Theorem 4.12

Given an objective function f(x⃗) and constraints gj(x⃗) ≥ 0, suppose (x⃗∗, λ⃗∗) satisfies the Kuhn-Tucker
conditions.

If f(x⃗) and the binding gj(x⃗) are all concave, then x⃗∗ maximizes f(x⃗), subject to the constraints.

4.4.3

Proving Kuhn-Tucker Sufficiency

This will be an extensive argument with many parts, but there are two reasons to give it our attention.

1 Some of the lemmas along the way are useful or interesting in their own right.

2 There are many ways to modify this argument for different circumstances. If you understand the
original argument, you can understand or even generate these variants.

190

Our first step is to understand the upper level sets of concave functions.

Lemma 4.13

If f(x⃗) is a concave function, then the upper level set f(x⃗) ≥ c is a convex set.

We can argue this directly from the definition of an upper level set, the definition of a convex set,
and the following inequality for concave functions:

f((1− t)⃗a+ t⃗b) ≥ (1− t)f (⃗a) + tf (⃗b).

Figure 4.27: The segment from a⃗ to b⃗ in the upper level set of f(x⃗)

Proof

Let a⃗ and b⃗ be points in the upper level set f(x⃗) ≥ c. We will show that the segment between a⃗ and b⃗

also lies in this upper level set. The points on the segment from a⃗ to b⃗ are parametrized by

(1− t)⃗a+ t⃗b 0 ≤ t ≤ 1

If we evaluate f along these points we get

f((1− t)⃗a+ t⃗b) ≥ (1− t)f (⃗a) + tf (⃗b) (f is concave)

≥ (1− t)c+ tc (⃗a and b⃗ lie in the upper level set)

≥ c

Since f((1− t)⃗a+ t⃗b) ≥ c, (1− t)⃗a+ t⃗b lies in the upper level set. Since this is true for every t between

0 and 1, the entire segment from a⃗ to b⃗ lies in the upper level set. Since this is true for all a⃗ and b⃗ in
the upper level set, we conclude that the upper level set is convex.

191

4.4.3 Proving Kuhn-Tucker Sufficiency

We now know that if f is concave, then its upper level sets are convex. For a separation argument,
we also would like to know they do not cross their tangent hyperplane. Fortunately, this is the case.

Lemma 4.14

Let

f(x⃗) be a continuously differentiable function

a⃗ be a point such that f (⃗a) = c and ∇f (⃗a) ̸= 0⃗

h be the tangent hyperplane to f(x⃗) = c at a⃗.

If upper level set f(x⃗) ≥ c is convex, then it does not intersect h−.

Proof

Suppose b⃗ is any point in the upper level set f(x⃗) ≥ c. We want to show that b⃗ does not lie in h−.
Since the upper level set is convex, the entire segment

x⃗(t) = (1− t)⃗a+ t⃗b 0 ≤ t ≤ 1

= a⃗+ t(⃗b− a⃗)

must lie within it. This specifically requires that the direction vector x⃗′(0) = b⃗− a⃗ points into the upper
level set at a⃗. Lemma 2.14 tells us that if ∇f (⃗a) · x⃗′(0) < 0, then x⃗(t) travels into the lower level set.

Thus ∇f · (⃗b− a⃗) ≥ 0. By Lemma 4.8, b⃗ does not lie in h−.

∇f (⃗a)

a⃗ b⃗

x1

x2

Figure 4.28: The vector b⃗− a⃗ in a
convex upper level set making an acute

angle with ∇f (⃗a)

∇f (⃗a)

a⃗

b⃗

x1

x2

Figure 4.29: The vector b⃗− a⃗ leaving an
upper level set and making an obtuse

angle with ∇f (⃗a)

Now we turn our attention to the constraint functions. Lemma 4.13 applies as well to each gj as it
does to f . If each function gj(x⃗) is concave, then each upper level set gj(x⃗) ≥ 0 is convex. With some
very familiar looking conditions on ∇gj (⃗a), we can ensure that the feasible set stays on one side of the
tangent hyperplane to f(x⃗) = c.

192

Corollary 4.15

Let f (⃗a) = c and ∇f (⃗a) ̸= 0⃗. Let h be the tangent hyperplane to f(x⃗) = c at a⃗. If

1 The upper level sets gj(x⃗) ≥ 0 are convex

2 ∇f (⃗a) = −
∑
j

λj∇gj (⃗a) for some numbers λj

3 For each j, λj ≥ 0 if gj (⃗a) = 0 and λj = 0 otherwise

then the intersection of the upper level sets gj(x⃗) ≥ 0 does not intersect h+.

The geometry is easiest to visualize if we consider a single constraint g(x⃗) ≥ 0. In this case,

∇f (⃗a) = −λ∇g(⃗a). For any b⃗ in g(x⃗) ≥ 0, the vector b⃗− a⃗ makes an acute angle with ∇g(⃗a). Thus it

makes an obtuse angle with ∇f (⃗a), meaning b⃗ lies in h−.

∇f (⃗a)∇g(⃗a)
a⃗

b⃗
x1

x2

Figure 4.30: The vector b⃗− a⃗ in a convex feasible set making an obtuse angle with ∇f (⃗a)

For multiple constraints, angles are too difficult to discern. The dot product provides a cleaner
argument.

Proof

Let b⃗ be a point in the intersection of the upper level sets. For each gj(x⃗) that is binding at a⃗, we can
apply Lemma 4.14 to the convex upper level set gj(x⃗) ≥ 0. As that proof argued, we can conclude that

∇gj · (⃗b− a⃗) ≥ 0.

By Lemma 4.8, the sign of ∇f (⃗a) · (⃗b − a⃗) will tell us whether b⃗ lies in h+. We can substitute as

193

4.4.3 Proving Kuhn-Tucker Sufficiency

follows:

∇f (⃗a) · (⃗b− a⃗) = −

∑
j

λj∇gj (⃗a)

 · (⃗b− a⃗)

= −
∑
j

λj∇gj (⃗a) · (⃗b− a⃗)

We can determine the sign of each term of the summation.

1 For nonbinding gj , λj = 0.

2 For binding gj , λj ≥ 0 and ∇gj (⃗a) · (⃗b− a⃗) ≥ 0.

We conclude that ∇f (⃗a) · (⃗b− a⃗) ≤ 0. Thus b⃗ does not lie in h+.

We now have the ingredients to prove Theorem 4.12. There are two cases of complementary slackness
to consider when proving this theorem.

1 If all λ∗
j = 0 then ∇f(x⃗∗) = 0. Since f is concave, a variant of Corollary 1.23 tells us that x⃗∗ is

an unconstrained maximizer of f . Corollary 2.2 tells us that since it lies in the feasible set, is also
a maximizer there.

2 If some λ∗
j > 0 then we can put together the results of this section to conclude the upper level

set of f and the feasible set lie on opposite sides of h. This is the requirement for optimization
by separation established in Theorem 4.10, so x⃗∗ is a maximizer.

Here is a diagram containing the reasoning for each case.

binding λ∗
j > 0

all λ∗
j = 0

∇f(x⃗∗) = 0⃗

f(x⃗) is
concave

f(x⃗) ≥ c is convex

f(x⃗) ≥ c does not
intersect h−

gj(x⃗) are
concave

gj(x⃗) ≥ 0
are convex

∇f(x⃗∗) = −
∑

λ∗
j∇gj(x⃗

∗)

feasible set does
not intersect h+

x⃗∗ is a max

x⃗∗ is a max
in the feasible set

Lem 4.13

Lem 4.14

Lem 4.13

Cor 4.15

Thm 4.10

Cor 1.38

Cor 2.2

194

4.4.4

Variants of Kuhn-Tucker Sufficiency

In a separation argument, the upper level set and the feasible set may meet at many points in h. For
example, we could have an entire line segment of intersection, and every point on that segment would
satisfy Kuhn-Tucker.

h

∇f(x⃗∗)

x1

x2

Figure 4.31: An upper level set of f and the feasible set intersecting along a separating line

This pathology only exists if both sets contain multiple points on the separating hyperplane. If one
of the sets is strictly convex, this will not happen. We can achieve this with strict concavity. Each
lemmas we used has a variant for strict concavity.

Variant of Lemma 4.13

If f(x⃗) is a strictly concave function then the upper level set f(x⃗) ≥ c is strictly convex.

Variant of Lemma 4.14

Suppose we have

a continuously differentiable function f(x⃗)

a point a⃗ such that f (⃗a) = c and ∇f (⃗a) ̸= 0⃗

the tangent hyperplane to f(x⃗) = c at a⃗, denoted h.

If upper level set f(x⃗) ≥ c is strictly convex, then it lies entirely within h+, except for the point a⃗.

195

4.4.4 Variants of Kuhn-Tucker Sufficiency

Variant of Corollary 4.15

Let f (⃗a) = c and ∇f (⃗a) ̸= 0⃗. Let h be the tangent hyperplane to f(x⃗) = c at a⃗. If

1 The upper level sets gj(x⃗) ≥ 0 are strictly convex

2 ∇f (⃗a) = −
∑
j

λj∇gj (⃗a) for some numbers λj

3 For each j, λj ≥ 0 if gj (⃗a) = 0 and λj = 0 otherwise

then the intersection of the upper level sets gj(x⃗) ≥ 0 lies entirely within h− except the point a⃗.

We can use these lemmas to guarantee a unique maximizer. We can either keep the upper level set
or the feasible set from having multiple points on h.

Theorem 4.12 for a Unique Maximizer

Given an objective function f(x⃗) and constraints gj(x⃗) ≥ 0, suppose (x⃗∗, λ⃗∗) satisfies the Kuhn-Tucker
conditions. If f(x⃗) and the binding gj(x⃗) are concave, and additionally either

1 f(x⃗) is strictly concave, or

2 at least one constraint binds and the binding gj(x⃗) are strictly concave,

then x⃗∗ is the unique maximizer of f(x⃗), subject to the constraints.

Another avenue of modification is to include equality constraints. One method is to treat the equality
constraint as an inequality constraint. The level set is a subset of the upper level set. By Corollary 2.2,
a maximizer over an inequality constraint that happens to bind is also a maximizer over the equality
constraint. This requires the constraint function to be concave and its λj to be positive.

Alternately, if the equality constraint is linear, then its level set is a hyperplane, which is convex.
Thus the feasible set is still convex. Corollary 4.15 still holds regardless of the sign of λj , because

∇gj (⃗a) · (⃗b− a⃗) = 0. We can formalize this possibility with the following variant.

Theorem 4.12 with Equality Constraints

Given an objective function f(x⃗) and constraints of the forms gj(x⃗) ≥ 0 and gj(x⃗) = 0, suppose (x⃗∗, λ⃗∗)
satisfies the Kuhn-Tucker conditions.

If f(x⃗) and the binding gj(x⃗) are all concave, and the equality constraints are linear, then x⃗∗

maximizes f(x⃗), given the constraints.

196

This section contains just a few possibilities. There are other ways to modify our sufficiency theorems
that allow them to apply in more situations or to draw stronger conclusions.

4.4.5

Slater’s Condition

Concavity has produced a convenient sufficient condition for constrained optimization. It can also
help simplify our necessary conditions. Recall that the Kuhn-Tucker conditions are a necessary condition,
but they have an exception. Theorem 2.23 states that a maximizer a⃗ must either satisfy the Kuhn-Tucker
conditions or have binding ∇gj (⃗a) that are linearly dependent.

Checking for linearly dependent gradient vectors is difficult, especially if we do not know where to
look for them. Slater’s condition allows us to skip that check in some situations.

Slater’s condition requires that the objective and constraint functions are concave. It also requires
the feasible set to have an interior, rather than collapsing to a lower dimensional set. Formally, it
demands the existence of a point b⃗ in the interior. This point is not special. If the feasible region has
an interior, then you can identify infinitely many points inside it by looking at a diagram.

Theorem 4.16 [Slater’s Condition]

Suppose that the functions f(x⃗) and gj(x⃗) satisfy Slater’s condition:

1 f(x⃗) and the gj(x⃗) are all concave functions

2 there is at least one point b⃗ in the interior of the feasible set, meaning

gj (⃗b) > 0 for all j

If a⃗ is a local maximizer of f(x⃗) subject to gj(x⃗) ≥ 0, then a⃗ satisfies the Kuhn-Tucker conditions.

Remark

Slater’s condition checks for concavity, just like Theorem 4.12 (our sufficient condition). This means
that if f(x⃗) and gj(x⃗) satisfy Slater’s condition, then the Kuhn-Tucker conditions are both necessary
and sufficient for a maximizer.

Slater’s condition doesn’t prevent the gradient vectors of the binding gj from being linearly depen-
dent. Instead it argues that even if the gradient vectors are linearly dependent at a⃗, the Kuhn-Tucker
conditions must still be satisfied in order for a⃗ to be a maximizer.

Slater’s condition can be strengthened to handle equality constraints in the case that those are linear.

197

4.4.5 Slater’s Condition

Variant of Theorem 4.16

Suppose that we are maximizing f(x⃗) subject to constraints of the form gj(x⃗) ≥ 0 or gj(x⃗) = 0.
Suppose further that

1 f(x⃗) and the inequality constraint functions gj(x⃗) are concave

2 the equality constraint functions gj(x⃗) are linear

3 there is at least one point b⃗ in the relative interior of the feasible set, meaning

gj (⃗b) > 0 for all inequality constraints

gj (⃗b) = 0 for all equality constraints

If a⃗ is a local maximizer, then it satisfies the Kuhn-Tucker conditions.

4.4.6

The Separating Hyperplane Theorem

Throughout this section, we have used tangent hyperplanes to separate convex sets. It is possible to
make these arguments without separation, however. Here is a short alternative proof of Theorem 4.12.

Proof

x⃗∗ satisfies the first-order condition of a stubborn lagrangian, in which λ⃗ is held constant at λ⃗∗.

L∗(x⃗) = f(x⃗) +
∑
j

λ∗
jgj(x⃗)

Since λ∗
j ≥ 0, L∗ is a sum of concave functions. By Theorem 1.20, L∗ is concave. Thus x⃗∗ is a

maximizer of L∗. x⃗∗ also satisfies λ∗
jgj(x⃗

∗) = 0 by complementary slackness. If we compare x⃗∗ and
any other feasible point a⃗, we have

L∗(x⃗∗) ≥ L∗(⃗a)

f(x⃗∗) +
∑
j

λ∗
jgj(x⃗

∗) ≥ f (⃗a) +
∑
j

λ∗
jgj (⃗a)

f(x⃗∗) + 0 ≥ f (⃗a) +
∑
j

λ∗
j︸︷︷︸

≥0

gj (⃗a)︸ ︷︷ ︸
≥0

f(x⃗∗) ≥ f (⃗a)

Since this holds for any feasible a⃗, we can conclude that x⃗∗ is a maximizer of f(x⃗) subject to gj(x⃗) ≥ 0.

198

This argument does not establish a separating hyperplane, even though we know one exists from our
longer proof. It turns out that in any successful maximization argument for a concave function over a
convex feasible set, the hyperplane is there, whether we use it or not. The following famous theorem
guarantees that.

Theorem 4.17 [The Separating Hyperplane Theorem]

If S and U are two convex sets, at least one has a non-empty interior, and they share no interior points
in common, then there is a vector v⃗ and a number k such that

1 For all x⃗ in U , v⃗ · x⃗ ≥ k

2 For all x⃗ in S, v⃗ · x⃗ ≤ k

Remark

This theorem tells us that if a convex upper level set U and a convex feasible set S meet only at their
boundaries, then the hyperplane v⃗ · x⃗ = k separates them. It does not tell us what v⃗ is or how to
construct it.

As you might infer from this remark, the applications of the separating hyperplane theorem tend to
be abstract. The proof requires ideas from analysis.

4.4.7

Section Summary

The most important definitions and results from this section were

Upper level sets of concave functions are convex (Lemma 4.13)

Convex upper level sets lie in one half space of their tangent hyperplanes (Lemma 4.14)

Kuhn-Tucker sufficiency for concave functions (Theorem 4.12)

Slater’s condition (Theorem 4.16)

This is also a good time to summarize the sufficient conditions we have covered. They differ in when
they can be applied and what conclusion they draw.

199

4.4.7 Section Summary

Sufficient Conditions for Constrained Optimization

Condition Limited to Conclusion
EVT bounded sets one of the critical points

is a maximizer
Bordered Hessian binding constraint this critical point

is a local maximizer
KT Sufficiency concave functions this critical point

is a maximizer

200

4.5

Quasiconcavity

Goals:

1 Recognize a quasiconcave function from its graph or level sets

2 Apply quasiconcavity in sufficient conditions for a maximizer

3 Use concavity and nondecreasing compositions to test for quasiconcavity

4 Use a determinant test to verify quasiconcavity

4.5.1

Limitations of Concave Programming

Concave programming provided sufficient conditions for a maximizer on one or more constraints.
Our argument excluded functions with badly behaved level sets in order to guarantee separation, but
did it exclude too many?

The function f(x) = 3
x2−2x+2 has convex upper level sets, but it is not a concave function. Could

we make a separation argument for it?

Figure 4.32: The graph of y = 3
x2−2x+2 and a convex upper level set

Another example: f(x1, x2) = x1x2 (restricted to x1, x2 > 0) has strictly convex upper level sets.
It is not a concave function, because

Hf(x1, x2) =

[
0 1
1 0

]
.

201

4.5.1 Limitations of Concave Programming

∇f(x1, x2)

x1

x2

Figure 4.33: Several level sets and one upper level set of f(x1, x2) = x1x2

4.5.2

Quasiconcave Functions

Theorem 4.12 requires that the objective function and constraint functions are concave, but the only
part of the proof that used their concavity was the first step: that concave functions have convex upper
level sets. We have now seen examples of other functions that have this property. These examples
belong to a broader class of functions, on which the main ideas of concave programming still apply. We
call them quasiconcave.

Definition 4.18

A function f(x⃗) is quasiconcave if for any points a⃗ and b⃗ in the domain of f(x⃗),

f((1− t)⃗a+ t⃗b) ≥ min{f (⃗a), f (⃗b)} for all 0 ≤ t ≤ 1

It is quasiconvex if

f((1− t)⃗a+ t⃗b) ≤ max{f (⃗a), f (⃗b)} for all 0 ≤ t ≤ 1

Quasiconcavity is a statement about the height of the graph over a path that goes across and then
up.

f((1− t)⃗a+ t⃗b︸ ︷︷ ︸
line from a⃗ to b⃗

) ≥ min{f (⃗a), f (⃗b)}︸ ︷︷ ︸
horizontal line

for all 0 ≤ t ≤ 1

202

Figure 4.34: The graph of a quasiconcave function and the across and up path

Remark

“Across and up” is designed so that the path has a height that is the minimum of f (⃗a) and f (⃗b) for
each x⃗ between them. If it lies below the graph then

f((1− t)⃗a+ t⃗b) ≥ min{f (⃗a), f (⃗b)} for all 0 ≤ t ≤ 1.

Do not make an “across and down” or “up and across” path by mistake. Those will test a different
inequality.

The name quasiconcavity suggests that these functions should be similar to concave functions. In
fact, concavity is a stronger condition than quasiconcavity. A visual argument is best here. Theorem
1.19 showed that a function is concave, if and only if its graph lies above its secants.

The across and up path lies below the secant from (⃗a, f (⃗a)) to (⃗b, f (⃗b)). If y = f(x⃗) lies above the
secant, then it also lies above the across and up path.

Theorem 4.19

If f(x⃗) is a concave function, then it is also a quasiconcave function.

203

4.5.2 Quasiconcave Functions

Figure 4.35: The secant and the across and up path below y = f(x)

Quasiconcavity is easiest to recognize in single-variable functions. We can verify that across and up
paths stay below the graph y = f(x) for functions with the following shapes.

Lemma 4.20

Suppose f(x) is a one-variable function. f(x) is quasiconcave, if one of the following is true about
f(x):

1 f(x) is non-decreasing.

2 f(x) is non-increasing.

3 For some a, f(x) is non-decreasing before a and nonincreasing after a.

Functions that satisfy 1 or 2 are called monotone.

Remark

These conclusions only make sense for single-variable functions. Increasing and decreasing are not words
that describe multivariable functions.

204

Figure 4.36: The across and up path below a non-increasing y = f(x)

Our goal in defining quasiconcavity was to produce a large class of functions whose upper level sets
allowed for separation arguments. In fact, the quasiconcave functions are the broadest possible such
class. Every function with convex upper level sets is quasiconcave, and every quasiconcave function has
convex upper level sets.

Lemma 4.21

f(x⃗) is a quasiconcave function, if and only if every upper level set f(x⃗) ≥ c is a convex set.

Figure 4.37: The segment from a⃗ to b⃗ in the upper level set of f(x⃗)

The proof relies on combining the definitions of quasiconcavity, upper level sets, and convex sets.

205

4.5.2 Quasiconcave Functions

Proof

There are two directions of argument that we need to make.

1 Suppose that f(x⃗) is quasiconcave. Let a⃗ and b⃗ be in the upper level set f(x⃗) ≥ c. By definition,

we know that f (⃗a) ≥ c and f (⃗b) ≥ c. The points on the segment from a⃗ to b⃗ are parametrized by

(1− t)⃗a+ t⃗b 0 ≤ t ≤ 1

If we evaluate f along these points we get

f((1− t)⃗a+ t⃗b) ≥ min{f (⃗a), f (⃗b)} (f is quasiconcave)

≥ c (⃗a and b⃗ lie in the upper level set)

Thus the segment lies in the upper level set f(x⃗) ≥ c. Since this holds for any a⃗ and b⃗ in any
upper level set, we conclude that every upper level set of f(x⃗) is convex.

2 Now suppose that every upper level set of (x⃗) is convex. Let a⃗ and b⃗ be any points in the domain.

Let c = min{f (⃗a), f (⃗b)}, so a⃗ and b⃗ both lie in the upper level set f(x⃗) ≥ c. Since the upper
level set is convex, the segment between them

(1− t)⃗a+ t⃗b 0 ≤ t ≤ 1

lies in this set. Thus for 0 ≤ t ≤ 1,

f((1− t)⃗a+ t⃗b) ≥ c = min{f (⃗a), f (⃗b)}

Since this holds for all a⃗ and b⃗, we conclude f(x⃗) is quasiconcave.

4.5.3

Quasiconcave Programming

Quasiconcave programming describes the methods we use to solve constrained optimization when
the objective functions and constraint functions are quasiconcave. Most methods are analogs of results
for concavity, but because quasiconcavity is a weaker condition, they often need additional conditions
or draw weaker conclusions. We begin with a result for unconstrained optimization.

206

Theorem 4.22

If x⃗∗ is a strict local maximizer of a quasiconcave function f(x⃗), then x⃗∗ is the unique global maximizer
of f(x⃗).

a⃗

b⃗

x⃗∗

x1

x2

Figure 4.38: A segment, a neighborhood in which x⃗∗ is a maximizer, and a point a⃗ that lies in both

Proof

Let b⃗ be any other point in the domain of f(x⃗). x⃗∗ is the unique maximizer in some neighborhood, and

the segment from x⃗∗ to b⃗ travels through this neighborhood. Let a⃗ ̸= x⃗∗ be a point that lies both on
the segment and in the neighborhood.

f (⃗a) ≥ min{f(x⃗∗), f (⃗b)} (f(x⃗) is quasiconcave)

f(x⃗∗) > min{f(x⃗∗), f (⃗b)} (f(x⃗∗) > f (⃗a))

f(x⃗∗) > f (⃗b) (f(x⃗∗) is not less than itself)

Since this holds for any b⃗, we conclude that x⃗∗ is the unique maximizer of f(x⃗),

Remark

For a quasiconcave function, knowing a⃗ is a critical point is not enough to conclude that a⃗ is a maximizer.
For instance f(x) = x3 is increasing, so it is quasiconcave. 0 is a critical point but not a maximizer.

This means that our Kuhn-Tucker sufficiency theorem cannot translate directly to quasiconcavity,
because there is no way to cover the ∇f(x⃗) = 0⃗ case. The simplest workaround is to write a theorem
that only applies when ∇f(x⃗∗) ̸= 0⃗.

207

4.5.3 Quasiconcave Programming

Theorem 4.23

Given an objective function f(x⃗) and constraints gj(x⃗) ≥ 0, suppose ∇f(x⃗∗) ̸= 0⃗ and (x⃗∗, λ⃗∗) satisfies
the Kuhn-Tucker conditions. If f(x⃗) and the gj(x⃗) are all quasiconcave, then x⃗∗ maximizes f(x⃗), subject
to the constraints.

We can use almost the same argument that we used for the λj > 0 case with concave functions.
Only the first steps need to change. Once we establish that the upper level sets are convex, the rest of
the proof is identical to Theorem 4.12.

binding λ∗
j > 0

all λ∗
j = 0

f(x⃗) is
quasiconcave

f(x⃗) ≥ c is convex

f(x⃗) ≥ c does not
intersect h−

gj(x⃗) are
quasiconcave

gj(x⃗) ≥ 0
are convex

∇f(x⃗∗) = −
∑

λ∗
j∇gj(x⃗

∗)

feasible set does
not intersect h+

x⃗∗ is a max
in the feasible set

Lem 4.21

Lem 4.14

Lem 4.21

Cor 4.15

Thm 4.10

4.5.4

Positive Transformations and Quasiconcavity

The condition of quasiconcavity is ordinal rather than cardinal in nature. We care that certain
points attain greater values than others, but not how much greater. Contrast this to concavity where
f((1− t)⃗a+ t⃗b) has to be at least t(f (⃗b)− f (⃗a)) greater than f (⃗a).

For this reason, quasiconcavity is a relevant property of utility functions. The values of a utility
function reflect no inherent information beyond relative preferences. We can rescale a quasiconcave
function f(x⃗) without affecting whether f (⃗a) > f (⃗b). The following definition and theorem formalizes
this flexibility.

Definition 4.24

A function f(x⃗) is a positive transformation of a function g(x⃗) if there is an increasing function p(x)
such that g(x⃗) = p(f(x⃗))

208

Example

Consider the function f(x1, x2) = x1x2 on the domain

R2
+ = {(x1, x2) : x1 > 0, x2 > 0}.

p(x) = lnx is an increasing function so

g(x1, x2) = p(f(x1, x2))

= lnx1 + lnx2

is a positive transformation of f .

Positive transformation is a symmetric relation. If p(x) is increasing, then so is p−1(x). That means
that if g(x⃗) = p(f(x⃗)) is a positive transformation of f(x⃗), then f(x⃗) = p−1(g(x⃗)) is also a positive
transformation of g(x⃗).

Theorem 4.25

Let f(x⃗) be a function, and let g(x⃗) be a positive transformation of f(x⃗). f(x⃗) is quasiconcave if and
only if g(x⃗) is quasiconcave.

Proof

Since p(x) is an increasing function, larger values of f(x⃗) correspond to larger values of g(x⃗). This
means that

f((1− t)⃗a+ t⃗b) ≥ f (⃗a), if and only if g((1− t)⃗a+ t⃗b) ≥ g(⃗a),

and f((1− t)⃗a+ t⃗b) ≥ f (⃗b), if and only if g((1− t)⃗a+ t⃗b) ≥ g(⃗b).

Putting these together gives

f((1− t)⃗a+ t⃗b) ≥ min{f (⃗a), f (⃗b)}, if and only if g((1− t)⃗a+ t⃗b) ≥ min{g(⃗a), g(⃗b)}.

If f(x⃗) is quasiconcave, then this inequality is satisfied for all a⃗ and b⃗ in the domain and t in [0, 1]. This
means that g(x⃗) is also quasiconcave. If f(x⃗) is not quasiconcave, then this inequality is not satisfied

for some a⃗, b⃗ and t. That means that g(x⃗) is also not quasiconcave.

We will use this theorem to verify that positive transformations of concave functions are quasiconcave.
Here is an example.

209

4.5.4 Positive Transformations and Quasiconcavity

Example

Consider the function f(x1, x2) = x1x2 on the domain

R2
+ = {(x1, x2) : x1 > 0, x2 > 0}.

We can reason that f(x1, x2) is quasiconcave as follows:

1 g(x1, x2) = lnx1 + lnx2 is a positive transformation of f(x1, x2).

2 Apply Theorem 1.41. g(x1, x2) is concave, because its Hessian is negative definite.

Hg(x1, x2) =

[
− 1

x2
1

0

0 − 1
x2
2

]

3 Apply Theorem 4.19. Since g(x1, x2) is concave, it is also quasiconcave.

4 Apply Theorem 4.25. Since g(x1, x2) is quasiconcave, f(x1, x2) is quasiconcave.

Remark

Notice this reasoning does not apply to concavity.

g(x1, x2) = lnx1 + lnx2 is concave

f(x1, x2) = x1x2 is not concave

To use this method, we must find a function g(x⃗) that is a positive transformation of f(x⃗) and is
also concave. If we do not have an obvious candidate, random guessing is not practical. We would like
a more straightforward procedure.

4.5.5

The Bordered Hessian and Quasiconcavity

We can verify quasiconcavity by direct computation. We will derive that method here.

Recall Lemma 4.14. It showed that convex upper level sets lie in the positive half-space of their
tangent hyperplanes. Another way to say this is that a⃗ is the maximizer of f(x⃗) among points on the
tangent hyperplane to its level set.

210

∇f (⃗a)

a⃗

x⃗

x1

x2

Figure 4.39: A maximizer of f(x⃗) on the
tangent line to its level set

∇f (⃗a)

a⃗

x⃗

x1

x2

Figure 4.40: A local minimizer of f(x⃗)
on the tangent line to its level set

We can prove a reverse version of this lemma with some modifications.

1 We generalize the tangent hyperplane to “points that satisfy ∇f (⃗a) · (x⃗− a⃗) = 0.”

2 We require that each point is a strict local maximizer subject to that constraint.

If this holds for all a⃗, we can conclude that f(x⃗) is quasiconcave.

Lemma 4.26

Suppose f(x⃗) is a continuously differentiable function on a convex domain. If every a⃗ in the domain of
f(x⃗) is a strict local maximizer of f(x⃗) subject to ∇f (⃗a) · (x⃗− a⃗) = 0, then f(x⃗) is quasiconcave.

The proof shows that f(x⃗) satisfies the inequality that defines quasiconcavity.

Proof

Let f(x⃗) be a function and g(x⃗) be a positive transformation of f(x⃗). Let a⃗ and b⃗ be points in the
domain of f(x⃗). In order to show f(x⃗) is quasiconcave, we need to evaluate f(x⃗) along the segment

x⃗(t) = (1− t)⃗a+ t⃗b 0 ≤ t ≤ 1

Consider the composition f(x⃗(t)). By the extreme value theorem, this has a minimizer on [0, 1]. Let
0 < t0 < 1. We claim that t0 is not a minimizer of f(x⃗(t)), there are two cases:

1 If df(x⃗(t0))
dt ̸= 0 then t0 does not satisfy the first-order condition, so it is not a minimizer.

2 If df(x⃗(t0))
dt = 0 then by the chain rule

∇f(x⃗(t0)) · x⃗′(t0) = 0

∇f(x⃗(t0)) · (⃗b− a⃗) = 0

211

4.5.5 The Bordered Hessian and Quasiconcavity

For any t, the vector x⃗(t) − x⃗(t0) is parallel to b⃗ − a⃗. Thus every x⃗(t) satisfies ∇f(x⃗(t0)) ·
(x⃗(t)− x⃗(t0)) = 0. By the hypothesis of this lemma, x⃗(t0) is a strict local maximizer subject to
∇f(x⃗(t0)) · (x⃗− x⃗(t0)) = 0. We can conclude that t0 is not a minimizer of f(x⃗(t)).

Since there is a minimizer of f(x⃗(t)) on [0, 1], and it cannot occur for 0 < t < 1, the minimizer
must be t = 0 or t = 1. That means that

f((1− t)⃗a+ t⃗b) ≥ min{f (⃗a), f (⃗b)} for all 0 ≤ t ≤ 1

Since this holds for any a⃗ and b⃗, we conclude f(x⃗) is quasiconcave.

Figure 4.41: A critical point of the composition f(x⃗(t)), its gradient, and its upper level set

According to thus lemma, we now have a new way to verify quasiconcavity. We must check that
every point a⃗ is a strict local maximizer of f(x⃗) subject to ∇f (⃗a) · (x⃗ − a⃗) = 0. We use different
methods at different points a⃗. Which method we use depends on ∇f (⃗a).

1 If ∇f (⃗a) = 0⃗ then every point x⃗ satisfies the constraint, making it meaningless. We can check
that a⃗ is an unconstrained strict local maximizer by checking the determinants of the minors of
Hf (⃗a) (Theorem 1.31).

2 If ∇f (⃗a) ̸= 0⃗ then the Lagrangian of f(x⃗) subject to ∇f (⃗a) · (x⃗− a⃗) = 0 is

L(λ, x⃗) = f(x⃗) + λ(∇f (⃗a) · (x⃗− a⃗))

= f(x⃗) + λ

n∑
i=1

fi(⃗a)(xi − ai)

We can check the determinants of the minors of HL(λ, a⃗) (Theorem 4.6).

The Hessian of

L(λ, x⃗) = f(x⃗) + λ

n∑
i=1

fi(⃗a)(xi − ai)

212

has a memorable form.

Example

For n = 2, the bordered Hessian is

HL(λ, x⃗) =

 0 f1(⃗a) f2(⃗a)
f1(⃗a) f11(x⃗) f12(x⃗)
f2(⃗a) f21(x⃗) f22(x⃗)

 .

Evaluating at x⃗ = a⃗ gives

HL(λ, a⃗) =

 0 f1(⃗a) f2(⃗a)
f1(⃗a) f11(⃗a) f12(⃗a)
f2(⃗a) f21(⃗a) f22(⃗a)

 .

Due to its importance in this test, we call HL(λ, x⃗) the bordered Hessian of f . We denote it
BHf(x⃗), since it does not depend on λ.

Theorem 4.27

Suppose f(x⃗) is a continuously differentiable function on a convex domain. If for each x⃗ in the domain
either

1 Hf(x⃗) satisfies (−1)i|Mi| > 0 for 1 ≤ i ≤ n, or

2 BHf(x⃗) satisfies (−1)i|Mi| < 0 for 2 ≤ i ≤ n+ 1,

then f(x⃗) is a quasiconcave function.

Here is a diagram of the steps of the proof.

Hf (⃗a) satisfies the
alternating condition

BHf (⃗a) satisfies the
alternating condition

a⃗ is a strict local maximizer
subject to ∇f (⃗a) · (x⃗− a⃗) = 0

f(x⃗) is quasiconcave

either
Thm 4.6

Local SOC

Lem 4.26

The requirement that a⃗ be a strict local maximizer of f(x⃗) subject to ∇f (⃗a) · (x⃗− a⃗) = 0 is actually
stronger than we need. We could make a valid argument only requiring a nonstrict local maximizer.
This would add some extra complexity to the proof of Lemma 4.26. In exchange we would gain the
ability to use the test for a negative semidefinite matrix instead of negative definite (Theorem 1.42).
That test is unpleasant to perform, so such a result may not be worth the effort.

213

4.5.6

Verifying Qusiconcavity Using the Bordered Hessian

Let f(x1, x2) = x1x2 on the domain

R2
+ = {(x1, x2) : x1 > 0, x2 > 0}.

Show that f(x1, x2) is quasiconcave.

Solution

We need to check the Hessian where ∇f(x1, x2) = (x2, x1) = (0, 0). This only occurs at (0, 0), which
is not in the domain. Everywhere else we can check the bordered Hessian.

BHf(x⃗) =

 0 f1(x⃗) f2(x⃗)
f1(x⃗) f11(x⃗) f12(x⃗)
f2(x⃗) f21(x⃗) f22(x⃗)

 =

 0 x2 x1

x2 0 1
x1 1 0

The minor determinants we need to check are

|M2| =
∣∣∣∣ 0 x2

x2 0

∣∣∣∣ = −x2
2 < 0

|M3| =

∣∣∣∣∣∣
0 x2 x1

x2 0 1
x1 1 0

∣∣∣∣∣∣
= 0− x2

∣∣∣∣ x2 1
x1 0

∣∣∣∣+ x1

∣∣∣∣ x2 0
x1 1

∣∣∣∣
= 2x1x2 > 0

For all x1, x2 > 0, this satisfies (−1)i|Mi| < 0 for 2 ≤ i ≤ 3. We conclude that f(x1, x2) = x1x2 is
quasiconcave on R2

+.

4.5.7

Strict Quasiconcavity

Like with strict concavity, strict quasiconcavity is defined by taking the inequality condition of qua-
siconcavity and making the inequalities strict.

214

Definition 4.28

A function f(x⃗) is strictly quasiconcave if for any points a⃗ and b⃗ in the domain of f(x⃗),

f((1− t)⃗a+ t⃗b) > min{f (⃗a), f (⃗b)} for all 0 < t < 1

It is strictly quasiconvex if

f((1− t)⃗a+ t⃗b) < max{f (⃗a), f (⃗b)} for all 0 < t < 1

We can see from this definition that it is stronger than quasiconcavity. Every strictly quasiconcave
function is quasiconcave.

The condition on the upper level sets is more complicated.

Variant of Lemma 4.21

f(x⃗) is a strictly quasiconcave function, if and only if

1 every upper level set f(x⃗) ≥ c is a strictly convex set, and

2 there are no neighborhoods on which f(x⃗) is constant

A function with a thick level set will fail condition 2 .

Figure 4.42: A thick level set of f(x⃗)

As we might expect, strict quasiconcavity is a weaker condition than strict concavity.

215

4.5.7 Strict Quasiconcavity

Variant of Theorem 4.19

If a function f(x⃗) is strictly concave, then it is also strictly quasiconcave.

We can summarize the relationships different forms of (quasi)-concavity in the following diagram.

f(x⃗) is strictly concave

f(x⃗) is concave

f(x⃗) is strictly quasiconcave

f(x⃗) is quasiconcave

Like with strict concavity, strict quasiconcavity can ensure that the Kuhn-Tucker conditions generate
a unique maximizer.

Variant of Theorem 4.23

Given an objective function f(x⃗) and constraints gj(x⃗) ≥ 0, suppose ∇f(x⃗∗) ̸= 0⃗ and (x⃗∗, λ⃗∗) satisfies
the Kuhn-Tucker conditions. If f(x⃗) and the binding gj(x⃗) are quasiconcave, and additionally either

1 f(x⃗) is strictly quasiconcave or

2 the binding gj(x⃗) are strictly quasiconcave,

then x⃗∗ is the unique maximizer of f(x⃗), subject to the constraints.

Like regular quasiconcavity, strict quasiconcavity is preserved under positive transformation.

Variant of Theorem 4.25

Let f(x⃗) be a function and g(x⃗) be a positive transformation of f(x⃗). f(x⃗) is strictly quasiconcave if
and only if g(x⃗) is strictly quasiconcave.

The proof of Lemma 4.26 could instead produce a strict inequality with no additional reasoning. As
a result we can strengthen our Hessian/bordered Hessian test to guarantee strict quasiconcavity with
no modifications.

216

Improvement on Theorem 4.27

Suppose f(x⃗) is a continuously differentiable function on a convex domain. If for each a⃗ in the domain
either

1 Hf(x⃗) satisfies (−1)i|Mi| > 0 for 1 ≤ i ≤ n, or

2 BHf(x⃗) satisfies (−1)i|Mi| < 0 for 2 ≤ i ≤ n+ 1,

then f(x⃗) is strictly quasiconcave.

4.5.8

Section Summary

The most important definitions and results from this section were

The definition of quasiconcavity (Definition 4.18)

Concave functions are quasiconcave (Theorem 4.19)

The upper level sets of quasiconcave function are convex (Lemma 4.21)

Sufficient conditions for a maximizer of quasiconcave functions (Theorems 4.22 and 4.23)

Verifying quasiconcavity via composition (Theorem 4.25)

Verifying quasiconcavity with the bordered Hessian (Theorem 4.27)

Definition and variants for strict quasiconcavity (Definition 4.28 etc.)

217

	Calculus Reference
	Graphs of Functions
	Limits and Derivatives
	Multivariable Functions

	Unconstrained Optimization
	Single-Variable Optimization
	Concavity
	Multivariable Optimization

	Constrained Optimization
	Equality Constraints
	Inequality Constraints
	The Kuhn-Tucker Conditions

	Comparative Statics
	The Implicit Function Theorem
	The Envelope Theorem

	Sufficient Conditions
	The Extreme Value Theorem
	The Bordered Hessian
	Separation
	Concave Programming
	Quasiconcavity

